PROGRAMA DAS SELETIVAS DAS OLIMPÍADAS INTERNACIONAIS DE FÍSICA (SOIF)

1)Considerações Gerais

Os problemas poderão apresentar conceitos e fenômenos que não estão apresentados neste programa. Neste caso, será fornecida ao candidato informação suficiente para que este não tenha desvantagem com relação a candidatos que tenham conhecimento do tema.

Os problemas com equipamentos sofisticados não podem dominar o conteúdo das questões da prova experimental. Caso algum equipamento destes seja utilizado, a comissão fornecerá as informações necessárias para o candidato.

O texto original dos problemas terá todos os valores expressos no sistema internacional de unidades (SI).

2) Conhecimentos matemáticos

Espera-se que os alunos envolvidos nas SOIF tenham os seguintes conhecimentos matemáticos.

2.1. Álgebra

Simplificação de fórmulas por fatoração e expansão. Resolução de sistemas lineares de equações. Resolução de equações e sistemas de equações que conduzem a equações quadráticas e biquadráticas; seleção de soluções fisicamente significativas. Soma de séries aritméticas e geométricas.

2.2 Funções

Propriedades básicas de funções trigonométricas, trigonométricas inversas, exponenciais e logarítmicas e polinômios.

Isso inclui fórmulas sobre funções trigonométricas de uma soma de ângulos. Resolução de equações simples envolvendo funções trigonométricas, trigonométricas inversas, logarítmicas e exponenciais.

2.3 Geometria e estereometria

Graus e radianos como medidas alternativas de ângulos. Igualdade de ângulos alternados internos e externos, igualdade de ângulos correspondentes. Reconhecimento de triângulos semelhantes e congruentes. Áreas de triângulos, trapézios, círculos e elipses; áreas de

superfície de esferas, cilindros e cones; volumes de esferas, cones, cilindros e prismas. Regras do seno e do cosseno, propriedade dos ângulos inscritos e centrais, teorema de Tales. Medianas, mediatrizes, bissetrizes e baricentro de um triângulo. Espera-se que os alunos estejam familiarizados com as propriedades das seções cônicas, incluindo círculos, elipses, parábolas e hipérboles. Sistemas de coordenadas cartesianas, cilíndricas e esféricas.

2.4 Vetores

Propriedades básicas de somas vetoriais, produtos escalares e vetoriais. Produto cruzado duplo e produto triplo escalar. Interpretação geométrica de uma derivada temporal de uma grandeza vetorial.

2.5 Números complexos

Soma, multiplicação e divisão de números complexos; separação das partes reais e imaginárias. Conversão entre representações algébricas, trigonométricas e exponenciais de um número complexo. Raízes complexas de equações quadráticas e sua interpretação física.

2.6 Estatística

Cálculo de probabilidades como a razão do número de objetos ou frequências de ocorrência de eventos. Cálculo dos valores médios, desvios padrão e desvio padrão das médias dos grupos.

2.7 Cálculo

Encontrando derivadas de funções elementares, suas somas, produtos, quocientes e funções aninhadas. Integração como procedimento inverso à diferenciação. Encontrando integrais definidas e indefinidas em casos simples: funções elementares, somas de funções e usando a regra de substituição para um argumento linearmente dependente. Tornando integrais definidas adimensionais por substituição. Interpretação geométrica de derivadas e integrais. Encontrar constantes de integração usando condições iniciais. Conceito de vetores gradientes (não é necessário formalismo derivado parcial). Equações diferenciais ordinárias de coeficientes constantes.

2.8 Métodos aproximados e numéricos

Usando aproximações lineares e polinomiais baseadas em séries de Taylor. Linearização de equações e expressões. Método de perturbação: cálculo de correções com base em soluções não perturbadas. Integração numérica usando a regra trapezoidal ou adicionando retângulos.

3) Provas Teóricas

Prova Seletiva 1

3.1. Mecânica I

Análise dimensional

Cinemática

Velocidade e aceleração de uma partícula pontual como as derivadas do seu vetor deslocamento. Velocidade linear; aceleração centrípeta e tangencial. Movimento de uma partícula puntiforme com aceleração constante. Adição de velocidades e velocidades angulares; adição de acelerações sem o termo de Coriolis; reconhecimento dos casos em que a aceleração de Coriolis é zero. Movimento de um corpo rígido como rotação em torno de um centro de rotação instantâneo; velocidades e acelerações dos pontos materiais de corpos rígidos em rotação.

Estática

Encontrar o centro de massa de um sistema por soma ou por integração. Condições de equilíbrio: equilíbrio de força (vetorial ou em termos de projeções) e equilíbrio de torque (somente para geometria uni e bidimensional). Força normal, força de tensão, força de atrito estático e cinético; Lei de Hooke, tensão, tensão e módulo de Young. Equilíbrios estáveis e instáveis.

Dinâmica

Segunda lei de Newton (na forma vetorial e via projeções (componentes)); energia cinética para movimentos de translação. Energia potencial para campos de força simples (também como integral de linha do campo de força). Momento linear, momento angular, energia e suas leis de conservação. Trabalho mecânico e potência; dissipação por atrito. Referenciais inerciais e não inerciais: força inercial, força centrífuga, energia potencial em um referencial rotativo. Sistemas de massa variável. Impulso e colisões 1D e 2D.

Mecânica celeste

Lei da gravidade, potencial gravitacional, leis de Kepler (não é necessária derivação para a primeira e terceira lei). Energia e momento angular de massas pontuais de diferentes tipos de órbitas.

Hidrodinâmica

Pressão, flutuabilidade, lei de continuidade. a equação de Bernoulli. Tensão superficial e energia associada, pressão capilar.

3.2. Termodinâmica e física estatística

• Termodinâmica clássica

Conceitos de equilíbrio térmico e processos reversíveis; energia interna, trabalho e calor; escala de temperatura de Kelvin; entropia; sistemas abertos, fechados e isolados; primeira e segunda leis da termodinâmica. Transformações isotérmica, isobárica, isocórica, e processos adiabáticos, expansão livre; calor específico para processos isobáricos e isocóricos; ciclo de Carnot para frente e para trás em gás ideal e sua eficiência; eficiência de motores térmicos não ideais.

• Transferência de calor e Transições de fase

Transição de fase (ebulição, evaporação, fusão, sublimação) e calor latente; pressão de vapor saturado, umidade relativa; ebulição; lei de Dalton; conceito de condutividade térmica; continuidade do fluxo de calor.

Física estatística

Teoria cinética dos gases ideais: número de Avogadro, fator de Boltzmann e constante do gás; movimento translacional de moléculas e pressão; lei dos gases ideais; graus de liberdade translacionais, rotacionais e oscilatórios; teorema da equipartição; energia interna de gases ideais; velocidade quadrática média das moléculas.

3.3. Ondas e óptica

Oscilações harmônicas

Equação de movimento, frequência, frequência angular e período. Comportamento próximo de equilíbrios instáveis. Decaimento exponencial de oscilações amortecidas; ressonância de osciladores senoidais forçados: amplitude e mudança de fase de oscilações em regime permanente.

Ondulatória

Propagação de ondas harmônicas: fase como função linear do espaço e do tempo; comprimento de onda, vetor de onda, velocidade de fase e grupo; decaimento exponencial para ondas que se propagam em meios dissipativos; ondas transversais e longitudinais; o efeito Doppler clássico. Ondas em meios não homogêneos: princípio de Fermat, lei de Snell. Ondas sonoras: velocidade em função da pressão (módulo de Young ou bulk) e densidade, cone Mach. Energia transportada pelas ondas: proporcionalidade ao quadrado da amplitude, continuidade do fluxo de energia.

• Interferência e difração

Superposição de ondas: coerência, batimentos, ondas estacionárias, princípio de Huygens, interferência devido a filmes finos (somente condições para mínimos e máximos de intensidade). Difração de uma e duas fendas, rede de difração, reflexão de Bragg.

• Interação das ondas eletromagnéticas com a matéria

Dependência da permissividade elétrica da frequência (qualitativamente); índice de refração; dispersão e dissipação de ondas eletromagnéticas em materiais

transparentes e opacos. Polarização linear; ângulo de Brewster; polarizadores; Lei de Malus.

Óptica

Aproximação da óptica geométrica: raios e imagens ópticas; uma sombra parcial e uma sombra completa. Aproximação de lente fina; construção de imagens criadas por lentes finas ideais; equação da lente fina Fluxo luminoso e sua continuidade; iluminância; Intensidade luminosa. Telescópios e microscópios: ampliação e poder de resolução; rede de difração e seu poder de resolução; interferômetros.

Prova Seletiva 2

Todos os assuntos contemplados na Prova Seletiva 1 podem ser cobrados na Prova Seletiva 2.

3.4. Dinâmica do corpo rígido

Energia cinética para movimentos de rotação. Momento de inércia para corpos simples (anel, disco, esfera, esfera oca, haste), teorema dos eixos paralelos; encontrar um momento de inércia via integração. Pêndulo físico e seu comprimento reduzido.

3.5. Eletromagnetismo

Conceitos básicos

Conceitos de carga e corrente; conservação de carga e a lei atual de Kirchhoff. força de Coulomb; campo eletrostático como campo potencial; Lei das tensões de Kirchhoff. Campo B magnético; força de Lorentz; a força de Ampère; Lei de Biot-Savart e campo B no eixo de uma espira circular de corrente e para sistemas simétricos simples como fio reto, espira circular e solenóide longo. Efeito Hall.

Formas integrais das equações de Maxwell

Lei de Gauss (para campos E e B); lei de Ampère; lei de Faraday; usando essas leis para o cálculo de campos quando o integrando é quase constante por partes. Condições de contorno para o campo elétrico (ou potencial eletrostático) na superfície dos condutores e no infinito; conceito de condutores aterrados. Princípio de superposição para campos elétricos e magnéticos. Ondas eletromagnéticas e vetor de Poynting.

• Interação da matéria com os campos elétrico e magnético

Resistividade e condutividade; forma diferencial da lei de Ohm. Permeabilidade dielétrica e magnética; permissividade relativa e permeabilidade de materiais elétricos e magnéticos; densidade de energia dos campos elétricos e magnéticos; materiais ferromagnéticos; histerese e dissipação; correntes parasitas; Lei de Lenz. Cargas no campo magnético: movimento helicoidal, frequência cíclotron, deriva em campos E e B cruzados. Energia de um dipolo magnético em um campo magnético; momento de dipolo de uma espira de corrente. Vetores Deslocamento elétrico e Polarização. Campo de um dipolo magnético.

Circuitos

Resistores lineares e lei de Ohm; lei de Joule; trabalho realizado por uma força eletromotriz; baterias ideais e não ideais, fontes de corrente constante, amperímetros, voltímetros e ohmímetros. Elementos não lineares da característica V - I dada . Capacitores e capacitância

(também para um único eletrodo em relação ao infinito); auto-indução e indutância; energia de capacitores e indutores; indutância mútua; constantes de tempo para circuitos RL e RC . Circuitos AC: amplitude complexa; impedância de resistores, indutores, capacitores e circuitos combinados; diagramas fasorial; ressonância de corrente e tensão; poder ativo. Oscilações livres de circuitos LC; analogia mecânico-elétrica; feedback positivo como fonte de instabilidade; geração de ondas senoidais por realimentação em um ressonador LC. Diodos. Circuitos RLC.

3.6. Relatividade

Princípio da Relatividade da relatividade e transformações de Lorentz para a coordenada temporal e espacial, e para a energia e momento; equivalência massa-energia; invariância do intervalo espaço-tempo e da massa de repouso. Adição de velocidades paralelas; dilatação do tempo; contração do comprimento; relatividade da simultaneidade; energia e momento dos fótons e efeito Doppler relativístico; equação relativística do movimento; conservação de energia e momento para interação elástica e não elástica de partículas.

3.7. Física Quântica e Estrutura da matéria

• Fundamentos de física quântica

Lei de Planck (explicada qualitativamente, não precisa ser lembrada), lei do deslocamento de Wien; a lei de Stefan-Boltzmann. Partículas como ondas: relação entre a frequência e a energia, e entre o vetor de onda e o momento. Níveis de energia de átomos semelhantes ao hidrogênio (somente órbitas circulares) e de potenciais parabólicos; quantização do momento angular. Princípio da incerteza para os pares conjugados de tempo e energia, e de coordenada e momento (como teorema e como ferramenta para estimativas).

Estrutura da matéria

Espectros de emissão e absorção para átomos semelhantes ao hidrogênio (para outros átomos — qualitativamente), e para moléculas devido a oscilações moleculares; largura espectral e tempo de vida dos estados excitados. Princípio de exclusão de Pauli para partículas de Fermi. Partículas (conhecimento de carga e spin): elétrons, neutrinos de elétrons, prótons, nêutrons, fótons; Efeito Compton. Prótons e nêutrons como partículas compostas . Núcleos atômicos, níveis de energia dos núcleos (qualitativamente); decaimentos alfa, beta e gama; fissão, fusão e captura de nêutrons; defeito de massa; meia-vida e decaimento exponencial. Efeito fotoelétrico.Semicondutores.

Prova Teórica TBF

O programa para a prova experimental do TBF é o mesmo da Prova Seletiva 2.

4) Provas Experimentais

As provas seletiva 1 e 2 não cobram conhecimentos experimentais específicos. O Torneio Brasileiro de Física, por sua vez, aborda esse conhecimento em uma prova específica.

Prova Experimental (TBF)

O conteúdo apresentado para a prova teórica serve como base para os problemas experimentais. Para a realização dos problemas propostos na prova experimental será necessária a realização de medidas experimentais. As provas experimentais devem cobrar os seguintes conhecimentos e habilidades dos estudantes:

- 1. Conhecimento de como os instrumentos experimentais afetam as medidas experimentais.
- 2. Realizar técnicas experimentais básicas que permitam a realização de medidas experimentais das quantidades físicas.
- 3. Utilizar de equipamentos simples de laboratório, tais como: paquímetros, trenas, micrômetros, termômetros, Multímetros simples (para medida de diferenças de potencial, corrente e resistência), potenciômetros, diodos, transistores, dispositivos ópticos simples (suportes para lentes, trilhos e outros).
- 4. Utilização, com o uso de instruções específicas, de alguns instrumentos sofisticados, tais como: osciloscópios, contadores, geradores de função, conversores analógicos e digitais conectados ao computador, amplificadores, integradores, diferenciadores, fontes e baterias, Multímetros universais (digitais e analógicos).
 - 5. Identificação de fontes de erros experimentais e sua influência no resultado final.
- 6. Erros relativos e absolutos, precisão de equipamentos e instrumentos de medida, determinação do erro de uma medida experimental, determinação do erro de uma série de medidas experimentais (média, desvio padrão), propagação de erros experimentais.
- 7. Linearização de dependências de valores experimentais, pela escolha apropriada da transformação de variáveis, ajuste de curvas pelo método dos mínimos quadrados.
- 8. Construção de gráficos e uso apropriado de papeis de escalas gráficas (exemplo: papéis polares e logaritmos).
- 9. Representação dos resultados finais e seu erro associado com o uso correto do número de algarismos significativos.
- 10. Conhecimento básico de medidas de segurança e manuseio de equipamentos experimentais (sempre que os equipamentos de laboratório apresentarem algum risco, indicações especiais deverão estar presentes no texto do problema).