IPho 2016, questão 2

Alexandre Bastos

1 Parte A

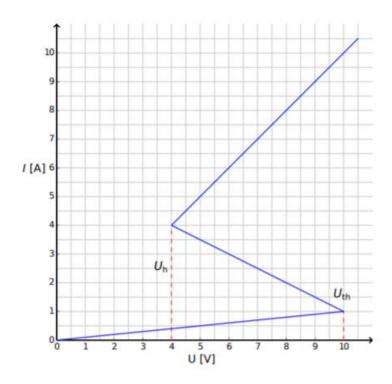


Figura 1: Gráfico I-V do tiristor(componente X)

A1: Usando o gráfico, determine a resistência R_{on} do elemento X no ramo superior, e R_{off} no ramo inferior, respectivamente. O ramo intermediário é descrito pela equação

$$I = I_0 - \frac{U}{R_{int}} \tag{1}$$

Encontre os valores dos parâmetros I_0 e R_{int} .

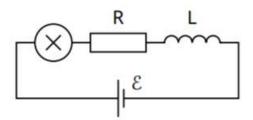


Figura 2: Circuito com o elemento X, resistor R, indutorL, e uma fonte ε

A2: Qual é o número de estados estacionários possíveis que o circuito da figura 2 pode ter para um valor fixo de ε e para $R=3\Omega$? Como a resposta muda para $R=1\Omega$?

A3: Com $R=3\Omega, L=1\mu H$ e $\varepsilon=15V$. Determine os valores da corrente I_e e a voltagem V_e no elemento não linear X em seu estado estacionário.

A4: Use os valores numéricos da questão **A3** e estude a estabilidade do estado estacionário com $I_{(t)} = I_e$. É estável ou instável?

2 Solução da parte A

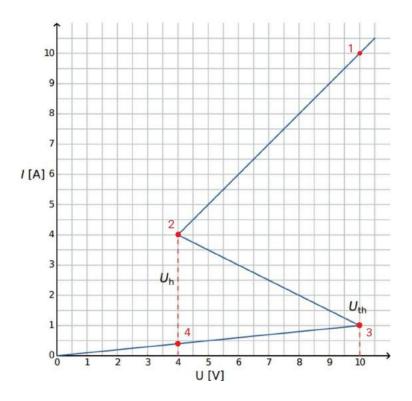


Figura 3: Gráfico I-V tiristor(componente X)

Solução A1: Através da Lei de Ohm e do gráfico, obtém-se R_{on} e R_{off} :

$$R_{on} = \frac{V_1 - V_2}{I_1 - I_2} = 1\Omega \tag{2}$$

$$R_{off} = \frac{V_3 - V_4}{I_3 - I_4} = 10\Omega \tag{3}$$

Usando a equação fornecida para o ramo intermediário: $I=I_0-\frac{U}{R_int}$ e aplicando-a aos pontos 2 e 3 obtém-se:

$$R_{int} = \frac{U_3 - U_2}{I_2 - I_3} = 2\Omega \; ; \; I_0 = I_2 + \frac{U_2}{R_{int}} = 6A$$
 (4)

Solução A2: Aplicando a Lei de Kirchhoff sob o regime estacionário:

$$\varepsilon = RI_e + U_e \tag{5}$$

São possíveis apenas os pontos de intersecções entre o gráfico 1 e a reta do estado estacionário:

$$I_{(U_e)} = \frac{\varepsilon}{R} - \frac{U_e}{R} \tag{6}$$

Quando $R=3\Omega$: observa-se que independentemente do valor de ε há sempre apenas uma intersecção, logo, para $R=3\Omega$ há um caso possível.

Quando $R=1\Omega$: observa-se que variando o valor de ε o número máximo de intersecções é 3, logo, para $R=1\Omega$ há três casos possíveis.

Solução A3: Primeiramente é preciso notar que para o valor de $\varepsilon=15V$ a corrente estacionária está no ramo intermediário, então na Lei de Kirchhoff(Eq. 5), $U_e=R_{int}(I_0-I_e)$, obtendo-se:

$$I_e = \frac{\varepsilon - R_{int}I_0}{R - R_{int}} = 3A \tag{7}$$

$$U_e = R_{int}(I_0 - I_e) = 6V (8)$$

Solução A4: Escrevendo a Lei de Kirchhoff:

$$\varepsilon = RI + R_{int}(I_0 - I) + L\frac{dI}{dt} \tag{9}$$

Assim,

$$L\frac{dI}{dt} = \varepsilon - R_{int}I_0 - (R - R_{int})I \tag{10}$$

Se
$$I < I_e$$
, têm-se $\frac{dI}{dt} > 0$
Se $I > I_e$, têm-se $\frac{dI}{dt} < 0$

Conclui-se que o sistema tende à voltar para o regime estacionário, então pode-se dizer que o estado estacionário é estável

3 Parte B

No sistema abaixo, $C=1\mu F$, $R=3\Omega$ e $\varepsilon=15V$

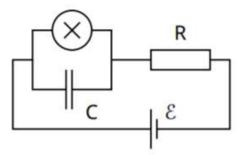


Figura 4: Circuito com o componente X, capacitor C, resistor R e fonte ε

B1: Desenhe o ciclo de oscilação no gráfico I-V, incluindo sua direção (horário ou anti-horário). Justifique sua resposta com equações e esquemas.

B2: Encontre as expressões para os tempos t_1 e t_2 que o sistema gasta em cada ramo do gráfico I-V durante o ciclo de oscilação. Determine seus valores numéricos. Encontre o valor numérico do período T assumindo que o tempo para os pulos entre os ramos são negligíveis.

 ${f B3}$:Estime a potência média P dissipada pelo elemento não linear em uma oscilação. Uma ordem de magnitude é suficiente.

O circuito da Fig.4 é usado para construir um rádio transmissor. Para esse propósito, o componente X é ligado à uma ponta de uma antena linear (um fio longo e reto) de comprimento s. A outra ponta está livre. Na antena, uma onda eletromagnética é formada. A velocidade da onda ao longo da antena é a mesma que no vácuo. O transmissor está usando o principal harmônico do sistema, o qual tem o período igual a T da questão ${\bf B2}$.

B4: Qual o melhor valor de s assumindo que este não pode exceder 1km?

4 Solução da parte B

Solução da B1:

- O ciclo não percorre o ramo intermediário pois a corrente estável está nele
- A troca de ramos ocorre sob mesma voltagem pois a carga no capacitor não pode mudar instantaneamente
- Os pulos de voltagem ocorrem em U_h e U_{th} pois estes são os pontos quais o sistema não tem para onde ir
- O sistema se move para a direita no ramo inferior pois o mesmo tende a se aproximar do regime estável

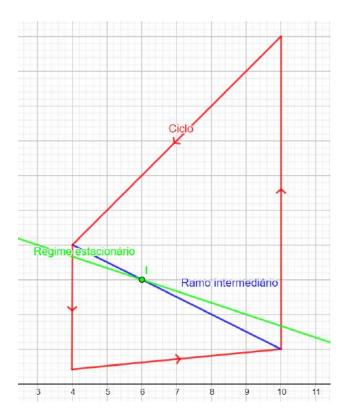


Figura 5: Gráfico I-V do ciclo

Solução da B2: Definindo como I a corrente que passa pela resistência R e $I_2=\frac{dQ}{dt}$ a corrente que passa pelo capacitor, $I_1=I-I_2$ é a corrente que passa por X. Como X e C estão em paralelo: $R_XI_1=\frac{Q}{C}$. Aplicando a Lei de Kirchhoff:

$$\varepsilon = RI + R_X I_1 = R(I_1 + I_2) + R_X I_1 \tag{11}$$

$$I_2 = R_X C \dot{I}_1 \; ; \; U_X = R_X I_1 \to R C \dot{U}_X = \varepsilon - \frac{R + R_X}{R_X} U_X$$
 (12)

$$t = C \frac{RR_X}{R + R_X} \ln \left(\frac{\varepsilon - U_i \frac{R + R_X}{R_X}}{\varepsilon - U_f \frac{R + R_X}{R_X}} \right)$$
 (13)

Quando X está no ramo superior:

- $t = t_{on}$
- $R_X = R_{on}$
- $U_f = U_h$
- $U_i = U_{th}$

Quando X está no ramo inferior:

- $t = t_{off}$
- $R_X = R_{off}$
- $U_f = U_{th}$
- $U_i = U_h$

Obtendo-se

$$t_{on} = 2,41 \cdot 10^{-6} \; ; \; t_{off} = 3,67 \cdot 10^{-6} \; ; \; T = t_{on} + t_{off} = 6,08 \cdot 10^{-6}$$
 (14)

Solução da B3: A energia média dissipada pelo componente X sob tensão média de $U_m = \frac{U_h + U_{th}}{2}$ é:

$$E = U_m^2 \frac{t_{on}}{R_{on}} + U_m^2 \frac{t_{off}}{R_{off}}$$
 (15)

Assim, pode-se estimar o valor da potência:

$$P \approx \frac{E}{T} = 22,38W \tag{16}$$

5 Parte C

Nesta parte do problema, nós consideraremos uma aplicação do componente não linear biestável para modelar processos biológicos. Um neurônio de um cérebro humano tem a seguinte propriedade: quando excitado por um sinal externo, ele realiza uma única oscilação e aí retorna para seu estado inicial. Essa característica é chamada de excitabilidade. Devido a essa propriedade, pulsos podem se propagar numa rede de neurônios interligados constituindo o sistema nervoso. Um chip semicondutor projetado para simular a excitabilidade e o pulso nervoso é chamado neuristores.

Nós modelaremos um simples neuristor usando um circuito que inclui o componente não linear X que investigamos anteriormente. Para essa questão, a voltagem ε no circuito da figura 4 é diminuída para $\varepsilon'=12V$. As oscilações param e o sistema atinge seu estado estacionário. Então, a tensão é rapidamente aumentou de volta ao valor $\varepsilon=15V$, depois de um tempo τ (sendo $\tau< T$) volta ao valor $\varepsilon'=12V$ (veja a figura 5). Acontece que existe um certo valor crítico τ_{crit} , em que o sistema mostra um comportamento qualitativamente diferente para $\tau<\tau_{crit}$ e para $\tau>\tau_{crit}$.

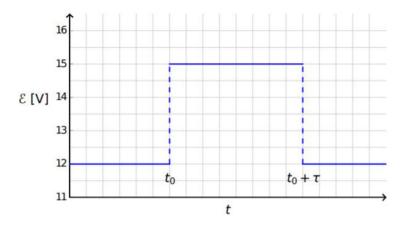


Figura 6: Voltagem da fonte em função do tempo

C1: Esboce os gráficos da dependência do tempo da corrente $I_{X(t)}$ no que passa pelo componente X para $\tau > \tau_{crit}$ e para $\tau < \tau_{crit}$.

C2: Encontre a expressão e o valor numérico do tempo crítico τ_{crit} .

C3: O circuito é um neuristor com $\tau = 1 \cdot 10^{-6} s$?

6 Solução da parte C

Solução da C1: Primeiramente é necessário lembrar que o componente não linear segue sempre o gráfico da Fig.1 e sempre em direção ao regime estável, então, se a fonte se manter no valor de $\varepsilon=15V$ por tempo o suficiente, o componente X é obrigado a realizar o salto do ramo inferior para o superior e aí ele continua a seguir para a corrente estacionária, conforme o gráfico abaixo:

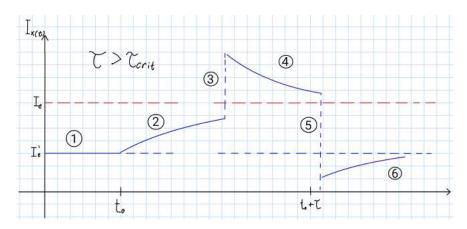


Figura 7: Corrente $I_X(t)$ em função do tempo para $\tau > \tau_{crit}$

- 1- Regime estável inicial em que $I=I'_e$
- 2- Sistema se move para a direita no ramo inferior do gráfico da Fig.1(a corrente aumenta) em direção a nova corrente de equilíbrio I_e
- 3- O sistema salta para o ramo superior do gráfico da Fig.1
- 4- O sistema se move para a esquerda no ramo superior do gráfico da Fig.1(a corrente decai) em direção à corrente de equilíbrio
- 5- O sistema salta de volta para o ramo inferior
- 6- O sistema volta ao estado inicial $(I = I'_e)$

Para o caso em que $\tau < \tau_{crit}$ basicamente em quanto a voltagem for diferente a corrente aumentará em busca de alcançar I_e e após este intervalo de tempo τ a corrrente voltará para seu vaolr inicial I'_e , conforme a figura:

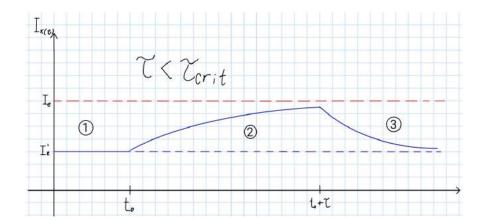


Figura 8: Corrente $I_{X(t)}$ em função do tempo, para $au < au_{crit}$

- 1- Regime estável inicial em que $I=I_e^\prime$
- 2- A corrente aumenta em busca da corrente temporária de equilíbrio I_e
- 3-A corrente diminui para voltar ao seu estado inicial de equilíbrio

Solução da C2: Observa-se que a mudança de comportamento ocorre quando o sistema salta entre os ramos e o tempo para isto ocorrer já foi calculado na **B2**:

- $U_f \rightarrow U_{th}$ (tensão em X final)
- $U_i = R_{off} \cdot \frac{\varepsilon'}{R + R_{off}}$ (tensão em X inicial)

Através da expressão da B2:

$$\tau_{crit} = C \frac{R_{off}R}{R + R_{off}} \ln \left(\frac{\varepsilon - U_i \frac{R + R_{off}}{R_{off}}}{\varepsilon - U_f \frac{R + R_{off}}{R_{off}}} \right) = 9,36 \cdot 10^{-7} s \tag{17}$$

solução da C3: Desde que $au> au_{crit}$, o sistema fará uma oscilação. Logo, o sistema é um neuristor.