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In this paper we describe some highlights of recent physics results from the DO experiment at 
the Tevatron pp collider. One aspect of recent QCD experimentation has been the emphasis 
on studies of events with rapidity gaps; the characteristics of such events in the DO data are 
described. The non-abelian nature of the electroweak interaction is a well defined property 
of the standard model. The very high energies available at the Tevatron have opened a 
new window which permits the testing of this aspect of the standard model. THE highlight 
among recent results was the observation of the top qtiark and this result is discussed. At the 
highest energy available, DO is conducting numerous searches for phenomena which Might 
indicate the structure of the world beyond the electroweak scale. We discuss searches for the 
sparticles of supersymmetry. The luminosity of the collider will increase dramatically over 
the next. five years. This will open new fields of investigation for an upgraded DO detector. 

This paper is a description, necessarily brief, of a very few selected topics pertaining to the physics results and 

the future program of the DO experiment. It is neither intended to review those results exhaustively[1] nor to make 

any comparison with results from the other Tevatron Collider experiment, CDF[2]. No attempt is made to update 

the content for information which has become public since the conference. Nevertheless, I hope that 1 convey some 

measure of the excitement of an experiment on the discovery frontier. 

DO is a large international collaboration of more than 400 physicists from 44 institutions worldwide including 

two Brazilian institutions and three other South American institutions. The DO detectort3] is shown in Fig. 

1. A compact central tracking system is surrounded by a highly segmented liquid Argon and depleted Uranium 

calorimeter. The calorimeter is in turn surrounded by a muon detection system of solid iron toroids and chambers 

which together provide identification of muons and a measure of their momenta. Electrons are distinguished from 

hadrons primarily by the shape of the energy deposition, both in depth and breadth, in the calorimeter and from 

photons by the presence of an associated track. The acceptance in pseudorapidity extends beyond = ±3 for the 

leptons and hadrons. This makes the determination of the missing transverse energy, through the energy imbalance, 

rather good. It is from this measurement that the transverse energy of a neutrino may be inferred. The detector 

is thus capable of detecting and measuring the relevant parameters of all the objects resulting from high energy 

interactions. 

In this paper we will first very briefly summarise measurements of the b quark production cross-section. This 
subject is covered in an extensive parallel session paper at this conference. As an example of an advanced QCD 

analysis we describe a measurement of events with substantial regions of rapidity in which there are no particles. 

Such events have generated interest in the last couple of years both in hadron - hadron collisions and in lepton -hadron 

collisions. We then discuss diboson production which permits the investigation of the couplings of gauge bosons 

• Presented at the XVI Encontro Nacional de Fisica de Particular e Campos, Caxarnbu, MG, Brazil, Outubro 24-28, 1995. 



2 	 Hugh E. Montgomery 

and in which we have demonstrated the non-abelian nature of the electroweak interaction. In 1995 it would be a 

sin to omit a description of the observation of the sixth and possibly last quark. The standard model is not thought 

to be the ultimate description of nature. At DO we have a program of searches for indications of physics beyond 

such confines and we will describe a small selection. Finally we will briefly indicate the directions and sensitivities 

that can be expected from an upgraded detector running with the Tevatron at much higher luminosity in the Main 

Injector era. 

Figure 1. The DO Detector in a side view showing the location of the component systems. 

I Strong Interactions and b Quark Production 

The strong interaction is probed in pp colliders using many different experimental techniques involving the detection 

of the different species of quarks and of gluons or generic jets with different multiplicities, or of gauge bosons such 

as photon or W and Z boson. We confine ourselves to two aspects here. 

I.1 b Quark Production 

DO has measured the b quark production cross-section using a number of method*, 4, 5]. In general we have used 

final state muons, in or near jets to indicate the presence of b jets. Backgrounds from Tr and K decay, and from 

charm quarks are controlled by the intrinsic properties of the detector and by cuts on the relative kinematics of 

the detected muons and jets. The subject was covered in considerable detail by Gilvan Alves[5] in a major parallel 

session presentation at this conference. A comparison of different measurements with the theoretical expectations 

is given in Figure 2. The data lie somewhat above the central expectations of the theory, but not incompatibly so. 

The uncertainties on the latter are indicated by the dashed lines. 
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Figure 2: b-quark production cross sections for I ib  1< 1 from the inclusive muon, muon plus jet, dimuon and J/i data 
samples. 

1.2 Color Singlet Exchange 

In this analysis[6, 7] we measure strongly interacting color singlet exchange by tagging events with a low multiplicity 

of particles between jets. Few particles are expected in the space between the leading jets in color singlet events. 

In contrast the presence of a color string connecting the scattered partons in color octet events (gluon exchange) 

gives rise to a smooth distribution of particles between the leading jets. In QCD the absence of particles as a result 

of strong color singlet exchange is a manifestation of the destructive interference between the emissions of gluons 

from two colored objects, the gluon components of the pomeron. 

Two different data sets were used to study this effect: one selected events with the two jets on opposite sides, in 

of the calorimeter (71/ •772 < 0) while the other selected events with jets on the same side (9 1  rl2 > 0). The same side 

sample is expected to be dominated by color octet exchange and is used as a control. Figure 3 shows the number of 

electromagnetic calorimeter towers above threshold (n cai ) versus the number of central drift chamber tracks (n ir k) 

for the (a) opposite side and (b) same side samples. Each of these measures is sensitive to a different fraction of 

the total particles produced. The two distributions are similar in shape except at very low multiplicities, where the 

opposite side sample has a striking excess of events in the region where the multiplicity of both electromagnetic 

calorimeter cells, and tracks is close to zero. One can perform Fits in one or other of these variables. Except for the 

lowest bins, the multiplicities are well described by negative binomial distributions, or modified negative binomial 

distributions. In the opposite side sample there is an excess in the low multiplicities consistent with the existence 
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of a color singlet exchange process. We measure the fractional excess of color singlet above color octet exchange to 

be 1.07 ± 0.10 (stat) (syst)%. The probability of such an excess has been estimated for both electroweak and 

strong color singlet (pomeron) exchange. The former is expected to be at a level much below that observed. On 

the other hand, the estimations for pomeron exchange are at approximately the level observed. 

35 

Figure 3: The calorimeter tower multiplicity (n cai) vs. the charged track multiplicity (ri trk) in the pseudorapidity region 
< 1.3 for the (a) opposite-side and (b) same-side samples described in the text. 

II Electroweak Interactions: The Boson Couplings 

Tests of the electroweak sector of the Standard Model have concentrated on the consistency between, and the 

radiative corrections to, the basic parameters of the model. One aspect which has received relatively little attention 

until recently is the examination of the vertex functions, the couplings between the vector bosons themselves. .The 

very fact of their mutual interaction is a feature of the non-abelian nature of the theory which in turn is related to 

its local gauge invariance. A straightforward way to examine such interactions is through the production of pairs 

of gauge bosons. Given the high masses of the W and Z, there is a premium on high energy. Consequently the 

advances from the Tevatron data have been remarkable. 

II.1 Diboson production 

In the standard electroweak model, the self-couplings of the W, Z, and 7 bosons are completely specified and so 

consequently, are the gauge boson pair production cross sections. W7[8], Zry[9], W W[10] and WZ[111 production 

have all been studied by DO . The ZZ production cross section is extremely small. 
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Combined e-i-Az Channels 
10 

Data (23 events) 
SM MC 	1511..ga 
13.6 t 6.4 — 20.0 evts 
Elkga .= 6.4 ± 1.4 evts 

Figure 4: Transverse energy spectrum of the photon produced in pp 	+ X — et,7+ X, l = c, is. The points arc data, 
the shaded area represents the estimated background, and the solid histogram is the sum of the SM prediction and estimated 
background. 

The production mechanisms include both t-channel quark exchange diagrams and the direct s-channel diagram 
with a third virtual vector boson in that channel. The latter diagram involves the trilinear vector boson couplings: 

Deviation from the standard model predictions could imply new physics entering through loop corrections to this 
vertex. Any non-Standard Model contributions to the WW7 vertex, can be interpreted as an anomalous contribution 
to the electromagnetic dipole and quadrupole moments of the W. This is analogous to the contributions to g — 2 
of the muon from the "new physics" in the weak and hadronic loop diagrams. 

A useful feature from the experimental point of view is that any anomalous couplings enter quadratically in 

the expression for the cross section and hence would lead to an increase in the cross section. A limit measurement 
therefore necessarily constrains the anomalous components. In addition the enhancement occurs with a weaker 
dependence on pr  than the standard form so that examination of the pT dependence of any observed signal provides 
further discrimination. 

Generally, each trilinear vertex can be described by a set of four coupling constants. The WWy (WWZ) 
couplings are usually referred to as tc../ (2), Alf(z) , 	5t 7(z) , with the first two couplings being CP-conserving and 
the other two being CP-violating. For ZZy (Z77) vertices the corresponding couplings are denoted /if 	= 1...4, 
with 111,2 being CP-violating and h3, 4  CP-conserving. In the Standard Model re-7 ,z = 1; all others arc zero. The 
convention Arc = — 1 will be used below. 

The admission of non-standard values for the couplings is an ad hoc procedure and does not necessarily lead to 
a consistent theory. In particular, unless modifications through form factors with scale A are introduced, S-matrix 

unitarily is violated at high sub-process energies. A simplified way to look at the plotted unitarily bounds, Fig. 6, 
is to consider that if the measured limits fit within the bound for a higher A, they are more stringent than if they 
fit only within the bound fora smaller A. As the limits approach more closely the standard model values, the A 
scale, which can be accommodated, approaches infinity. 

Using Wy production data with both electron and muon decays of the W, the y transverse energy distribution is 
shown in Fig. 4, there are 23 candidates and a background of 6.4 ± 1.4 events. The corresponding limits are shown 
in Fig. 5 for both 68% and 95% confidence level. The star indicates the expectation for purely electromagnetic 
coupling of the W and photon, and a gyromagnetic ratio of unity for the W boson. Thus, at 80% confidence level, 
the weak-electromagnetic unification of the couplings is required. 
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Figure 5: Limits on (a) CP-conserving anomalous coupling parameters An and A, and on (b) the magnetic dipole uw and 
electric quadrupole Qfy  moments of the W boson. The ellipses represent the 68% and 95% CI, exclusion contours. The dot 
represents the SM values, while the star indicates the U(1) E M coupling of the W boson to a photon. Form-factor scale 
A = 1.5 TeV. 
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Figure 6: 95% CL limits on the CP -conserving anomalous couplings AK, A assuming atv., = ax.z;A., = Az derived from 
WW/WZ 	evjj. The dashed line shows the S-matrix unitarity limits. Form-factor scale A = 1500 GeV. 

In the Z — 7 final state six events are observed with an expected background of 0.48 ± 0.06 events and a fit to 

the transverse momentum spectrum of the 7 is used to obtain limits. For WW production only one candidate is 

observed with an expected background of 0.56 ± 0.13 events. Besides the lepton-only channels, one can look for the 

case where one of the bosons decays into a pair of hadronic jets. Again the transverse momentum of the objects 

is a key discriminator. The limits obtained are shown in Fig. 6. In this case a unitarity bound of 1.5 TeV can be 

accommodated by any values of the coupling constants in the allowed region. 

The limits resulting from these analyses are collected in Table 1. The corresponding CP-violating limits in all the 

above analyses the limits are numerically the same. With this rather large number of independent measurements 

available, and with comparable sensitivity, the next step will be to combine the limits and obtain an overall constraint 

on the deviations of the couplings from the standard model expectations. 
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Number of Events 
3 
8 
6 
17 

Background 
0.65 ± 0.15 

1.9 1 0.5 
1.2 ± 0.2 
3.8 ± 0.6 

Significance 
0.03 (1.9o) 
0.002 (2.9u) 
0.002 (2.9u) 

2.0 x 10' (4.6a) 

Decay Mode 
Dilepton 

Lepton plus jets (topological) 
Lepton plus jets (b—tag) 

All 
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CP-conserving coupling limits 
	

Channel  
—1.6 < 	< 1.8, 	—0.6 < Ay < 0.6 

	
(W7, A = 1500 GeV) 

—L8 < hfi < 1.8, 	—0.5 < 140  < 0.5 
	

(Z-y, A = 500 GeV) 
—1.9 < /IL < 1.9, 	—0.5 < /40  < 0.5 

	
(Zry, A = 500 GeV) 

—2.6 < Apci, = 	< 2.8, —2.1 < Ay  = Az < 2 .1 	(WW 	Jim, A = 900 GeV) 
—0.9< 	= 6ocz < 1.1, —0.7 < AAr = Az <0 .7 (WW/WZ evjj, A = 1500 GeV) 

Table 1: Limits on the CP-conserving couplings. Limits for the CP-violating couplings are the same within 5%. 

Table 2: The number of events observed, background predicted, and the probability that the background fluctuated 
up to the observed data for each channel. 

III The Top Quark 

III.1 Observation of the Top Quark 

In the spring of 1995, CDF(12) and DO[13] published papers describing the observation of the top quark. The high 

top mass had retarded progress[14] but led to a clear experimental signature. Two large mass objects decay each 

into a W boson and a b quark. In turn, the former can decay either leptonically or hadronically, the latter results 

in a jet in which there may be an embedded muon as a result of the semi-leptonic decay of the b or its daughter c 

quark. If both W bosons decay leptonically a final state with two high pT, isolated charged leptons and two jets 

results. If one of the W bosons decays hadronically there are 4 jets in the final state. The former case is generically 

labelled "dilepton", the latter "lepton plus jets". In both cases there is substantial missing transverse energy as a 

result of the presence of one or more neutrinos. 

In the dilepton case the backgrounds are dominantly physics processes which can lead to the same final states. 

For example Z production leads to pp and ee final states. 

In the case of the lepton plus jets channels the dominant backgrounds are those with a real'or false W boson 

and multiple jets. The false W boson is generated by mis-identification of one of the jets in a multi-jet event in 

conjunction with a mismeasurement of the missing transverse energy. To reduce the background two approaches 

are used. 

One approach applies kinematic cuts to the observed events such as to reduce the W- plus-jets background while 

maintaining acceptance for top production. The event shape for top is typically spherical with all objects having 

large transverse momenta. The W-plus-jets background tends to derive several of its jets due to gluon radiation 

from a primary two parton final state configuration. The planar characteristics of that two-body state often survive, 

even after gluon radiation, since the radiated jets tend to be at low relative transverse momenta. 

The second approach relies on the presence of two b jets in top events. The probability that a muon from either 

direct or cascade decays of one or other of these b jets exists is about 45% . The probability that the p is detected 

in DO is about 50% , so about 22% of top events should have an observed soft muon. In contrast, the probability 

that a generic mixture of jets will lead to the same is approximately 0.5% per jet (dependent on jet pp). The jet p 

tag rate has been measured using various samples of data and, at the level of precision needed, is independent of 

the data sample. It is therefore taken to be true for both the principle backgrounds, true and false W bosons with 
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multiple jets. 

The observed numbers of events are summarized in Table 2. Also shown is the predicted background for each LE 

decay channel along with the probabilities for the predicted background to fluctuate up to account for the observed 

data. The combined probability that the observed events be a background fluctuation is 

P = 2.0 x 10-6 . 

The corresponding cross-section, for a top quark of mass mt= 200 GeV/c2 , is cra = 6.3 ± 2.2 pb. These results were 

based on an integrated luminosity of about 50 pb -I . 

111.2 Top Quark Mass 

In the simplest situation the final state with if consists of six final state fermions. There are therefore 18 momentum 

components to be determined. Under the if production hypothesis there are two constraints from the known W 

masses and a further constraint from the equality of the masses of the t and E. Provided that the different decay 

components are unambiguously identified, fifteen of the momentum components must be measured to completely 

describe the event. With more, a constrained fit for the mass of the top can be attempted. 

111.2.1 The Lepton plus Jets Channel 

In the lepton plus jets channel, an attempt is made to identify the the decay ti 	tub qtiL. This demands at least 

four quark jets in the event. Complications can arise since primary quark jets may escape detection, be merged 

with other jets, or jets arising from gluon radiation may increase the jet multiplicity. The momenta of the four 

most energetic jets, the lepton, and the missing energy, for which we measure only the two transverse components, 

give a total of 17 measurements. If the b jets are not identified the number of possible permutations of assignments 

is twelve. Taking into account the ambiguity for the longitudinal momentum of the neutrino gives a total of 24 

possible combinations for each event. 

With the mass constraints, a fit to the ti system is performed. We apply a cutoff in the fit quality (x 3 ); events 

which do not have a jet assignment combination with a X2  below the cutoff are dropped from the m g  results. Finally, 

the central mass is obtained from the weighted average of the best three X 2  fits for each event. The result is termed 

the 'fitted mass'. 

A number of template distributions from a tf Monte Carlo is generated for a range of top masses and for each 

distinct decay channel. A similar template is prepared for the background processes. Ail detector effects and biases 

from the fitting procedures are accounted for by the simulation. The top mass is then obtained using a likelihood 

fit of the signal and background templates to the observed distribution of fitted masses. 

The result is: 

nit  = 1994191. (stat)+ 121(syst) GeV/c 2  

Jet combinatorics contribute strongly to the bias in mapping between observed and true masses and also to the 

width of that distribution. This and other effects were extensively examined using Monte Carlo studies and are 

included in the systematic error assignment. 

Figure 7(a) shows the fitted mass distribution for the DO lepton plus jets events, taken with loose selection 

criteria. The histogram represents the fitted masses of the observed events, and the solid curve represents the 

background and the top Monte Carlo combined. Figure 7(a) is the distribution of central mass values, Fig. 7(b) 

shows the resulting likelihood fit, with an arrow indicating the best fit value. Note that the clear separation of 

background and signal events, permits a good top mass determination. 
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Figure 7: The fitted mass distribution (a) for events is shown as the line histogram, the dashed line is the background 
distribution and the dotted line is the best fit Monte Carlo fitted mass distribution. The solid line is the combination of 
the best fit Monte Carlo plus background. The shaded histogram represent events that were bottom quark tagged. The top 
mass is extracted from the fitted mass distribution using a likelihood method (b). 

Figure 8: The dilepton mass fit method. The likelihood as a function of top mass for a particular event is shown in (a). The 
peak represents one of the arrows in (6), which is the fitted mass for all the dilepton events (arrows). The background fitted 
mass distribution is shown as the dashed line, and the best fit for background and Monte Carlo is shown as the solid line. 
The likelihood curve for the best mass has a broad minimum (not shown), leading to large errors on the mass. 

111.2.2 The Dilepton Channel 

The dilepton channel is more difficult as we have less information, an extra neutrino in the final state reduces the 

constraints by three. In order to provide additional information, a model of the initial state parton momentum 

distributions and the expected decay characteristics of the standard model top quark are used. 

We use a method[15] inspired by Dalitz, Goldstein and Kondo[16], but which takes into account all the measured 

information and reduces the theoretical assumptions. For a given event a top quark mass is chosen and a weight 

is assigned based on known distributions of the transverse momentum of the lepton and the distribution functions 

for the valence quarks. The result is a likelihood curve for each event as a function of m i  , as shown in Figure 8(a). 

Analogously to the lepton plus jets analysis, the most likely value of mass is retained as a characteristic parameter 

for each event. 

Templates for the distributions of most likely masses are prepared from ti Monte Carlo and background samples. 

The best true mass is extracted using a likelihood method analogous to that used in the lepton plus jets analysis. 

Figure 8(b) shows the resulting best fit, where the arrows denote the peak of each individual event's likelihood 
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curve, the dashed histogram is the background Monte Carlo distribution, and the solid is the fit for the best value 

of the true mass. The likelihood is broad, and gives the result: 

145 GeV/c2  (preliminary) 

The statistical error deduced by examining the behavior of Monte Carlo samples of the same size is 25 GeV/c 2 

 , the systematic error is approximately 20 GeV/c2 , dominated by jet energy resolutions. 

IV Beyond the Standard Model: SUSY Searches 

Although the standard model is a useful framework, the search for physics beyond the standard model is a necessity 

for the highest energy experiments. 

Supersymmetric extensions of the standard model, which relate bosons and fermions, are theoretically attractive. 

However they lead to a second array of fundamental particles dubbed "sparticles" . In the Minimal Supersymmetric 

Standard Model , unstable sparticles must decay into a lighter sparticle (plus other ordinary particles); there must 

then be one sparticle which does not decay. This is referred to as the LSP. Most models have the Z t  as the LSP. 
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Figure 9: The squark and gluino mass limits. The long dashed line marks the preliminary DO 95% confidence 

level excluded region from the combination of the three jet. and four jet analyses. The solid line indicates the DO three 
jet search result. The region below the dashed line labeled m4 < mg is excluded since there the squark becomes lighter 
than the LSP. Other published limits from CDF, UA1, UA2, and DELI[[ are displayed as well. 

rv.i Squarks and Gluinos 

The most copiously produced SUSY particles should be squarks (0 and gluinos co. In previous searches, the 

and -4-  were assumed to decay directly into quarks and the lightest supersymmetric particle. The event signature for 

which we have searched[17] is three or more jets and missing transverse energy (4). One measurement searched 

for events with three or more high ET jets and very large Sr , and another .  for events with at least four jets but 
slightly less Sr . 

The major backgrounds to these searches are vector boson production with associated jets and QCD events with 

mismeasured jet energies. After analysis cuts, 19 events survived in the three jet analysis and 5 events in the four 

jet sample. 

Backgrounds from vector bosons plus jets backgrounds were estimated. The detector response was simulated 

using the DO detector simulation program. A total of 14.2 ± 4.4 W/Z events are expected to pass the three jet 

BOO 
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analysis cuts. For the four jet search, 5.5 ± 2.2 events are predicted. The contribution from multijet production 

was estimated using data from jet triggers. We predict 0.42 ± 0.37 events for the three jet analysis and 1.6 ± 0.9 

events for the four jet search. 

Since the number of events seen in the squark/gluino data sample is consistent with these standard model 

backgrounds no signal is observed. 95% CL lower mass limits of mi > 173 GeV/c 2  for large squark mass, rn > 229 
GeV/c2  for the case of equal mass squarks and gluinos, are obtained. The limits are shown in Fig. 9. 

11/.2 The Top Squark 

The squark/gluino search assumed that the squarks are mass degenerate. The large top mass can drive the mass 
of its SUSY partner, the top squark or stop (i) to lower masses than the other squarks. Mixing between the left-
and right-handed top squarks can also leave one of the two t lighter than the top quark itself. A light top squark 
mass is popular in view of recent measurements of the Z a branching fraction at LEP[18). 

The top squark[19] is expected to decay via I I 	bWi . If may,  > rut, + nat, the three-body decays 	and 
byt will predominate unless sleptons and sneutrinos are also much heavier than the f r . In this second case 

the top squark will decay via i t  c21  producing final states with two acollinear jets and A,. In either case, the 
expected signature of the top squark events is two energetic jets and large Sr  from the two LSP's. 

The top squark production occurs via gluon fusion and qfi annihilation and is thus fixed by QCD in terms of 
mi, . The decay topology is solely determined by and mE i . Our background subtracted 95% CL exclusion limit . 
contour is shown in Fig. 10. This contour intersects the mi n  = m o  + rnt,+mw line at m2 ,  = 8 GeV/c 2  and min  = 
93 GeV/c 2 , the highest mj, value we exclude. The maximum excluded value for mi l  is 44 GeV/c 2  for mi, = 85 
GeV/c 2 . 

120 

20 

20 	40 60 	80 2 	100 	120 

MI(GeVic ) 

Figure 10: The DO 95% Confidence Level top squark exclusion contour. Also shown is the result from LEP (OPAL 
experiment). 
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IV.3 Gaugino Searches 

The largest gaugino production cross section is for a W1Z2 pair. The decays of the WI and 2 .2 can lead to final 

states similar to those from virtual W and Z bosons plus missing ET from the LSP's. The possible event signatures 

are: four jets + $r, lepton + two Jets + 4, two leptons + two jets + 4, and three leptons + tr. The last channel 

has few standard model backgrounds and is relatively clean in terms of hadronic activity. We see no candidate 

events[20] consistent with W i 22 pair production and subsequent decay into trilepton final states. 

Figure 11: The 95% CL limit on cross section times branching ratio into any one trilepton final state, as a function of m izri , 

along with the region of mw excluded by LEP. Also shown are bands of theoretical predictions, as described in the text. 

Detection efficiencies were determined using a combination of data and Monte Carlo simulations. The main 

sources of background are single lepton and dilepton events with one or more misidentified leptons. These were 

estimated from data and Monte Carlo. 

The results from the four channels trilepton channels were combined in the calculation of the limit, with the 

assumption that BR(eee) = B Weep) = BR(epp) = BR(11.1p). In Fig. 11 we show the resulting 95% c.l. limit in 

the region above the LEP limit. For comparison, we also show three bands of theoretical curves. Band (a) shows 

the ISAJET production cross section obtained with a wide range of input parameters, multiplied by a branching 

ratio of 9. The value of y for a single trilepton channel is obtained when the W1 and Z2 decay purely leptonically. 

Branching ratios of this order are predicted in models with very light sieptons. Bands (b) and (c) show the a • BR 

values from 1SAJ ET obtained with the unification scale parameters ma = [200,900]GeV/c 2 , mi = [50, 120]GeVic2 , 

Ao  = 0 and the sign of it negative. Band (b) is for tan 0' = 2 and band (c) for tan13 = 4. 

V Future Prospects 

The approved DO upgrade retains the strengths of the existing detector, including hermetic coverage in finely seg-

mented liquid argon calorimetry and large acceptance moon detection using magnetized iron toroids, and combines 

these with a new magnetic central tracking system based upon scintillating fibers and silicon strip technologies in 

a 2 Tesla solenoidal field. 

The Tevatron Collider Luminosity has increased tenfold between 1989 and 1996. The Main Injector is currently 

under construction and a further factor of ten may be anticipated by the first years of the next decade. Initial 

running, starting in 1999 with the new machines, is expected to yield an integrated luminosity of 2pb -1 . This would 

be about a factor twenty more than the current data sample and opens new windows on physics. 
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V.1 Components of the DO Upgrade 

A key element of the upgraded DO detector is the introduction of a 2 Tesla solenoidal field to enable improved b 

quark tagging and to provide added calibration and precision for lepton measurements. The central tracking region 

is instrumented with several new detector systems. Surrounding the collision region at radii less than 10 cm and 

covering 1171 < 3 is a silicon vertex tracker. 

Surrounding the silicon tracker is a central scintillating fiber tracker which covers the radial interval 20cm < 

r < 50 cm, and pseudorapidity interval Jul < 2. The scintillating fibers are 830 pm in diameter and are read out 

with light sensing visible light photon counters (VLPC's). This leads to a compact fast tracker with high efficiency, 

good resolution, and excellent trigger and pattern recognition capabilities. 

The present liquid argon calorimetry system is expected to operate very well at the proposed luminosities after 

upgrade of the readout electronics. The effects of pileup due to the shorter Tevatron bunch crossing times will be 

offset by new, lower noise, front end electronics and reduced sampling times. The existing intercryostat detector 

will be reworked to operate in a magnetic field. 

The iron toroids and the drift chambers for the central muon system will be retained, but the front-end electronics 

for the chambers will be modified. For the region 191 < 1, new scintillation counters will be installed to reduce the 

muon trigger pi,  threshold to about 1.5 GeV/c. For 1 < lul < 2.2, new scintillator and "pad-pixel" proportional 

drift tube chambers will he installed. 

The multi-level trigger system will be reworked to increase the flexibility and the bandwidth and help reduce the 

rates as the luminosity increases. Some of this upgrade will involve completely new filtering and data acquisition 

software. The world of computing has evolved tremendously since the original design of DO and converting fitting 

the old and new analysis code into a framework of Object Oriented software is one of several areas where we expect 

the LAFEX group to play a major role. 

V.2 The DO Upgrade Physics Program 

A central goal of the upgraded DO program is the substantial improvement of our knowledge of the standard model 

electroweak parameters. Measurement of the top quark and W boson masses to much better precision than available 

now will be poisible and will permit incisive tests of the validity of the model and indirectly constrain the Higgs 

boson mass. The study of forward-backward asymmetries in Z leptonic decays will also complement the precision 

information from LEP on .heavy quark and leptonic asymmetries and will provide high precision information on 
sin2 Ow for light quarks. These measurements will allow consistency checks of the standard model within a single 

experiment, complementary to the direct searches for new phenomena, which will continue to be a major part of 
the DO high p.r. physics program. 

A reconstructed sample of — 1000 a candidates is expected with a signal to background ratio of > 5 : 1. With 

this sample, one can measure m g  to a precision of better than 5 GeV/c 2 , corresponding to an uncertainty in the 
SM Higgs mass of bmh/m h  ^ 0.8. Roughly half of the uncertainty in m g  is of statistical origin, and the remainder 

is due to systematics such as uncertainties in the energy scale and in Monte Carlo simulation of the effects of gluon 

radiation. The presence of W decays to two jets in the top decays themselves offers a powerful tool for in situ 

calibration of the multijet mass scale. 
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Possible signals Production cross sections 
(over accessible mass range) 

Mass limit 
(model dependent) 

Discovery reach 
1 fb -1  

ti 6.3 ± 2.2 ph 
199 ± 30 GeV 

(measured) discovered! 

WR 0.5-1000 pb 720 GeV 

W' 0.5-0.0001 x crw 610 GeV - 1 TeV 

Z' 0.1-0.001 x o 480 GeV - 1 TeV 

scalar 1st generation 
leptoquarks 1.0-100. pb 133 GeV - 240 GeV 

scalar 2nd generation 
leptoquarks 1.0-100. pb 119 GeV - 240 GeV 

ei and ..yr-  pairs 5-1000 ph 170-230 GeV - 200-320 GeV 

gaugino pairs 0.5-10.0 pb - 60 GeV! - 90 GeV 

f 0.1-100 pb - 90 GeV 2  

b' 10-1000 pb 
not yet 

reported 

q" 0.1-100 pb 
not yet 

reported - 700 GeV 

Table 3: Summary of DO's current limits and mass reach for the discovery of new particles (10 events required for 
discovery). 

Figure 12: m e—mw contours from a global standard model fit to all el" e —  and YN data, with 
hypothetical Run II measurement is shown. 

ma a free parameter. A 

Improved measurements of the W boson mass mw (accompanied by a measurement of m u ) provides a constraint 

on the Higgs mass as shown in Fig. 12. For e and p. channels, a W mass measurement with 6mw = 40 MeV/c 2  is 

expected. 

We will also be able to begin the Higgs search in the WH° channel in the mass region near 100 GeV/c 2 . Table 

3 contains a summary of current and future possible search limits from DO[1]. 

The approved upgrade DO detector provides a versatile experimental platform with significant capabilities for 

the study of top, electroweak symmetry breaking, QCD, b-physics, and new phenomena. The upgrade maintains 
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the excellent performance characteristics of the present detector and significantly improves the capabilities for b-

tagging, and electron, muon and tau identification and measurement. The detector is well matched to the accelerator 

environment and the physics goals and provides a solid foundation for any additional enhancements needed for 

operation at higher luminosities. 

VI Conclusions 

Over the last year or so, DO has observed the top quark, has numerous interesting results in the basic standard 

model physics that rules our everyday lives and has shown several unique results of searches for the most likely of 

possible extensions of the standard model. In particular SUSY scenarios have received some concerted attention. 

For the future, beyond the doubling of the present data set which is yet to be exploited during the present run we 

look forward to a bright and exciting future with an upgraded detector and a factor of twenty increase in integrated 

luminosity. 
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In this talk I briefly review the main ideas and challenges involved in the computation of 
the observed baryonic excess in the Universe. 

I Evidence for Baryonic Asymmetry 

One of the outstanding challenges of the interface between particle physics and cosmology is the explanation for 
the observed baryonic asymmetry in the Universe [1]. It is by now quite clear that there is indeed an excess 
of baryons over antibaryons in the Universe. A strong constraint on the baryonic asymmetry comes from big-
bang nucleosynthesis, setting the net baryon number density (nB) to photon entropy density (s) ratio at about 
nBis 8 — 8 x 10-11 . Within our solar system, there is no evidence that antibaryons are primordial. 
Antiprotons found in cosmic rays at a ratio of Np/Np 10' are secondaries from collisions with the interstellar 
medium and do no indicate the presence of primary antimatter within our galaxy [2]. 

We could imagine that in clusters of galaxies there would be antimatter galaxies as well as galaxies. However, 
this being the case we should observe high energy 7-rays from nucleons of galaxies annihilating with antinucleons 
of "antigalaxies". The fact that these are not detected rules out the presence of both galaxies and antigalaxies on 
nearby clusters, which typically have about 10 14  Mo  or so of material. For scales larger than galactic clusters there 
is no observational evidence for the absence of primordial antimatter. 

We could also imagine a baryon -symmetric Universe with large domains of matter and antimatter separated over 
vast distances. However, a simple cosmological argument rules out this possibility. In a locally baryon-symmetric 
Universe, nucleons remain in chemical equilibrium with antinucleons down to temperatures of about T ti  22 MeV 
or so, when nb/s n6/s -- 7 x 10 -2° . Annihilation is so efficient as to become catastrophic! To avoid this 
annihilation, and still obey the nucleosynthesis bound with a baryon-symmetric Universe, we need a mechanism to 
separate nucleons and antinucleons by T 38 MeV, when rib/s nids 8 x 10 -11 . However, at T 38 MeV, the 
horizon contained only about 10 -7M0, making separation of matter and antimatter on scales of 10 14 Mo  causally 
impossible. It seems that we must settle for a primordial baryon asymmetry. 

II The Sakharov Conditions and GUT Baryogenesis 

Given that the evidence is for a Universe with a primordial baryon asymmetry, we have two choices; either this 
asymmetry is the result of an initial condition, or it was attained through dynamical processes that took place 
in the early .Universe. In 1967, just a couple of years after the discovery of the microwave background radiation, 
Sakharov wrote a ground-breaking work in which he appealed to the drastic environment of the early stages of the 
hot big-bang model to spell out the 3 conditions for dynamically generating the baryon asymmetry of the Universe 
[3]. Here they are, with some modifications: 
i) Baryon number violating interactions: Clearly, if we are to generate any excess baryons, our model must have 
interactions which violate baryon number. However, the same interactions also produce antibaryons at the same 
rate. We need a second condition; 	 - 
ii) C and CP violating interactions: Combined violation of charge conjugation (C) and charge conjugation combined 
with parity (CP) can provide a bias to enhance the production of baryons over antibaryons. However, in thermal 
equilibrium nb  = n6, and any asymmetry would be wiped out. We need a third condition; 
iii) Departure from thermal equilibrium: Nonequilibrium conditions guarantee that the phase-space density of 
baryons and antibaryons will riot be the same. Hence, provided there is no entropy production later on, the net 
ratio na/a will remain constant.. 

Given the above conditions, we have to search for the particle physics models that both satisfy them and are 
capable of generating the correct asymmetry. The first models that attempted to compute the baryon asymmetry 
dynamically were Grand Unified Theory (GUT) models [4). GUT models naturally satisfy conditions i) and ii); 
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by construction, as strong and electroweak interactions are unified, quarks and leptons appear as members of a 
common irreducible representation of the GUT gauge group. Thus, gauge bosons mediate interactions in which 
baryons can decay into leptons, leading to baryon number violation. C and CP violation can be built into the 
models to at least be consistent with the observed violation in the standard model. C is maximally violated by 
weak interactions and CP violation is observed in the neutral kaon system. One expects that C and CP violation 
will be manifest in all sectors of the theory including the superheavy boson sector (e.g., X rig with branching 
ratio r, and X 	citi, with branching ratio r # r). 

Condition iii), departure from thermal equilibrium is provided by the expansion of the Universe. In order for 
local thermal equilibrium to be maintained in the background of an expanding Universe, the reactions that create 
and destroy the heavy bosons X and g (decay, annihilation, and their inverse processes) must occur rapidly with 

respect to the expansion rate of the Universe, H = 4 7'2 /Mo, where R(t) is the scale factor (the dot means time 
derivative), T is the temperature, and Mo = 1.2 x 10 19  GeV is the Planck mass. A typical mechanism of GUT 
baryogenesis is known as the "out-of-equilibrium decay scenario"; one insures that the heavy X bosons have a long 
enough lifetime so that their inverse decays go out of equilibrium as they are still abundant. Baryon number is 
produced by the free decay of the heavy Xs, as the inverse rate is shut off. 

Interesting as they are, GUT models of baryogenesis have serious obstacles to overcome. An obvious one is the 
lack of experimental confirmation for the main prediction of GUTS, the decay of the proton. One can, however, 
build models (invoking -or not- supersymmetry) in which the lifetime surpases the limits of present experimental 
sensitivity. A second obstacle is the production of magnetic monopoles predicted to happen as the GUT semi-
simple group is broken into subgroups that involve a U(1). The existence of such monopoles was one of the 
original motivations for inflationary models of cosmology. As is well known, the existence of an inflationary, or 
superluminal, expansion of the Universe will efficiently dilute any unwanted relics from a GUT-scale transition (and 
before). Unfortunately, inflation would also dilute badly wanted relics, such as the excess baryons produced, say, by 
the out-of-equilibrium decay scenario mentioned above. One way of bypassing this diluting effect is to have inflation 
followed by efficient reheating to temperatures of about 10 19  GeV, so that the processes responsible for baryogenesis• 
could be reignited. Unfortunately, reheating temperatures are usually much lower than this (T reh < 10 12  GeV, and 
< 109  GeV for supersymmetric models due to nucleosynthesis constraints on gravitino decays), posing a serious 
problem for GUT baryogenesis. 

Finally, a third obstacle to GUT baryogenesis conies from nouperturbative electroweak processes. The vacuum 
manifold of the electroweak model exhibits a very rich structure, with degenerate minima separated by energy 
barriers (in field configuration space). Different minima have different baryon (and lepton) number, with the net 
difference between two minima being given by the number of families. Thus, for the standard model, each jump 
between two adjacent minima leads to the creation of 3 baryons and 3 leptons, with net B — L conservation and 
B L violation. At 7' = 0, tunneling between adjacent minima is mediated by instantons, and, as shown by 't 
Hooft [5], the tunneling rate is suppressed by the weak coupling constant (1' e-4-fow i0-170). That is why the 
proton is stable. However, as pointed out by Kuzmin, Rubakov, and Shaposhnikov, at finite temperatures (T 100 
GeV), one could hop over the barrier, tremendously enhancing the rate of baryon number violation [6]. The height 
of the barrier is given by the action of an unstable static solution of the field equations known as the sphaleron [7]. 

Being a thermal process, the rate of baryon number violation is controlled by the energy. of the sphaleron 
configuration, F exp[—fiEs], with Es Mw/aw, where Mw  is the W-boson mass. Note that Mw iaw = (0)/g, 
where (4) is the vacuum expectation value of the Higgs field. For temperatures above the critical temperature for 
electroweak symmetry restoration, it has been shown that sphaleron processes are not exponentially suppressed, 
with the rate being roughly 1' [8]. Even though this opens the possibilty of generating the baryonic 
asymmetry at the electroweak scale, it is bad news for GUT baryogenesis. Unless the original GUT model was 
B — L conserving, any net baryon number generated then would be brought to zero by the efficient anomalous 
electroweak processes. There are several alternative models for baryogenesis invoking more or less exotic physics. 
The interested reader is directed to the review by Olive, listed in Ref. 1. I rather move on to discuss the promises 
and challenges of electroweak baryogenesis. 

III Electroweak Baryogenesis 

As pointed out above, temperature effects can lead to efficient baryon number violation at the electroweak scale. 
Can the other two Sakharov conditions be satisfied in the early Universe so that the observed baryon number could 
be generated during the electroweak phase transition? The short answer is that in principle yes, but probably 
not in the context of the minimal standard model. Let us first see why it is possible to satisfy all conditions for 
baryogenesis in the context of the standard model. 
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Departure from thermal equilibrium is obtained by invoking a first order phase transition. After summing over 
matter and gauge fields, one obtains a temperature corrected effective potential for the magnitude of the Higgs field, 
0. The potential describes two phases, the symmetric phase with (0) = 0 and massless gauge and matter fields, and 
the broken-symmetric phase with (0) = 0 +(T), with massive gauge and matter fields. The loop contributions from 
the gauge fields generate a cubic term in the effective potential, which creates a barrier separating the two phases. 
This result depends on a perturbative evaluation of the effective potential, which presents problems for large Higgs 
masses as I will discuss later. At 1-loop, the potential can be written as [9] 

VEw(0,T)= D  (T2 — T22) 02 — ET00 	A7,04 	
(1) 

where the constants D and E are given by 

D = [6(Mw 1a)2  + 3(Mz/a)2  + 6(MT 10) 2 ] /24 	0.17 , 

and 

E = 16(Mw /0 3  + 3(Mz/a) 31 /12w — 0.01 , 

where I used, Mw = 80.6 GeV, Mz = 91.2 GeV, MT = 174 GeV [10], and c .= 246 GeV. The (lengthy) ex-
pression for AT, the temperature corrected Higgs self-coupling, can be found in Ref. [9]. Here T2 is the tem-
perature at which the origin becomes an inflection point (i.e., below T2 the symmetric phase is unstable), given 
by T2 = - 8130.2 )/ 4D , where the physical Higgs mass is given in terms of the 1-loop corrected A as 
My = (2A + I2B)o- 2 , with B = (6M$I, + 3M1 — 124) /64w 2 cr 4 . For high temperatures, the system will be in 
the symmetric phase with the potential exhibiting only one-minimum at (0) = O. As the Universe expands and 
cools, an inflection point will develop away from the origin at 04,f x 3ET 1 /2AT, where Ti = T2/V1 9E 2/8ATD. 
For T < T1 i  the inflection point separates into a local maximum at 0._(T) and a local minimum at 4' + (T), with 

0±(T)= (3ET± [9E2T 2  — SAT D(T 2  — Th]" 2 }/2AT. At the critical temperature, Tc = T21 /r1 E2/ AT D, the 
minima have the same free energy, VEw(0+, Tc) = Vsw(0,Tc). As E 0, Tc T2 and the transition is second 
order. Since E and D are fixed, the strength of the transition is controlled by the value of the Higgs mass, or A. 

Assuming that the above potential (or something close to it) correctly describes the two phases, as the Universe 
cools belows Tc the symmetric phase becomes metastable and will decay by nucleation of bubbles of the broken-
symmetric phase which will grow and percolate completing the transition. Departure from equilibrium will occur in 
the expanding bubble walls. This scenario relies on the assumption that the transition is strong enough so that the 
usual homogeneous nucleation mechanism correctly describes the approach to equilibrium. As I will discuss later 
this may not be the case for "weak" transitions. For now, we forget this problem and move on to briefly examine 
how to generate the baryonic asymmetry with expanding bubbles. 

The last condition for generating baryon number is C and CP violation. It is known that C and CP violation 
are present in the standard model. However, the CP violation from the Kobayashi-Maskawa (KM) phase is too 
small to generate the required baryon asymmetry. This is because the KM phase is multiplied by a function of 
small couplings and mixing angles, which strongly suppresses the net CP violation to numbers of order 10 -20  [12], 
while successful baryogenesis requires CP violation of the order of 10" or so. A dynamical mechanism to enhance 
the net CP violation in the standard model was developed in detail by Farrar and Shaposhnikov [13]. It is based 
on a phase separation of baryons via the scattering of quarks by the expanding bubble wall. This scenario has been 
criticized by the authors of Ref. [14] who claim that QCD damping effects reduce the asymmetry to a negligible 
amount. Even though the debate is still going on, efficient baryogenesis within the standard model is a remote 
possibility. 

For many, this is enough motivation to go beyond the standard model in search of extensions which have an 
enhanced CP violation built in. Several models have been proposed so far,-although the simplest invoke either more 
generations of massive fermions, or multiple massive Higgs doublets with additional CP violation in this sector of 
the theory. Instead of looking into all models in detail, I will just briefly describe the essential ingredients common 
to most models. 

The transition is assumed to proceed by bubble nucleation. (For alternative mechanisms based on topological 
defects, see Ref. [I I].) Outside the bubbles the Universe is in the symmetric phase, and baryon number violation 
is occurring at the rate 1' (owT) 4 . Inside the bubble the Universe is in the broken symmetric phase and the rate 
of baryon number violation is r exp[—DIES]. Since we want any net excess baryon number to be preserved in the 
broken phase, we must shut off the sphaleron rate inside the bubble. This imposes a constraint on the strength of 
the phase transition, as Es (4'(T))/g; that is, we must have a large "jump" in the vacuum expectation value of 
0 during the transition, (0(T))/T > 1, as shown by Shaposhnikov [12]. 
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Inside the bubble wall the fields are far from equilibrium and there is CP violation, and thus a net asymmetry can 
be induced by the moving wall. In practice, computations are complicated by several factors, such as the dependence 
on the net asymmetry on the bubble velocity and on its thickness [15]. Different charge transport mechanisms based 
on leptons as opposed to quarks have been proposed, which enhance the net baryonic asymmetry produced [16]. 
However, the basic picture is that as matter traverses the moving wall an asymmetry is produced. And since baryon 
number violation is suppressed inside the bubble, a net asymmetry survives in the broken phase. Even though no 
compelling model exists at present, and several open questions related to the complicated nortequilibrium dynamics 
remain, it is fair to say that the correct baryon asymmetry may have been generated during the electroweak phase 
transition, possibly in some extension of the standard model. However, I would like to stress that this conclusion 
has two crucial assumptions built in it; that we know how to compute the effective potential reliably, and that the 
transition is strong enough to proceed by bubble nucleation. In the next Section I briefly discuss some of the issues 
involved and how they may be concealing interesting new physics. 

IV Challenges to Electroweak Baryogenesis 

W.1 The Effective Potential 

A crucial ingredient in the computation of the net baryon number generated during the electroweak phase transition 
is the effective potential. In order to trust our predictions, we must be able to compute it reliably. However, it is well 
known that perturbation theory is bound to fail due to severe infrared problems. It is easy to see why this happens. 
At finite temperatures, the loop expansion parameter involving gauge fields is g2T/Mgauge . Since Mgauge = AO), 
in the neighborhood of (0)s-- 0 the expansion diverges. This behavior can be improved by summing over ring, or 
daisy, diagrams [17]. However, the validity of the ring-improved effective potential for the temperatures of interest 
relies on cutting off higher-order contributions by invoking a nonperturbative magnetic plasma mass, Mp iama , for 
the gauge bosons such that the loop expansion parameter, g 2 T/Moass,„ is less than 1. Since this nonperturbative 
contribution is not well understood at present, one should take the results from the ring-improved potentials with 
some caution. Recent estimates show that perturbation theory breaks down for Higgs masses above 70 GeV [18]. 
These estimates are confirmed by nonperturbative methods based on the subcritical bubbles method [19]. 

Another problem that appears in the evaluation of the effective potential is due to loop corrections involving the 
Higgs boson. For second order phase transitions, the vanishing of the effective potential's curvature at the critical 
temperature leads to the existence of critical phenomena characterized by diverging correlation lengths. Even though 
there is no infrared-stable fixed point for first order transitions, for large Higgs masses the transition is weak enough 
to induce large fluctuations about equilibrium; the mean-field estimate for the correlation length (T) = M -1 (T) is 
certainly innacurate. The loop expansion parameter of the effective static 3d theory is AT/Mu(T), which diverges as 
Tc T2 1201. This behavior has led some authors [20, 21] to invoke e-expansion methods to deal with the infrared 
divergences. Although this is a promising line of work, it relies on the success these methods have on different 
systems. Another alternative is to go to the computer and study the equilibrium properties of the standard model 
on the lattice [22]. Recent results are encouraging inasmuch as they seem to be consistent with perturbative results 
in the broken phase for fairly small Higgs masses. Furthermore, they indicate how the transition becomes weaker for 
large values of the Higgs mass, MH > 60 GeV; physical quantities, which characterize the strength of the transition, 
such as the bubble's surface tension and the released latent heat, turn out to be quite small. Let me move on to 
discuss nonequilibrium aspects of the transition. 

W.2 Weak vs. Strong First Order Transitions 

In order to avoid the erasure of the produced net baryon number inside the broken-symmetric phase, the sphaleron 
rate must be suppressed within the bubble. As mentioned earlier, this amounts to imposing a large enough "jump" 
on the vacuum expectation value of e5 during the transition. In other words, the transition cannot be too weakly 
first order. But what does it mean, really, to be "weakly" or "strongly" first order? Looking into the literature, 
the most obvious distinction between weak and strong is the thickness of the bubble. A "strong" transition has 
thin-wall bubbles, that is, the bubble wall is much thinner than the bubble radius (hence the name "bubble"), while 
"weak" transitions have thicker walls. It is implicitly assumed that weak transitions proceed by the usual bubble 
nucleation mechanism which, nevertheless, is derived only for the case of strong transitions. 

This is a very important point which must not be overlooked (although it often is!); the vacuum decay formalism 
used for the computation of decay rates relies on a semi-classical expansion of the effective action. That is, we assume 
we start at a homogeneous phase of false vacuum, and evaluate the rate by summing over small amplitude fluctuations 
about the metastable state [23]. This approximation must break down for weak enough transitions, when we expect 
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large fluctuations to be present within the metastable phase. An explicit example of this breakdown was recently 
presented by Gleiser and Heckler, where the extra free energy available due to the presence of large-amplitude 
fluctuations was incorporated into the computation of the decay rate [24]. 

Gleiser and Kolb [25] suggested that weak transitions may evolve by a different mechanism, characterized by 
substantial mixing of the two phases as the critical temperature is approached from above (i.e. as the Universe 
cools to TO. They estimated the fraction of the total volume occupied by the broken-symmetric phase by assuming 
that the dominant fluctuations about equilibrium are subcritical bubbles of roughly a correlation volume which 
interpolate between the two phases. Their approach was later refined by the authors of Ref. (26] who found, within 
their approximations, that the I-loop electroweak potential shows considerable mixing for MH > 55 GeV. Clearly, 
the presence of large-amplitude, nonperturbative thermal fluctuations compromises the validity of the effective 
potential, since it does not incorporate such corrections. 

In order to understand the shortcomings of the mean-field approximation in this context, numerical simulations 
in 2d [27] and 3d [28] were performed, which focused on the amount of "phase mixing" promoted by thermal 
fluctuations. The idea was to simulate the nonequilibrium dynamics of a self-interacting real scalar field, which 
is coupled to a thermal bath at temperature T. In order to study the approximate behavior relevant to the 
electroweak phase transition, the field was chosen to have a potential given by Eq. 1. (Note that the temperature 
dependence of the potential can be scaled away with a proper redefinition of the couplings.) The coupling to the 
bath was modelled by a Markovian Langevin equation, which assumes that the bath thermalizes much faster than 
any relevant dynamical time-scale for the scalar field. Thus, the equation represents a coarse-grained description of 
the dynamics, with faster modes with A << (T) integrated out, where (T) = m -1 (T) is the mean field correlation 
length. 

The results show that the problem boils down to how well localized the system is about the symmetric phase 
as it approaches the critical temperature. If the system is well localized about the symmetric phase, it will become 
metastable as the temperature drops below Tc and the transition can be called "strong". In this case, the mean-field 
approximation is reliable. Otherwise, large-amplitude fluctuations away from the symmetric phase rapidly grow, 
causing substantial mixing between the two phases. This will be a "weak" transition, which will not evolve by 
bubble nucleation. Defining (0)v as the volume averaged field and Oi nf as the inflection point nearest to the 4) = 0 
minimum, the criterion for a. strong transition can be written as [27] 

(4')v < 'Ant • 	 (2) 

Recently, an analytical model, based on the subcritical bubbles method, was shown to qualitatively and quanti-
tatively describe the results obtained by the 3d simulation [29]. The fact that subcritical bubbles successfully model 
the effects of thermal fluctuations promoting phase mixing and the breakdown of the mean-field approximation with 
subsequent symmetry restoration, supports previous estimates which showed that the assumption of homogeneous 
nucleation is incompatible with standard model baryogenesis for MH < 55 GeV [26, 19]. It is straightforward to 
adapt these computations to extensions of the standard model. Thus, the requirement that the transition proceeds 
by bubble nucleation can be used, together with the subcritical bubbles method, to constrain the parameters of the 
potential. 

In conclusion, the past few years saw encouraging progress towards the goal of computing the baryon asymmetry 
of the Universe. Likewise, it has also become clear that serious challenges lie ahead if we are to finally achieve this 
goal. The need for enhanced CP violation probably calls for physics beyond the standard model. Although this 
is an exciting prospect for many, we need guidance from experiments in order to point us in the right direction. 
We must also be able to compute the effective potential reliably for a wider range of Higgs masses. And finally, 
we must understand several nonequilibrium aspects of the phase transition, be it within the context of expanding 
critical bubbles for strong transitions or the dynamics of phase separation for weak transitions. Judging from what 
has happened in the past few years, progress will keep coming fast, and the goal will keep getting closer. 

I am grateful to my collaborators Rocky Kolb, A. Heckler, Graciela Gelmini, M. Alford and R. Ramos for the 
many long discussions on bubbles and phase transitions. l am also grateful to Fernando Brandt and the local 
organizing committee for their warm hospitality during this Conference. This work was partially supported by the 
National Science Foundation through a Presidential Faculty Fellows Award no. PHY-9453431 and by a NASA grant 
no. NAGW-4270. 
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More than 30 years ago in Volcano Ranch, U.S.A. an extensive air shower (EAS) with an energy in excess of 

1020  eV was detected. Since then, the observatories placed in Haverath Park in the United Kingdom, Yakutsk in 

Russia, AGASA in Japan, and Dugway in U.S.A., also observed EAS with ascribed energies above 10 2° eV. Little is 

known about such rays and in particular, where they come from, how are they accelerated, and what are they, but 

their ultrarelativistic energy precludes most answers and reduces them to a set amenable to experimental research. 

Groups of physicists from approximately 20 countries are working in an effort to build two giant observatories, one 

in each hemisphere spread over an area of 3000 km 2  each. Such giant arrays are needed due to a roughly estimated 

flux of 1 cosmic ray/km 2/century/sr yielding approximately 60 events per year per stern radian. 

• The project was named after the French physicist, Pierre Auger, who first detected cosmic showers back in 1938 

and the observatories construction will start in 1998. The project focuses on the highest energy cosmic rays, i.e., 

above 10 1°  eV. 

1. Introduction 

Up to date, there are 8 events with measured energies above 10 20  eV. As mentioned above, the first one was 
detected in Volcano Ranch in April 1962 with an energy of 1.3x10 20  eV while the two more energetic are from 

AGASA ( 2.0+0 -. 1) x 1020  eV and Dugway (3.2 ± 0.9) 10 20  eV. Although very little is known and understood 

about the process we do not have any doubt that such EAS energies exist and therefore it is appropriate to 

undertake the task of building giant detector arrays. Several group of physicists with different levels of commitment, 

from Argentina, Armenia, Australia, Bolivia, Brazil, China, France, Germany, India, Italy, Japan, Russia, South 

Africa,Spain, Sweden, Switzerland, United Kingdom, United States of America, and Vietnam, are currently involved 

in the Auger Project and the collaboration is led by J. W. Cronin (Spokesperson) and A. Watson. 

The EAS starts to develop at the entrance of the primary particle to the Earth atmosphere. At these very 

high energies the first collisions will be hadronic (quark-quark collisions) and as the shower proceeds the number 

of particles in it will increase getting as large as 10 11  as estimated for the (3.2 ± 0.9) 10 26  eV primary. Apart 

from muons, electrons and gammas reaching the surface, there will be fluorescence light from the excitation of 

the atmospheric nitrogen electrons and therefore a hybrid detector is envisaged: a surface component of detectors 

spread over the 3000 km 2  and an optical component to measure the fluorescence light covering the same sky range 

as the surface detectors. The main advantage of such a hybrid detection is that it will measure independently and 

with totally different systems, mechanisms, and parameters, the same showers allowing to contrast, for instance the 

energy calibrations. 

The scientific motivation is to understand the origin, acceleration mechanism and chemical composition of these 

primaries. Very little is known about cosmic rays but these ultra high energies. impose severe restrictions as we 

shall see during the talk and therefore there is confidence that the Auger Project will cast light on the three issues. 



Alberto Etchegoyen 	 23 

2. Scientific Motivation 

Although there are only 8 events with E > 1020  eV, there are much more with lower energies. Some trends can 

therefore be motivated by them, but final answers await further experimental results since at these ultrarelativistic 

energies the behaviour might change very abruptly. 

2.1 Chemical Composition. of the Primary 

The conventional candidates are protons (or neutrons), gammas, neutrinos, and heavier nuclei. We can assess 

the chemical composition by the large amount of data that has been collected over the last decades and in particular 

by the dependence of the cosmic ray flux on the incident energy. The spectrum is displayed in Fig. I where it is 

seen to be a smooth curve over 26 orders of magnitude in the flux and 9 in the energy, and described in first order 

by a power law in energy with an exponent close to -3. In Fig. 2 there is a blow up of the higher energy region of 

Fig. 1, normalized by E3 . Inspection of Fig. 1 shows there is a break in the spectrum slope at about 10 15 — 10 16  eV, 

from, roughly E -2.7 to E -3•°, and this feature is often referred as the 'knee This knee is close to the theoretical . 

 limit of the supernova blast wave acceleration for protons. In Fig. 2 two further slope changes can be seen. The 

spectrum steepens at 10 17-5eV and flattens at 10 18 • 5  eV [1]. This flatting is generally called 'ankle ' and is related 

to the chemical composition of the primaries at the energies of interest. In ref. 1 they measured the altitude at 

shower maximum as a function of energy. This altitude is expressed as the atmospheric depth maximum Xm, and 

they compared the experimental results with the calculated X m  for iron nuclei and protons. They found that the 

composition is getting lighter, going from heavy masses below 10' 7 5  eV to light composition near 10 1°  eV. They 

also performed a simple two-component fit, (pure iron and pure proton) to Fig. 2 and with the result reproduced the 
Xm experimental energy dependence. Also, the measured longitudinal development of the shower for the highest 

energy event is not compatible with a photon as a primary. 

In summary, there is evidence of a migration to lower masses as the energy increases beyond•10 17.5  eV. 

2.2 Source Identification 

The main issue here is the so-called GZK cut-off (Greisen, Zatsepin, and Kuz'min cut-off). The particles as 

they travel through the space will interact with the 2.7°K background radiation, and very energetic particles will 

quickly loose energy and approach an asymptotic value around 4 x 10 1°  eV, as shown in Fig. 3. In this figure the 
degradation of energy is displayed for a proton due to collisions with 72 . 7  (e.g., 72 . 7 +p n-l-r+, or 72.7-i-p p+ir°). 
The source is at the coordinate origin and at approximately 100 Mpc the different initial energies approach 10 20 

 eV. Heavier nuclei will disintegrated and will fall below 1020  eV at closer distances from the source (2], which is in 
line with the observation described in section 2.1. 
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Figure 1. Cosmic ray spectrum, flux vs. energy. 

Figure 2. Higher energy cosmic ray spectrum multiplied by E 3 . 
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Figure 3. Proton energy vs. the distance travelled from the source. The proton looses energy by photo-pion production with 

collision with the background radiation. 

Assuming a proton primary, it is seen that the 3.2 x 10 20  eV event should not have originated farther away than 

50 Mpc, which is close in cosmological distances. Added to this, the large magnetic rigidity of these ultrarelativistic 

particles, make it easier to identify possible sources 

2.3 Possible Acceleration Sources 

An extensive study of possible acceleration sites was performed by Villas in 1984 [3] and the results are displayed 

in Fig. 4. In the axes are plotted the magnetic field B, in which the acceleration region is embedded and the size 

L of this region. (the energy E is proportional to B x L, as in a cyclotron accelerator). The diagonal, drawn as a 

full line, correspond to a proton accelerated to 10 2°  eV, and therefore celestial objects below this line will fail to 

accelerate protons to this value (note in particulars that our galaxy falls below the line). It is seen that few possible 

sources remain, namely neutron stars, white dwarfs, active galactic nuclei and radiogalaxies. These calculations 

where done for # = 1 for the accelerator, a more realistic /3 = A moves the line somewhere up, within the shaded 

area, mostly forbidden all sources. These calculations are a guidance as to the difficulty in achieving energies above 

1020  eV. There are more recent theoretical work concentrating in radio galaxies [4] or in Centaurus A [5] according 

to which higher energies are attained. 

As a final remark to this section, it is mentioned that there are also theoretical models of exotic sources [6]. 

Assuming that after some years of data taking by the Auger Project., some cumulative data do not point to any 

known source, we will seriously considered exotic sources. A suggested one is a decay into quarks of a super massive 

X particle with an energy associated of the order of the GUT scale, 10 24  eV. Sources of such particles could be 

topological defects of the universe, remnants of the early stages of the Big Bang. Also a gap above 2-3 x10 2° will 

point in the direction of these processes, since conventional mechanism would produce events filling such an energy 

gap. Another exotic possibility is an unknown particle with a very low -y2.7 cross section. Most of these discussions 
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are very useful predictions, some 'ad hoc ' proposals, awaiting for experimental data to guide us in the research. 

1 kin 	WI I Au 	1pc *pc 1Mix 
SIZE 

Figure 4. Magnetic fields and sizes of possible acceleration sites. Sites below the full diagonal line can not accelerate protons 

to 1020  eV. 

3. The Hybrid Detector 

The most important restriction arises from the extremely EAS low fluxes which force a giant size for the detector 

array. The Auger Project consists in two observatories, one in each hemisphere. Argentina has been chosen as the 

preferred country for installation of the southern hemisphere observatory and in mid 1996 the northern preferred 

country will be elected. 

We have on one hand, as the shower develops, electromagnetical excitation of atmospheric atoms which eventually 

decay by emission of fluorescence light and on the other hand, a large number of muons, electrons and gammas 

will collide with the Earth surface. So, a hybrid system is planned to detect both the fluorescence light and the 

impinging particles. 

The fluorescence detector will be an optical telescope of the fly's eye type using the technique developed at the 

Fly's Eye observatory at Dugway, Utah. It has mirrors that look at different regions of the sky and focus the light 

on photomultipliers. This segmentation gives rise to the name. It has a duty cycle of 10% working only in clear 

moonless nights. The main goal of this component is to measure the shower as it develops in the sky given its 

longitudinal profile, which in turn yields the energy of the primary by integration. Also, the atmospheric depth 

maximum, XM, depends on the chemical composition of the primary given thus information on the primary mass 

composition (see Fig. 5). 
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The impinging particles will be observed by an array of 1650 surface detectors, placed in a triangular grid, with 

1.5 km spacing between detectors over the total area of 3000 km 2 . These detectors need to identify the muonic 

from the electromagnetic components of the shower since this ratio depends on the mass composition of the primary 

([diron >[ :pg 1.7 ). There are two proposed systems: the leadburger and water cerenkov tanks (WTC). The 

leadburger is a sandwich of scintillator, lead, and scintillator and the idea is that electrons will produce a signal in 

the first scintillator, muons in both and gammas, through convertion in lead, only in the second scintillator. But 

the currently preferred design is the WTC. An artistic view of such a tank is displayed in Fig. 6. The WTC's need 

to be autonomous since it would be impractical to wire an area of 3000 km 2 . The power will be provided by solar 

panels and they will communicate among first neighbours via cellular phones. Timing information will be from the 

Global Positioning Satellite system, GPS, which will be used for both generating a trigger and for reconstructing 

the direction of arrival of the primary. Intense research in being carried out with WCT prototypes, there is one 

operational in Fermilab, one near complexion in Buenos Aires and one being constructed in Tokio. There plans to 

built a unitary cell of 7 detectors in Dugway this year, fully equipped with solar panels and communication system. 

Although the grid is triangular, since the detectors 'listen' to first neighbours the unitary cell is an hexagon with 

WTC's in the vertices and in the centre. 

The prototype we have at Buenos Aires is a. cylinder tank built of stainless steel, 0.65 cm thick, 1.80 m high 

and 10 m 2  of surface area. The photomultipliers. are not placed in the lid but are mounted inside the tank on 

movable aluminum rods, as to allow different geometries on the plane and different heights inside the tank. The 

photocatodes are embedded in the water. The water was demineralized with a resistivity of approximately 1 MC2/cm. 

The prototype lid is not welded and can be raised and lowered for planning different experiments. The tank walls 

are currently polished but will be either painted or, more probable, covered with a diffusing plastic (as done in 

Ilaverath Park). Simulations done with the GEANT code from the C;ERN library show that totaling reflecting 

surfaces produce , more than one peak for 1 GeV muons due to multiple reflections of the cerenkov light. There are 

also two scintillators counters one on top and the other one below the tank as a way of identifying muons. Bacteria 

growth has just started to be monitored every couple of weeks. There are plans to use smaller tanks for quick 

testing of wave shifters, salt in water for diminishing the freezing point (that might occur in the site), paints and 
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plastics, and bacteria grows under different conditions (e.g. tests of the efficiency as a bacteria killer of ultraviolet 

light by bathing with it the tank prior to filling, or germicides as copper or zinc in contact or spread in the water). 

GPI Marne 

r11 1 	Iv; Ito 

Pierre Auger Project 
Surface Detector Station 

Figure 6. Artistic view of the preferred surface detector, a water cerenkov tank. 

As mentioned, a hybrid detector has the enormous advantage that it measures the same showers (within the 

duty cycle of the fly's eye) with totally different apparatus, given confidence due to this redundancy. For instance, 

the energy calibration: the fly's eye obtains it though integration of the shower profile, while the WTC by counting 

particles at the Earth surface. 

4. Conclusions 

The schedule for the Auger Project encompasses two years of research and development, 1996 and 1997. The 

constructions of the observatories will start in 1998 and will last for four years, but still data taking can start well 

before the complete array is mounted. 

Eight cosmic rays with energies above 10 20  eV has been detected insofar and therefore we are convinced that 

they exist. Due to the very low fluxes we need giant detectors arrays and 6000 km 2  of detection area are envisaged, 

split in two identical observatories in each hemisphere. 

The source identification is simplified due to the GZK cut-off and the magnetic rigidity - of the primary. Also 

the primary characterization may be achieved in an statistical way by measuring the muon and electromagnetic 

contents of the shower and the XM of the shower profiles. 

The main questions arising from ultra high energy cosmic rays await for higher statistics, not much further can 

be advanced without it. In particular, identification of sources are needed in order to test the different theoretical 

models for acceleration to these energies. 
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Note: A complete document on both the physics and the detector design is presented in the Auger Project Design 

Report [7]. 
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These days, as high energy particle colliders become unavailable for testing speculative theoretical ideas, physi-

cists are looking to other environments that may provide extreme conditions where theory confronts physical reality. 

One such circumstance may arise at high temperature T, which perhaps can be attained in heavy ion collisions or 

in astrophysical settings. It is natural therefore to examine the high-temperature behavior of the standard model, 

and here I shall report on recent progress in constructing the high-!' limit of QCD. 

My presentation will be unified by the theme of screening, a familiar phenomenon in electrodynamical plasmas. 

I shall explore how similar effects can be described in QCD at a sufficiently high temperature (above the putative 

confinement - deconfinement phase transition) so that we may speak of unconfirmed quarks and gluons forming a 

plasma. But first let me review briefly the screening phenomena in plasmas of electromagnetically charged particles. 

We begin with Poisson's equation, which relates the scalar electric potential (1) to a charge density p. 

= p 

For the charge density we take a statistical distribution of positive-charged (+q) and negative-charged (—q) particles, 

each carrying the energy ±q0, respectively, and described by the same density n. Then 

p = n(qe- q 41T  — qc 444.r ) 

To be published in The Proceedings of XVI National Meeting on Particles and Fields, Caxambu, Brazil, October 1995 
I This work is supported in part by funds provided by the U.S. Department of Energy (D.O.E.) under cooperative agreement # 

DF-FCO2-94ER40818. 
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For large T, this becomes 

P (large T) 
—2ne SIT 

so that the Poisson equation reads 

_ v2 	(2nq 2 \ 

T ) 

2 	 :11 
Evidently, a screening mass a (1-- ) has been induced for the electric potential 0; the inverse 

is called the Debye screening length. Again at high T and for a relativistic plasma, one 
expects u ti  (1/volume) T 3  , hence the induced electric screening mass is 

oc 

We shall see a similar result emerging in the non-Abelian theory as well. Note that Debye 
screening occurs for the electric (temporal) component of the gauge potential. There is no 
electrodynamical magnetic screening, because there are no magnetic resources. 

V • B = 0 

In the non-Abelian theory, the corresponding equation involves the covariant divergence. 

v BR = grbe A b Bc 

(Here g is the gauge coupling constant.) So the issue of magnetic sources is not so clear 
in the Yang-Mills case, and one of the topics that we shall address later is whether in the 
non-Abelian theory there exists magnetic screening. 

The above argument - it is essentially Debye's - makes little use of field theoretical 
formalism. But to carry through analogous calculations in the standard model, we shall 
begin with quantum field theory. Let me explore how finite-temperature calculations are 
performed in that context. 

When studying a field theory at finite temperature, the simplest approach is the so-
called imaginary-time formalism. We continue time to the imaginary interval [0,1/iT] and 
consider bosonic (fermionic) fields to be periodic (anti-periodic) on that interval. Perturba-
tive calculations are performed by the usual Feynmau rules as at zero temperature, except 
that in the conjugate energy-momentum, Fourier-transformed space, the energy variable 
p°  (conjugate to the periodic time variable) becomes discrete - it is 2/rnT, (n integer) for 
bosons. From this one immediately sees that at high temperature - in the limiting case, at 
infinite temperature - the time direction disappears, because the temporal interval shrinks 
to zero. Only zero-energy processes survive, since "non-vanishing energy" necessarily means 
high energy owing to the discreteness of the energy variable p° 	2rnT, and therefore all 
modes with n 	0 decouple at large Y'. In this way a Euclidean three-dimensional field 
theory becomes effective al high temperatures and describes essentially static processes.' 

Let me repeat in greater detail. Finite-T, imaginary-time perturbation theory makes 
use of conventional diagrammatic analysis in "momentum" space, with modified "energy" 
variables, as indicated above. Specifically a spinless boson propagator is 

po = iir(2n)T D (p) =  2  Po 	p2 	171. 2 
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while a spin--1 fermion propagator reads 

	

S(p)  	po 	+ 1)T 
'7°Po — ' P — rn 

The 	zero-temperature 	integration 	measure 	f (k  .±r)P-7,-1 	becomes 	replaced 	by 

iT 	f -f d3  . Thus it is seen that Bose exchange between two 0(g) vertices contributes 

iT 	f Og g 	 g where g is the coupling strength. In the large T limit, 

all n # 0 terms (formally) vanish as T -1  and only the n = 0 term survives. One is left 

withf -44 pr ,g-1T 1  rn 2 g-04. This is a Bose exchange graph in a Euclidian 3-dimensional y 	-1- 

theory, with effective coupling gl/T. Similar reasoning leads to the conclusion that fermions 
decouple at large T. 

While all this is quick and simple, it may be physic:ally inadequate. First of all, fre-
quently one is interested in non-static processes in real time, so complicated analytic con-
tinuation from imaginary time needs to be made before passing to the high-T limit, which 
in imaginary time describes only static processes. Also one may wish to study amplitudes 
where the real external energy is neither large nor zero, even though virtual internal energies 
are high. 

Another reason that the above may be inadequate emerges when we consider massless 
fields (such as those that occur in QCD). We have seen that the n = 0 mode leaves a 
propagator that behaves as when mass vanishes, and a phase space of dap. It is well known 

that this kind of kinematics at low momenta leads to infrared divergences in perturbation 
theory even for off-mass-shell amplitudes — Green's functions in massless Bosonic field 
theories possess infrared divergences in naive perturbation theory.' Since physical QCD does 
not suffer from off-mass-shell infrared divergences, perturbation theory must be resummed. 

A final shortcoming of the above limiting procedure i3 that it is formal: the limit is 
taken before the integration summation is carried out. But the latter need not converge 
uniformly; indeed owing to ultraviolet divergences, it may not converge at all and must be 
renormalized. Asa consequence the a 0 contributions in single Boson exchange graphs 
may not decrease as T- '. 

Thus the formal arguments for the emergence of a 3-dimensional theory at high-T 
need be re-examined for QCD. Nevertheless, even if unreliable, the arguments alert us 
to the possibility that 3-dimensional field theoretic structures may emerge in the high-T 
regime. Indeed this occurs, although not in a direct, straightforward fashion; this will be 
demonstrated presently. 

Here is a graphical argument to the same end discussed above: viz. The need to resurn 
perturbation theory. Consider a one-loop amplitude fl i (p), 

Ii y  (p) 
	

J dk 	k) , 

given by the graph in the figure. 

ni(p) 
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I dk .1 1 (p,k) 

Compare this to a two-loop amplitude H 2 (p), 

fl2(p) = 	dk 12 (p, k) , 

in which nI  is an insertion, as in the figure below. 

n2(p) = 

      

  

k 

  

       

dk (p, k) 

Following Pisarski, 3  we estimate the relative importance of 11 2  to II I  by the ratio of their 
integrands, 

111 2 	12 11 1(k)  = 92 

k2 

Here g is the coupling constant, and the k 2  in the denominator reflects the fact that we arc 
considering a massless field, as in QCD. Clearly the k2  0 limit is relevant to the question 
whether the higher order graph can be neglected relative to the lower order one. Because 
one finds that for small k and large T, fl i (k) behaves as , the ratio n2/111 i s g2r/k2 .  As 

 a result when k is 0(gT) or smaller the two-loop amplitude is not negligible compared to 
the one-loop amplitude. Thus graphs with "soft" external momenta [O(gT) or smaller] have 
to be included as insertions in higher order calculations. 

A terminology has arisen: graphs with generic/soft external moment 10(gT) where g 
is small and T is large] and large internal momenta [the internal momenta are integration 
variables in an amplitude; when T is large they are 0(T), hence also large] are called "hard 
thermal loops." 3,4  Much study has been expended on them and finally a general picture has 
emerged. Before presenting general results, let us look at a specific example — a 2-point 
Green's function. 

It needs to be appreciated that in the imaginary-time formalism the correlation func-
tions are unique and definite. But passage to real time, requires continuing from the integer-
valued "energy" to a continuous variable, and this cannot be performed uniquely. This 
reflects the fact that in real time there exists a variety of correlation functions: time ordered 
products, retarded commutators, advanced commutators, etc. Essentially one is seeing the 
consequence of the fact that a Euclidean Laplacian possesses a unique inverse, whereas giv-
ing an inverse for the Minkowskian d'Alembertian requires specifying temporal boundary 
conditions, and a variety of answers can be gotten with a variety of boundary conditions. 
Thus, when presenting results one needs to specify precisely what.one is computing. 

We shall consider a correlation function for two fermionic currents, in the 1-loop ap-
proxi mation. 

n"(x,y) = 	(f(x).r ( Y)) 
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f 	k _.k  
J 	e (x-Y)II"(k)  

The QCD result differs from the QED result by a group theoretical multiplicative factor, so 
we present high-T results only for the latter, in real-time, and consider the time-ordained 
product nv as well as the retarded commutator now. 

II"" possesses a real and an imaginary part. It is found that at large T , the real parts 
of IT and 11 coincide. 

T 2 r ,T2 k 2 	ko 
—ReTrv(k) —P 

6 	ik 2 i 	2 iki 	k °  + 	11 :11] - [31P1" 	i11)441  

where the projection operators are 

P" = g°u  — kuk' /k2  

pr 	
r  0 	 if or v = 0 
I 	kiki/1k 2 1 otherwise 

For the imaginary part, which is present only for space-like arguments, different expressions 
are found. 

— 	(k) 
2 k° 
r 2 

—T 2  0(— k 2 )kl 	+ Pri 
ik 
71" 2  {_k°  

1 3  2 
T2 + 7,31 0(_k2) 

3 	
1:2_p2411 

 

A unified presentation of these formulas is achieved in a dispersive representation. For 
the retarded function this reads 

I"  p 	k) 
117 (k) = 11';u B (k) + f dk'  • ° 	ko  — is 

while the time-ordered expression is 

riTv(k) 	HZB(k) + dle 
 PPv(4,10) 	27r1. 

° ko — ko — ic ekoa 	PPP  (ko, k) 

The dispersive expressions may also be used to give the imaginary-time formula. 

,(k() , k) 

time 
(k) = 1-Its."1" B (k) + dko  „ 	rinT - 

In all the above formulas, III:swuB  is a real subtraction term. 
Note that a universal statement about high-T behavior can be made only for the 

absorptive part fio" : it is 0(T 2 ). This also characterizes nr, but IIT possesses an additional 
0(T3 ) imaginary part, which is seen to arise from the additional term in I -1 14,fr involving the 
bosonic distribution function e, 0711.7. Finally, the 11 .mijaginary amplitude has a temperature 

lime 
 

— 1mTEV1 (k) 



2  = (N + INF) gT
27r 

2  rHTL (A) 
2 	1 

A U + 	dU) =FHTL(A) 

A "VVOVVN, A + 
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behavior determined by its external "energy" = 2rinT. If this is replaced by a fixed k o 
 (T-independent) or if only the n = 0 mode is considered, then one may assign an 0(T2 ) 

behavior to this quantity as well. 
In conclusion, we assert that the 2-point correlation function behaves as 0(T 2 ), where 

it is understood that this statement is to be applied to the retarded amplitude, or to the 
imaginary time amplitude with its "energy" argument continued away from 2rinT. 5  

Similar analysis has been performed on the higher-point functions and this work has 
culminated with the discovery (Braaten, Pisarski, Frenkel, Tay100 3." of a remarkable sim-
plicity in their structure. To describe this simplicity, we do not discuss the individual n-point 
functions, but rather their sum multiplied by powers of the vector potential, viz. we consider 
the generating functional for single-particle irreducible Green's functions with gauge field ex-
ternal lines in the hard thermal limit. (Effectively, we are dealing with continued imaginary-
time amplitudes.) We call this quantity PHTL(A) and it is computed in an SU(N) gauge 
theory containing Nb- fermion species of the fundamental representation. 	is found (i) 
to be proportional to (N + 	F), (ii) to behave as T 2  at high temperature, and (iii) to be 
gauge invariant. 

(Henceforth g, the coupling constant, is scaled to unity.) A further kinematical simplification 
in rwri  has also been established. To explain this we define two light-like four-vectors (21 
depending on a unit three-vector 4, pointing in an arbitrary direction. 

(21 = —(1
' 

E4) 

= I , 	Q1Q±1, = 0 , 	Q1QTP = 1  
Coordinates and potentials are projected onto Q. 

x±  = x m Ql , 	of = Q1 ax
a  

A 

	 A* = A u Q1 

The additional fact that is now known is that (iv) after separating an ultralocal contribution 
from rHTL , the remainder may be written as an average over the angles of 4 of a functional 
W that depends only on A + ; also this functional is non-local only on the two-dimensional 
x± plane, and is ultralocal in the remaining directions, perpendicular to the x* plane. ("ul-
tralocal" means that any potentially non-local kernel k(r, y) is in fact a 6-function of the 
difference k(s,y) oc S(x — 0.1 

rwri., 1,A) = 27r f di x Ag(x)A 04 (x)+ fdft4W(A+) 
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These results are established in perturbation theory, and a perturbative expansion of W(A +), 
i.e. a power series in A +, exhibits the above mentioned properties. A natural question is 
whether one can sum the series to obtain an expression for W(A + ). 

Important progress on this problem was made when it was observed (Taylor, Wong)s 
that the gauge-invariance condition can be imposed infinitesimally, whereupon it leads to a 
functional differential equation for W(A + ), which is best presented as 

	  

ax+ 	
[
W(A+)-1- 1  d4 3: A 6+(x)A b+(x)1 

_aa„ kill+ rbc Ab
bAc 	+ 

[wo )+ 2 
J 

cl4x At(x)A1.(x)]. o 

In other words we seek a quantity, call it 

S(A + ) --, W(A +)+ 	di x Au+(x)AVx) , 

which is a functional on a two-dimensional manifold {x+, s- }, depends on a single functional 
variable A +, and satisfies 

8 k 15 al 	_ a2A7  fabc k:  

(5 	
n 

,4`” 

"1" E. X + , 	"2" -= 	, 	E 

Another suggestive version of the above is gotten by defining A2 	:Asa . 

a, A c21  — a2A7 fabc Abi A;  = o 

To solve the functional equation and produce an expression for W(A +), we now turn to a 
completely different corner of physics, and that is Chern-Simons theory at zero temperature. 

The Chern-Simons term is a. peculiar gauge theoretic topological structure that can be 
constructed in odd dimensions, and here we consider it in 3-dimensional space-time. 

-"Cs 0( 	d3 x ea131  Tr (0..Apk, iiI„ApA...,) 

This object was introduced into physics over a decade ago, and since that time it has been put 
to various physical and mathematical uses. Indeed one of our originally stated motivations 
for studying the Chern-Simons term was its possible relevance to high-temperature gauge 
theory.? Here following Efraty and Nair, 8  we shall employ the Chern-Simons term for a 
determination of the hard thermal loop generating functional, FFITL. 

Since it is the space-time integral of a density, I Cs  may be viewed as the action for a 
quantum field theory in (2+1)-dimensional space-time, and the corresponding Lagrangian 
would then be given by a two-dimensional, spatial integral of a Lagrange density. 

Its oc I di L cs  

Lcs 
	

ex (A (21 A7 AgF112) 
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I have separated the temporal index (0) from the two spatial ones (1,2) and have indicated 
time differentiation by an over dot. F12  is the non-Abelian field strength, defined on a 
two-dimensional plane. 	

F; 2  = A3 — 02AT + 
abc APAc 

 

Examining the Lagrangian, we see that it has the form 

L pq — A H(p, q) 

where A3 plays the role of p, A7 that of q, F112  is like a Hamiltonian and Ag acts like the 
Lagrange multiplier A, which forces the Hamiltonian to vanish; here Ag enforces the vanishing 
of Fia2 . 

= 0 

The analogy instructs us how the Chern-Simons theory should be quantized. 
We postulate equal-time computation relations, like those between p and q. 

[A7(r), A(r i)] = i P b S(r — r') 

In order to satisfy the condition enforced by the Lagrange multiplier, we demand that Fl t , 
operating on "allowed" states, annihilate them. 

i'721 ) = 0  

This equation can be explicitly presented in a Schriidinger-like representation for the 
Chern-Simons quantum field theory, where the state is a functional of Ai. The action of the 
operators Ai and ,413 is by multiplication and functional differentiation, respectively. 

I ) 	(AZ) 
Al I ) 	A7 ‘11 ( A7) 

1 6 
A3 I ) 	i

SAa (A7) 

This, of course, is just the field theoretic analog of the quantum mechanical situation where 
states are functions of q, the q operator acts by multiplication, and the p operator by dif-
ferentiation. In the Schrodinger representation, the condition that states be annihilated by 
fT2  

(a,A; — (32,17 + fabcAbiA0 I ) = 0 

leads to a functional differential equation. 

1 	' 	 1 	(5 
— u2 AT + 	7  -8--AT) AP(A7) = 0 

If we define S by 'P we get equivalently 

• 6 	 6 
6.Ai s — a2 ,47 + fabcAb, 	S= 0 
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This equation comprises the entire content of Chern-Simons quantum field theory. S is the 
Chem-Simons eikonal, which gives the exact wave functional owing to the simple dynamics 
of the theory. Also the above eikonal equation is recognized to be precisely the equation for 
the hard thermal loop generating functional, given above. 

Let me elaborate on the connection with eikonal-WKB ideas. Let us recall that in 
particle quantum mechanics, when the wave function CO is written in eikonal form 

• 
0(q) = eiS(q) 

then the WKB approximation to S(q) is given by the integral of the canonical 1-form pdq 

S(q) = 	p(q')dq' 

where p(q), the momentum, is taken to be function of the coordinate q, by virtue of satisfying 
the equation of motion. 

.n2( 
1= ). + V (q) = E 

2 

p(q) = V2E — 2V (q) 

Analogously, in the present field theory application, the eikonal SOO may be written as a 
functional integral, 

AI 

S(A l ) = 	A2(A;)DAi  

where A3(A 1 ) is functional of A l  determined by the equation of motion 

al A; — a2 Ai + f a Ai At = 0 

Since, by construction 3V-, = AZ, it is clear that as a consequence S satisfies the required 

equation. However, we reiterate that in the Chern-Simons case there is no WKB approxi-
mation: everything is exact owing to the simplicity of Chern-Simons dynamics. 

The gained advantage for thermal physics is that "acceptable" Chern-Simons states, 
i.e. solutions to the above functional equations, were constructed long ago, 9  and one can 
now take over those results to the hard thermal loop problem. One knows froth the Chern-
Simons work that W and S are given by a 2-dimensional fermionic determinant, i.e. by the 
Polyakov-Wiegman expression. While these are not described by very explicit formulas, 
many properties are understood, and the hope is that one can use these properties to obtain 
further information about high-temperature QCD processes. We give two applications. 

The Chern-Simons information allows presenting the hard-thermal loop generating 
functional as 

rHTL = - 
2 J 

c1S14[Aa+Aa_ S(A. f.) + S(A_)] 

Using the known properties of S, one can give a very explicit series expansion for rHTL in 
terms of powers of A 

+ rHTL 	0 HTL AA  3! J 
r.(3T),,A AA + • • 
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where the non-local kernelsI'H'T L are known explicitly. This power series may be used to 
systematize the resummation procedure for the pertubative theory. Here is what one does: 
perturbation theory for Green's functions may be organized with the help of a functional 
integral, where the integrand contains (among other factors) eikicp EA) where / QGD  is the 
QCD action. We now rewrite that as 

2 

e ' 
 rn„ rim.,(A)} 

where rn = 	 Obviously nothing has changed, because we have merely added and 
subtracted the hard-thermal-loop generating functional. Next we introduce a loop counting 
parameter /: in an I-expansion, different powers of I correspond to different numbers of loops, 
but at the end I is set to unity. The resummed action is then taken to be 

, m2  r  I  [ 1QCD(Nrnrr 	HTLIv 	 HTLW ell )} 1  iiresu e 	MTh!' = e i 

One readily verifies that an expansion in powers of I describes the resummed perturbation 
theory, and this then represents the first application of the present Chern-Simons formalism. 

For a second application, we note that even though the closed form for 1.)-n.,  is not very 
explicit, a much more explicit formula can be gotten for its functional derivative 64r., . This 

may be identified with an induced current, which is then used as a source in the Yang-Mills 
equation. Thereby one obtains a non-Abelian generalization of the Kubo equation, which 
governs the response of the hot quark gluon plasma to external disturbances.' 

m2 

Dp Fuli = 2 jrnduced 

From the known properties of the fermionic determinant — hard thermal loop generating 
functional — one can show that jrnduced  is 

I 
r 	t 

)induced = 	 + QN  (a+(r) — A+(z))/ 

where a t  are solutions to the equations 

a+a_ — O_A +  + [A+ , a_l = 

a, A_ — a_a +  + [a + , 	= 0 

Evidently J )induced, as determined by the above equations, is a non-local and non-linear func-
tional of the vector potential A s,. 

There now have appeared several alternative derivations of the Kubo equation. Blaizot 
and lance" have analyzed the Schwinger-Dyson equations in the hard thermal regime; they 
truncated them at the 1-loop level, made further kinematical approximations that are justi-
fied in the hard thermal limit, and they too arrived at the Kubo equation. Equivalently the 
argument may be presented succinctly in the language of the composite effective action," 
which is truncated at the 1-loop (semi-classical) level — two-particle irreducible graphs are 
omitted. The stationarity condition on the Hoop action is the gauge invariance constraint 

given by 
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on rim,. Finally, there is one more, entirely different derivation — which perhaps is the 
most interesting because it relies on classical physics. 12  We shall give the argument presently, 
but first we discuss solutions for the Kubo equation. 

To solve the Kubo equation, one must determine a ±  for arbitrary A ± , thereby obtaining 
an expression for the induced current, as a functional of A ± . Since the functional is non-
local and non-linear, it does not appear possible to construct it explicitly in all generality. 
However, special cases can be readily handled. 

In the Abelian case, everything commutes and linearizes. One can determine a ±  in 
terms of A±. 

of A a±  

(Incidentally, this formula exemplifies the kinematical simplicity, mentioned above, of hard 
thermal loops: the nonlocality of 1/8 ±  lies entirely in the {x - , x - } plane.) With the above 
form for a±  inserted into the Kubo equation, the solution can be constructed explicitly. 
It coincides with the results obtained by Silin long ago, on the basis of the Boltzmann-
Vlasov equation.' One sees that the present theory is the non-Abelian generalization of 
that physics; in particular m, given above, is recognized as the Debye screening length, 
which remains gauge invariant in the non-Abelian context. 

It is especially interesting to emphasize that Silin did not use quantum field theory in 
his derivation; rather he employed classical transport theory. Nevertheless, his final result 
coincides with what here has been developed from a quantal framework. This raises the 
possibility that the non-Abelian Kubo equation can also be derived classically, and indeed 
such a derivation has been given, as mentioned above. 

We now pause in our discussion of solutions to the non-Abelian Kubo equation in order 
to describe its classical derivation. 

Transport theory is formulated in terms of a single-particle distribution function f 
on phase space. In the Abelian case, f depends on position {e} and momentum {e} 
of the particle. For the non-Abelian theory it is necessary to take into account the fact 
that the particle's non-Abelian charge {Q°} also is a dynamical variable: Qa satisfies an 
evolution equation (see below) and is an element of phase space. Therefore, the non-Abelian 
distribution function depends on (e), 09'1 and {Q°}, and in the collisionless approximation 
obeys the transport equation fr f = 0, i.e. 

of de Of Oa Of dQa 
oxa dr + op,' dr + 0Qa dr = ° 

The derivatives of the phase-space variables are given by the Wong equations, for a particle 
with mass it. 

dxa 
dr 

dsu  Fay - Q a 
dr 	a  dr 

dCe = rbc  dxu Ab 
 Q

. 
dr 	 dr “ 
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In order to close the system we need an equation for IT"' . In a microscopic description (with 
a single particle) one would have (DI,FP1' = f cirQa(T)Lt/  (54 (x — x(r)) and consistency 
would require covariant conservation of the current; this is ensured provided Q° satisfies the 
equation given above. In our macroscopic, statistical derivation, the current is given in terms 
of the distribution function, so the system of equations closes with 

(D,A fina = dpdQ Qa f (2-, p, Q) 

(One verifies that the current - the right side of the above -- is covariatly conserved.) The col-
lisionless transport equation, with the equations of motion inserted, is called the Boltzmann 
equation. The closed system formed by the latter supplemented with the Yang-Mills equa-
tion is known as the non-Abelian Vlasov equations. To make progress, this highly non-linear 
set of equations is approximated by expanding around the equilibrium form for f, 

f
free

}}

1-  oc  (e +0,■ :' 
boson 
fermion 

This comprises the Vlasov approximation, and readily leads to the non-Abelian Kubo equa-
tion. 12  

One may say that the non-Abelian theory is the minimal elaboration of the Abelian 
case needed to preserve non-Abelian gauge invariance. The fact that classical reasoning 
can reprochice quantal results is presumably related to the fact that the quantum theory 
makes use of the (resummed) 1-loop approximation, which is frequently recognized as an 
essentially classical effect. Evidently, the quantum fluctuations included in the hard thermal 
loops coincide with thermal fluctuations. 

Returning now to our summary of the solutions to the non-Abelian Kubo equation 
that have been obtained thus far, we mention first that the static problem may be solved 
completely." When the Ansatz is made that the vector potential is time independent, At 

(r), one may solve for a.E to find a ±  = —A ±  and the induced current is explicitly computed 
as 

m2 	 (_ m2 AO 

3induced  = 
0 

This exhibits gauge-invariant electric screening with Debye mass m. One may alSo search for 
localized static solutions to the Kubo equation, but one finds only infinite energy solutions, 
carrying a point-magnetic :monopole singularity. Thus there are no plasma solitons in high-T 
QCD." Specifically, upon selecting the radially symmetric solution that decreases at large 
distances, there arises a magnetic monopole-like singularity at the origin. 

Much less is known concerning time-dependent solutions. Blaizot and lancu" have 
made the Ansatz that the vector potentials depend only on the combination x • k, where 
k is an arbitrary 4-vector: A ±  = A ± (x - k). Once again a±  can be determined; one finds 
a±  = Q---(2 :::4+ , and the induced current is computable. For k = (h), where there is no space 
dependence (only a dependence on time is present) one finds 

M2 
0 

Jinduced 	rn2A) 
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More complicated expressions hold with general k. The Kubo equation can be solved nu-
merically; the resulting profile is a non-Abelian generalization of a plasma plane wave. 

The physics of all these solutions, as well as of other, still undiscovered ones, remains 
to be elucidated, and I invite any of you to join in this interesting task. 

We see that Debye electric screening is reproduced in essentially the same form as 
in an Abelian plasma (to leading order). How about magnetic screening? It is important 
to appreciate that the above time-independent, space-independent induced current, with j 
proportional to A, does not describe magnetic screening because screening is determined 
by static configurations. Thus we conclude that the hard-thermal-loop limit of hot QCD 
does not show magnetic screening. Indeed it appears that if one proceeds perturbatively, 
beyond the resummed perturbation expansion of hard thermal loops, no direct evidence for 
magnetic screening can be found. 

However, there is indirect evidence: although the hard thermal loop resummation cures 
some of the perturbative infrared divergences, as one calculates to higher perturbative or-
ders, they reappear essentially due to the non-linear interactions between electric (temporal) 
and unscreened magnetic (spatial) degrees of freedom as well as among the magnetic de-
grees of freedom due to their self-interaction. (Such interactions are absent in an Abelian 
theory.) Consequently it is believed that non-perturbative magnetic screening arises in the 
non-Abelian theory, and it is recalled that, as mentioned in the Introduction, there is some-
thing akin to a magnetic source in Yang-Mills theory. 

Another qualitative argument can be offered to make plausible the idea that a magnetic 
mass should arise. Although I have argued that high-temperature dimensional reduction from 
four to three dimensions can not be carried out reliably for a gauge theory, one may speculate 
that there is some truth in the idea, when restricted to magnetic (spatial) components of the 
non-Abelian potential. So one is led, as preliminary to studying the full QCD problem, to an 
analysis of three-dimensional Euclidean Yang-Mills theory at zero temperature. One quickly 
discovers that infrared divergences are present in perturbation theory for this model as well, 
so here again arises the question of a dynamically induced mass. In three dimensions, the 
coupling constant squared q3)  carries dimensions of mass. (Recall that in a high-temperature 

reduction g(3)  is related to the four-dimensional coupling g by g(3)  = 907.) Therefore 
it is plausible that three-dimensional Yang-Mills theory generates an 0(q3) ) mass , which 

eliminates its perturbative infrared divergences and suggests the occurrence of an 0(g2 71 ) 
magnetic mass in the four-dimensional theory at high T. Unfortunately thus far no analysis 
of the three-dimensional Yang-Mills model has led to a proof of such mass generation. 

Since the mass is not seen in perturbative expansions, even resummed ones, one at-
tempts a non-perturbative calculation, based on a gap equation. Of course an exact treat-
ment is impossible; one must be satisfied with an approximate gap equation, which effectively 
sums a large, but still incomplete set of graphs. At the same time, gauge invariance should 
be maintained; gauge non-invariant approximations are not persuasive. 

Deriving an approximate, but gauge invariant gap equation is most efficiently carried 
out in a functional integral formulation. We begin by reviewing how a one-loop gap equation 
is gotten from the functional integral, first for a non-gauge theory of a scalar field co, then 
we indicate how to extend the procedure when gauge invariance is to be maintained for a 
gauge field A. 
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Consider a self-interacting scalar field theory (in the Euclidean formulation) whose 
potential V(so) has no quadratic term, so in direct perturbation theory one may encounter 
infrared divergences, and one enquires whether a mass is generated, which would cure them. 

C = it9„coOP +11((p) 

V(p) 	+ A04  

The functional integral lb..: the Euclidean theory involves the negative exponential of the 
action 1 = f L. Separating the quadratic, kinetic part of 1, and expanding the exponential 
of the remainder in powers of the field yields the usual loop expansion. As mentioned earlier, 
the loop expansion may be systematized by introducing a loop-counting parameter 2 and 

considering e -,1(114) : the power series in a is the loop expansion. To obtain a gap equation 

for a possible mass p, we proceed by adding and subtracting 1, 	
, 

= f co' which of course 
changes nothing. 

I = + 1„ — 

Next the loop expansion i3 reorganized by expanding 1 + I,, in the usual way, but taking 
—1„ as contributing at one. loop higher. This is systematized as in the hard-thermal-loop 
application with an effective action, h, containing the loop counting parameter I, which 
organizes the loop expansion in the indicated manner: 

f t  = 7 (1(14o)  + /0,04,o)) — 1 ,, ( Vice) 

An expansion in powers of e corresponds to a resummed series; keeping all terms and setting 
I to unity returns us to the original theory (assuming that rearranging the series does no 
harm); approximations consist of keeping a finite number of terms: the 0(1) term involves 
a single loop. 

The gap equation is gotten by considering the self energy E of the complete propagator. 
To one-loop order, the contributing graphs are depicted in the Figure. 

ET —(=>—, 	A, + - 
..3 

Self energy resummed to one-loop order. 

Regardless of the form of the exact potential, only the three- and four- point vertices 
are needed at one-loop order; the "bare" propagator is massive thanks to the addition of the 
mass term 1./„(V-eco) = z f cat; the last —p 2  in the Figure comes from the subtraction of the 

same mass term, but at one-loop order: — /,,(Vit,o) = 	f co2 . 
The gap equation emerges when it is demanded that E does not shift the mass p. In 

momentum space, we require 
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Graphical depiction of above equation. 

While these ideas can be applied to a gauge theory, it is necessary to elaborate them so 
that gauge invariance is preserved. We shall discuss solely the three-dimensional non-Abelian 
Yang-Mills model (in Euclidean formulation) as an interesting theory in its own right, and 
also as a key to the behavior of spatial variables in the physical, four-dimensional model at 
high temperature. 

The starting action I is •  the usual one for a gauge field. 

I = 	d3x 

Fi = 
jk 

While one may still add and subtract a mass-generating term I p , it is necessary to preserve 
gauge invariance. Thus we seek a gauge invariant functional of Ai, / 0 (A), whose quadratic 
portion gives rise to a mass. Evidently 

t
2 	

A 	 aia; 	A  
j 	. ( A = 	 ILL

A  x 	(vi; 	ti 
2 	 v2 

The transverse structure in the above equation guarantees invariance against Abelian gauge 
transformations; the question then remains how the quadratic term is to be completed in 
order that I,(A) be invariant against non-Abelian gauge transformations. [In fact for the 
one-loop gap equation only terms through 0(A 4 ) are needed.] 

A very interesting proposal for I „(A) was given by Nair 15 ' 16  who also put.'forward the 
scheme for determining the magnetic mass, which we have been describing. By modifying in 
various ways the hard thermal loop generating functional (which gives a four-dimensional, 
gauge invariant but Lorentz non-invariant effective action with a transverse quadratic term), 
he arrived at a gauge and rotation invariant three-dimensional structure, which can be em-
ployed in the derivation of a gap equation.* 

Let me describe Nair's modification. Recall that the hard-thermal-loop generating 
functional, which I record here again, 

rHTL = 	Cif/4[Q i4.q"A ÌIA: + S(QTA 0 ) + S(QtA„)] 

*A gap equation for the full gauge-field propagator, rather than just for the mass, has been put forward and 
analyzed by Cornwall el al.; see Phys. Leii. B153, 173 (1985) and Phys. Rev. D 34, 585 (1986). 
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is gauge invariant because Q1 = (0,±4) is light-like and S is the Chern-Simons eikonal. 
Before averaging over one is dealing with a functional of only A ± ; after averaging all four 
components of A u  enter. With Nair, 15" 6  we observe that another choice for (21 can be made, 
where those vectors remain light-like, but have vanishing time component. This is achieved 
when the spatial components of Q1 are complex and of zero length; for example: 

Qt11, 	(0, q) 	 = ( 0 , 9`) 

q = (— cos 0 cos y i sin cp, — cos 0 sin co i cos sin 0) = + 
Evidently q2  = 0, Q2+ 	0 and Q... = 	Using these forms for Q1 in rim, still leaves it 
gauge invariant. Also it is clear that rifit  is real and depends only on the spatial components 
of the vector potential. Hence this is an excellent candidate for /4 (A), which therefore, 
following Nair, we take it to be 

2 

4r
p  

Hi TL k 
evaluated 
as &bora 

The scheme proceeds as in the scalar theory, except that I „(A) gives rise not only to a 
mass term for the free propagator, but also to higher-point interaction vertices. At one loop 
only the three- and four- point vertices are needed, and to this order the subtracting term 
uses only the quadratic contribution. Thus the gap equation reads, pictorially 

[-e-  "- 	+ + 	L-4c›- + Q 	= 

The first three graphs are as in ordinary Yang-Mills theory, with conventional vertices, 
but massive gauge field propagator (solid line); 

1 
D ij (p) 	oi) p2 112  

the first graph depicting the gauge compensating "ghost" contribution, has massless ghost 
propagators (dotted line) and vertices determined by the quantization gauge, conveniently 
chosen, consistent with the above form for the propagator, to be 

IV • A(1 — ti2  IV 2 )9 • A 
fkin‘ 	2 

The remaining three graphs arise from Nair's form for the hard thermal loop-inspired i t,(A), 
with solid circles denoting the new non-local vertices. As it happens, the last graph with 
the four-point vertex vanishes, while the three-point vertex reads 

q, r) 
ip2fabc I (p r  r • p 34i) x  co2  3— 	Tp  pipipk — 3r2  (giqiph + qipiqk + piqj qk) + s permutations 

p+q-l-r=0 
The permutations ensure that the vertex is symmetric under the exchange of any pair of 
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index sets (a i p), (b j  q), (c k r). Inverse powers of momenta signal the non-locality of the 
vertex. [We discuss the SU(N) theory, with structure constants Pk.] 

The result of the computation is 

Nna. .16 	6ab 11N  

nN = 11;i 44  + rTivj  

IT ri Al  is the contribution from the first three Yang-Mills graphs and II sums the graphs 
from IM (A). The reported results are' 

--1 P 	P 
nrim (P)  = "ij –1345i) [( 6 147r3P; ifr5  —p 

tan 2-0  – 57r  — 

p2  2 P.  t  -I P 	P 	P 1 

	

Ni3i153  IA32- 7rp 	87r) p -an 2 tt 	87r - 
'  

N 	
2 	2 	 3 

-rii  
= 4  ) 	3P2 	311 211 	-1  P 	P` 	P 	1 11  tan P  (61.7 –  PAP,) 	+ 16r / 

p  tan 2-11  - 	172  + 	
2 P 	P 	167r 	8/rp 

2 
+ 	

p 	_1 P 	P - tan -1 + 

	

32,71-0 	87r 	p 	 8ir 	32 

The Yang-Mills contribution Brim  is not separately gauge-invariant (transverse) owing to 
the massive gauge propagators. [Atµ = 0, Brim reduces to the standard result': N(6ii 

(

7 ' 	 i - up).] The longitudinal terms in 1-1;i are canceled by those i n N so that the total 
is transverse. 

2 	 44 3 
II 	-1 P 	1-• --5p2 	1 \ 20 	p _ P2 	112  ri(p) N 	- fia5i ) R 327rp  + Tr0) 	tan 

Ti; 87rP (
—
P2 

+ I
) P 

 tan ; 
8
-

7P2 

[Dimensional regularization is used to avoid divergences.] 
Before proceeding, let us note the analytic structures in the above expressions, which 

are presented for Euclidean momenta, but for the gap equation have to be evaluated at the 
Minkowski value p2  = -p2  < O. Analytic continuation for the inverse tangent is provided by 

"
'tan 	

1 	+ 
x = 	 tan - 

 .x 	2 ‘/=.? 1- ‘,C-x2  

Evidently Illis;(p) possesses threshold singularities, at various values of -29 2 . 
There is a singularity at p 2  = -402  (from tan -1  -P--) arising because the graphs in the 

Figure containing massive propagators describe the exchange of.two massive gauge "parti-
cles". Moreover, there is singularity at p2  = (from tan -1  Z) and also, separately in Hrm 

- and IIN , at p2  = 0 (from the ± ±h terms). These are understood in the following way. 
Even though the propagators are massive, the non-local three-point function contains p4 
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-)7 contributions, which act like massless propagators. Thus the threshold at p2  = —p 2  
arises from the exchange of a massive line (propagator) together with a massless line (from 
the vertex). Similarly the threshold at p2  = 0 arises from the massless lines in the vertex 
(and also from massless ghost exchange). The expressions acquire an imaginary part when 

the largest threshold, p 2  = 0, is crossed: Km and lI N are complex for p2  < 0. 
In the corn plete answer, the p 2  = 0 thresholds cancel, and the singularity at the p 2  = 

—p 2  threshold is extinguished by the factor (L T  + 1) 2 . Consequently lIN becomes complex 
only for p2  < —p 2 , and is real, finite at p 2  —p2 . 

Np 
11 ■21 (1))1 	= (Su  — 	(211n 3 — 4) 

p2=-0 

From the gap equation in the last Figure, the result for the mass is 17  

= — (211n 3 — 4) 2.384 
327r 	 4ir 

[in units of the coupling constant q3)  (or g2 T), which has been scaled to unity]. 
Before accepting this plausible answer for p, it is desirable to assess higher order cor-

rections, for example two-loop contributions. Unfortunately, an estimate" indicates that 79 
graphs have to be evaluated, and the task is formidable. 

An alternative test for the reliability of the above approach and for assessing the 
stability of the result against corrections has been proposed.' 

It is suggested that the gap equation be derived with a gauge invariant completion 
different from Nair's. Rather than taking inspiration from hard thermal loops (which after 

all have no intrinsic relevance to the three-dimensional gauge theoryt ), the following formula 
for 1p  is taken 

1,,(A)= p 2  f  d3x tr 	Ft 

where D2  is the gauge covariant Laplacian. While ultimately there is no a priori way to 
select one gauge-invariant completion over another, we remark that expressions like the above 
appear in two-dimensional gauge theories (Polyakov gravity action, Schwinger model) and 
are responsible for mass generation. If two- and higher- loop effects are indeed ignorable, this 
alternative gauge invariant completion, which corresponds to an alternative resummation, 
should produce an answer close to the previously obtained one. 

With the alternative Im , the graphs are as before, where the propagator is still given by 
the previous expression. However, the three- and four- point vertices in /0 (A) are different. 
One now finds for the non-local three-point vertex 

ifabc ( 	
_iy 2 abc  

Pk v iik 	q, r) = —f (15ii q • r ehpo 	5 permutations 
3! 	 P

2 
q 

 2 

t Recall that the hot thermal loop generating functional is related to the Chern-Simons eikonal. Since 
the Chem-Sin-ions term is a three-dimensional structure, this fact may provide a basis for establishing the 
relevance of the hard thermal loop generating functional to three-dimensional Yang Mills theory. The point 
is under investigation by D. KaraDali and V. P. Nair. 
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p+q-Fr = 0 
and the non-local four-point vertex reads 

2 
— 11  a be cde 1  g 	Pm So 

ViV(p, q, r, s) = 	 f f 	2 (iik fimn elan — 
4! 	 p2  s2  

1  

- 2r2 ( 4 	 P 	 p 

1 	 Pm , 
— 	

Pm So i  
fiimEktm — 6 i mrif ken —T tP r - s)i + cimn eton  —2- 

s 
 kp - r - s);(p + q - s)k 

+ 23 permutations 

p-1-q-Fr-1-s= 0 
These vertices do not affect the first three graphs in the Figure so that Hrim  is as 

before. However, in the last three graphs the alternative non-local vertices produce the 
following result, with the help of dimensional regularization, 

(  p6 	
p4 	7p2 	27IL 	113 	2/4  

Iiii(p) = N(5i; - Pilli) ( 1\  1287p5 	327rp3 	647rp 	647r 	16 

	

+ 	+ 

	+ 

	- .7rp2  p 	2p 
tan-1 P  

/;2,2  + 1 2  
P 	

tan -1  Eli  
( 

	

- 3 27r6p 5  + 1 6P7r4p3 	1: + 7r2  p 31247r 

P
2 	

3/1 	
49/13 	115 

A check on this very lengthy calculation is that summing it with Yang-Mills contributions 
yields a transverse expression. 

ilij(P) = N(bij - /9;25i) (( 	

p6 	p4 	3p2 	i17 is 	 2/1 t 	P 

	

1287rps 	327rp3 	327rii + 647r - 16.7rp2 ) p an  2p 

(  P
6 	4 	

P2 	14 	 2  # tan -1  P  
k.327riz5 

+ 
167rp3 	167rp 

+ 
327r 	p2 

+ 1 

P
2 	p 	49p3 	ps 	P5 	P3 	5P) 

3---27rp 	 327rp4  128/14  32p2  64 

Another check on the powers of is that the above reduces to the Yang-Mills result at 

0. 18  
Just as Nair's expression, the present formula exhibits threshold singularities: at -p 2  = 

4p 2 , which are beyond our desired evaluation point -p 2  = p2 ; there are also threshold 
singularities at -p2  = p2 , which are extinguished by the factor ( -I- 1) 2 ; however, those at 

p2  = 0 do not cancel, in contrast to the previous case — indeed Hij(p) diverges, at p 2  = 0, 
and is complex for p2  < O. [It is interesting to remark that the last graph in the last 
Figure, involving the new four-point vertex, which vanishes in Nair's evaluation, here gives a 
transverse result with unextinguished threshold singularities at -p 2  = p2  and at p2  = O. The 

_) P
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327rp 	167r + 967rp2 	327rp4 	128p4 	321/ 2 	16 
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protective factor of ( -I- 1) 2  arises when the remaining two graphs are added to form 

and these also contain non-canceling p 2  = 0 threshold singularities, as does the Yang-Mills 
contribution.] 

Although Flii (p)1 	is finite, it is complex and the gap equation has no solution 

for real p 2 , owing to unprotected threshold singularities at p 2  = 0, which lead to a complex 
Il ii(p) for p2  < 0. 

p = 5Tir  (29 14- In 3 – 221) ± iN– 
13 
07-1 8  

1.769-4Nr  

It may be that the hot thermal loop-inspired completion for the mass term is uniquely 

privileged in avoiding complex values for –11. 2  < p2  < 0, but we see no reason for this.t 
Absent any argument for 1,he disappearance of the threshold at p 2  = 0, and reality in the 
region --/.12 < p2 < 0, we should expect that also the hot thermal loop-inspired calculation 

will exhibit such behavior beyond the 1-loop order.§ 
Thus until the status of threshold singularities is clarified, the self-consistent gap equa-

tion for a magnetic mass provides inconclusive evidence for magnetic mass generation. More-
over, if there exist gauge invariant completions for the mass term, other than the hard thermal 
loop-inspired one, that lead to real fl i;  at p2  = –p.2 , it is unlikely that they all would give 
the same p at one loop level, which is further reason why higher orders must be assessed. 

tWe note that Nair's hot thermal loop-inspired vertex wVijk a` is less singular than the alternative Virk`, 

when any of the momentum arguments vanish. Correspondingly fl; vj (p) is finite at p 2  = 0, in contrast 
to Ilii(p) which diverges at However, we do not recognize that this variety of singularities at p 2  = 0 

influences reality at p 2  = —p 2 ; indeed the individual graphs contributing to fl' are complex at that point, 
owing to non-divergent threshold singularities at p 2  = 0 that cancel in the sum. 

§V.P. Nair states that at the two loop level, there is evidence for ln(1 + 14) terms, but it is not known 

whether they acquire a protective factor of ( ,2)- + 1). 
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A brief non-technical review about the Standard Model Higgs boson and its discovery pos-
sibilities at future planned colliders is presented. Plenary talk presented at the Brazilian 
Meeting on Particles and Fields, Caxambu, October 1995. 

I Motivation (Why) 

The Standard Model (SM) [1] has been tested to an unprecedent degree of accuracy of 0.1% in some of the physical 

observables at LEP1, with many implications to physics beyond the SM [2]. However, we still, have very little 

information about the Higgs sector of the SM, which is responsible for the spontaneous breaking of the electroweak 

symmetry. 

The Higgs field (and the Higgs potential) is a necessary ingredient of the SM for three reasons : 

• It generates all the fermion masses ; 

• It generates masses for the electroweak gauge bosons WI and Z° ; 

• It ensures the renormalizability (i.e., the good high energy behaviour of the scattering amplitudes) of the SM 

model. 

Any alternative model to the Higgs sector as a mechanism for electroweak symmetry breaking must also include 

the above features (the renormalizability condition may refer to a more fundamental model that has the SM as its 

low energy limit). 

The Higgs sector of the SM predicts the existence of a "witness" to the process of symmetry breaking, the now 

famous Higgs boson. Finding the Higgs boson and studying its properties has become the foremost priority in 

particle physics. There is even a whole book dedicated to the problem of "hunting" for the Higgs boson [3]. I can't 

do justice to this vast, subject in an one-hour talk but try my best. For the interested reader, I recommend some 

recent detailed reviews that will be used throughout this talk [3, 4, 5, 6]. 

Besides the Higgs boson, there is another witness to the process of syrnmetry breaking, namely the longitudinal 

components of the electroweak gauge bosons. We'll see below that by studying the scattering of longitudinally 

polarized 147 * and Z° we can also obtain information on the symmetry breaking mechanism. 

The Higgs boson mass is a free parameter in the SM and in the next section we review some educated guesses 

about how heavy the Higgs boson can be. 

II Theoretical Prejudices About the Higgs Boson 

ni Perturbative Unitarity 

If one considers the s-wave projection of the scattering amplitude of tilt IVE 	ZLZL (the subscript L denotes the 

longitudinal component of the vector boson) in the SM one finds that it is independent of the c.m. energy (has a 

good high energy behaviour) and it is proportional to the square of the lliggs boson mass : 

ao ( WtWE Zad cx CFMH 
	

(1) 
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where GF is the Fermi constant and MH is the Higgs boson mass. Perturbative unitarity requires that for any 

partial wave J, Iaj(s) < 11 and this implies an upper limit on MH. A coupled channel analyses results in [7] : 

MH < 700 GeV 	 (2) 

If MI! > 700 GeV, higher order (loops) corrections to the scattering amplitude become important since we 

believe the theory to be unitary. This means that the theory is strongly coupled and we can't trust perturbation 

theory to compute scattering amplitudes (more on that later). 

11.2 Triviality 

In the SM, the Higgs boson mass is given by : 

MH = 2Av2 	 ( 3 ) 

where A is the unknown Higgs self-coupling and v is the vacuum expectation value of the Higgs field and is determined 

experimentally to be v = 246 GeV. 

The Higgs self-coupling A depends on the energy scale via the renormalization group equations. It turns out 

that the self-coupling grows with energy (it is not asymptotically free) and we can relate A at two energy scales v 

and A (> v) by : 

(4) 

What this means is that the theory does not make sense at these high energies. We are dealing with an effective 

theory, valid for energy scales E < A. 

The so-called triviality of the theory appears if we insist that the theory is well defined up to arbitrarily large 

energies, i.e. if we take A —> oo, which implies that theory is free (trivial), since A(v) 	0 from equation (5). 

Equation (9) combined with equation (3) results in an upper limit for the Higgs boson mass in terms of A [81 : 

8 1.2 v2 
m2 < 	 

H 	31n(A 2/v2 ) 

If we decide that the SM is valid all the way up to the Planck energy WI = 10 19  GeV, where one has to incorporate 

gravity in the SM, we find MH < 150 GeV. However, if we are more modest and decide that the Higgs mass itself 

may be the scale where new physics conies about we would have MH < 800 GeV. 

One could rightly argue that these arguments are based on perturbative calculations that are not valid when 

the Higgs self-coupling constant gets large. However, non-perturbative lattice calculations tend to agree with this 

naive eiltimation 191. 

Let's pause here for a brief digression that is somewhat beyond the scope of this talk, which is intended to 

concentrate mainly on the SM Higgs boson. We saw that the SM is an effective theory valid for energy scales 

E < A. We are now in a position to understand the two major contestants to superseed the SM, depending on 

what we choose for A : 

• A = Mpl MH = 0(100) GeV 
In this case one has to impose a tremendous amount of fine tuning in order to explain why MH/Mpt < 1 (the 

so-called naturalness problem ). This problem is solved if one invokes the idea of supersymmetry (SUSY), a global 

symmetry relating fermions and bosons. Therefore, a minimal supersymmetric extension of the SM (denoted MSSM 

in the literature) has become a favDrite candidate to be the new physics beyond the SM. It has received indirect 

experimental support from the unification of coupling constants that occur in SUSY extensions of grand unified 

A(v) 	A(A) 	47r2  

One finds that the self-coupling has an infinity (known as Landau pole) at an energy scale 

	

A = vesit.7 	 ( 5 ) 

1 	1 	3 in(A2/v2) 

(6) 
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theories (10]. In the MSSM model, the particle spectrum is doubled with the introduction of supersymmetric 

partners to all particles already present in the SM. If SUSY were an unbroken symmetry, the SUSY partners would 

have the same mass as the original particles. Since this is not observed, SUSY must be broken and the SUSY 

partners must have masses of O(ITeV) to avoid the naturalness problem to be reintroduced. The MSSM model 

also possesses an extended scalar sector, with five scalar bosons instead of the single Higgs boson of the SM and a 

firm prediciton of the model is that the lightest scalar must have a mass Ms < 150 GeV [11]. Hence, the MSSM 

has a very rich phenomenology around the TeV scale that will not he discussed here. 

• A = My Mil = 0( 1TeV) 

In this case the SM breaks down at around 1 TeV and the prototypical model that describes the new physics is 

called Technicolor model (TC), that contains new fermions (technifermions) interacting via a QCD-like interaction 

(technicolor). This new interaction becomes strong at the weak scale provoking the condensation of technifermions 

whereby the symmetry of the SM is dynamically broken. This class of models can easily generate masses for the 

electroweak gauge bosons but in order to generate masses for the fermions one has to extend the model by introducing 

a broken gauge interaction called Extended Technicolor (ETC). To date no realistic TC and ETC models have been 

constructed and the minimal ones run into problems with precision measurements at LEP1. However, the idea is 

appealling and must be kept alive. There are also common features of the various TC and ETC models that have 

interesting phenomenological consequences at future accelerators and should be investigated. [12]. 

11.3 (Meta)Stability 

The effective potential of the SM Higgs sector can develop a non-standard minimum for values of the Higgs field 

much larger than the weak scale, depending also on the Higgs boson and top quark masses (MH  and ru t ) [13]. By 

requiring that the SM vacuum is metastable, i.e. it doesn't decay to the non-standard vacuum one finds a lower 

limit to MH that depends on m, and on the energy scale A up to which the the effective potential remains valid. 

Assuming a common scale A and m, = 175 GeV, the upper limits from triviality and the lower limits from 

metastability are roughly : 

A = 10 19  GeV 	130 < M,, < 180 GeV 
	

(7) 

A = 10 TeV 	70 < MH < 700 GeV 

III Physical Properties of the SM Higgs Boson 

The Higgs boson couples to fermions via Yukawa couplings that are proportional to the fermion mass. Therefore, 

the Higgs boson decays preferentiably to the heaviest fermion such that the decay H If is kinematically allowed. 

It also couples to the electroweak gauge bosons 14 1 * and Z° arid once the W+14/ -  and Z°Z° channels open up they 

dominate the Higgs decay rate. There are also one loop induced couplings like H77, HyZ and Hgg, where g is the 

gluon field. Albeit small, these couplings are very important for Higgs boson production at hadron colliders (11 gg) 

and for a clean detection of a light Higgs boson (H77), as will be seen below. 

IV Where, How and When I : LEP1 

The electron-positron accelerator LEP1 at CERN has finished this year its long run with center-of-mass energy on 

the Z boson peak, collecting approximately 10 7  Z's in its four detectors. They were able to set limits on the Higgs 

boson mass MH in two different ways that we briefly describe below. 
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IV.1 Direct Searches 

They have searched for the decay Z 	Z*, with the subsequent decays H 	a and Z• 	qc7, El, sip, where Z' 

is an of  Z boson. The branching ratio for this decay decreases very fast for large MH, being of the order 

of 10-6  for MH'"= 70 GeV. With approximately 10 7  Z's they haven't found any events and consequently they are 

able to place lower limits on M. The combined 95% C.L. lower limit on Mg is 64.5 GeV [14]. 

IV.2 Indirect Searches 

Due to the large number of events accumulated, LEP1 experiments were able to perform very precise measurements 

of electroweak observables. These observables 0 are sensitive to MH and tn, via one loop effects : 

0  = 0(arem, GA, MZ, rnt, MH, ft') 	 (8) 

where er e ., Gp  and a, are the electromagnetic coupling constant, the muon decay constant and the strong coupling 

constant respectively. 

Just to give an idea of the sensitivity of these measurements, we recall that before the announcement of the 

top quark last year from the Tevatron with a mass of Mg = 181 ± 12 GeV (combined from CDF and DO), the 

precision measurements from LEPI. data.already had m t  = 176 ± 20 GeV. Unfortunately, the sensitivity to MH is 

only logarithmic instead of quadrmic as in the case of m t . Therefore, the limits are much poorer in the Higgs case. 

From a global fit to the electroweak precision data one has [15] : 

= 76+  117GeV 	MH < 700 GeV ED2cr 
	

( 9 ) 

V Where, How and When II : LEP2 

The LEP2 upgrade of LEP1 will begin operation this year, with a planned center-of-mass energy of I:5 = 175 GeV 

and luminosity r = 500 pb-1  for the first year. 

The four detectors will look for the Higgs boson produced primarily in the so-called Bjorken or Higgs-strahlung 

process : 

e+e- 	Z' 	HZ 	 (10) 

The various possible final state channels with different fermion-antifermion pairs were studied. In all cases tagging 

the b-quarks with microvertex detectors is crucial in order to reject background. 

The conclusion of several studies [5] is that a SM Iliggs boson with mass up to 82 GeV can be found in the first 

year of LEP2 operation. In the subsequent years the center-of-mass energy will be incresed and the 5a discovery 

limit for = 500 pb -1  is Mg = 95(103) GeV for Nil = 192(205) GeV. 

There is an interesting possibilly to increase the discovery limits for the Higgs boson if there exist anomalously 

large H77 and HZ7 couplings. In the SM these couplings are very small since they are generated only at the 

1-loop level. However, in an effective theory describing new physics beyond the SM, these couplings can be large 

and preliminary results show that a Higgs boson with mass up to 150 GeV could be found in the first year of LEP2 

operation j161. 

VI Where, How and When III : LHC 

The LIIC (Large Hadron Collider), a proton-proton accelerator with planned center-of-mass energy of Vi = 14 TeV 

, has been approved for construction in the LEP tunnel at CERN and will probably begin operation around the 

year 2004. There will be two main experiments named ATLAS and CMS that will look for the Higgs boson. 
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There are four mechanisms for producing the Higgs boson at the LHC : 

• gluon-gluon fusion ; 

• W+W --  and ZZ fusion; 

• tiri fusion ; 

• Associated WH, ZH and all production. 

Some of these processes have been computed at next-to-leading order in QCD [17] and at LHC energies the 

gluon-gluon fusion, in spite of being a 1-loop process, is the dominant mechanism. 

The strategy to be adopted in searching for the Higgs boson at the LHC depends on its mass. Usually, three 

mass regions are considered and we summarize the results taken from ATLAS [18] below. 

VIA Light Higgs, 80 < MN < 120 GeV 

This is the most difficult case, since the dominant Higgs decay , H 	bb, is swamped by QCD background. The 

strategy is to concentrate on the rare 1-loop induced decay H --• -y-y, with branching ratio of the order of 0.1%-0.2%. 

The low end of the mass range is the most challenging due to the small branching ratio and the large background. 

For a yearly luminosity of E = 100 fb -1 , the number of LHC years necessary for a 5a discovery at ATLAS for 

MH = 80(90)(100)(110)(120)(130)(150) GeV are respectively [18] 4.3(2.9)(1.3)(0.8)(0.6)(0.6)(1.1) years. 

The associated W H and tiH processes are also useful in this mass range. The significance of the combined 77, 

Wil and till processes can reach 6.4a in a third of a LHC year for Mh• = 80 GeV (18]. 

VI.2 Intermediate Higgs, 130 < MH < 180 GeV 

In this mass range the branching ratio for H 	ZZ .  can be as large as 8%, providing a clean signature for the 

Higgs boson. For a one year of LHC running at C = 100 fb-l year -1 , the significances of the Higgs signal for 

MH = 120(130)(150)(170)(180) are respectively [18] 2.4(8.5)(21.7)(6.5)(17.3)a, indicating that a Higgs boson in the 

intermediate mass range can be found in this channel. 

VI.3 Heavy Higgs, 180 < MN < 800 GeV 

In this mass range, the decay channel H 	ZZ is fully open, with a branching ratio of approximately 30%. The 

subsequent decays Z —• /41-  for both Z's provide a striking signature of four leptons (the so-called gold-plated 

mode) in the final state with a small background. Tha ATLAS collaboration claims detection of this mode up to a 

Higgs mass of 800 GeV for a one year of LHC running at E = 100 fb -l year - I [18]. 

VII What if the Higgs boson is not found ? 

It will be difficult to make the case for an elementary Higgs boson if it has a mass MH > 800 GeV. In particular, 

SUSY extensions of the SM would be discarded. The Higgs boson's width becomes very large , 250 GeV and 

one is reaching the triviality bound discussed previously, such that new physics should appear at around MH. How 

can one study the electroweak symmetry breaking sector in this case ? 

One of the signatures of electroweak symmetry breaking is the fact that the electroweak gauge vector bosons 

have masses, and hence they have a longitudinal component VL  = (Wi„ ZL). Therefore, the interactions among 

Ift's carry some information about the electroweak symmetry breaking sector. In particular; in the case of a very 

heavy Higgs, the VL's are strongly coupled and their interactions can be described by effective lagrangians [19], very 

much akin to pion physics. These effective lagrangians may contain scalar (Higgs-like) and/or vector (techni-rho 

-like) resonances. 

Because of the strong couplings, there is an enhancement in the cross section a(pp 	VLVLX) that can be 

measured at LHC. These measurements can be used to distinguish different models of strongly interacting Vi's [20]. 
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VIII Conclusions 

It is dear that the the Higgs hunting season is open. Our weapons are the combination of accelerators & detectors 

& ingenuity. 

LEP2 will be able to find a Higgr boson with mass up to 82 GeV in its first phase, maybe reaching up to 100 

CeV at later stages. The LHC will probably detect the Higgs boson in the mass range 80 < Mil < 800 GeV in 

the first decade of the next century. Detailed study of the Higgs boson properties will have to wait for the next 

generation of e+e -  colliders, like the NLC (Next Linear Collider). 

If the Higgs boson is not found al. the LHC, one should be able to see the consequences of a strongly interacting 

VLV E, system, indicating the existence of new dynamics. 

Therefore, we are bound to learn something interesting in the next 10 years 
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The computation of the BRS cohomology classes associated to the Wess-Zumino consistency 
condition in local field theories is presented within a zero curvature formalism. This approach 
relies on the existence of an operator 6 which decomposes the exterior space-time derivative 
as a BRS commutator. As explicit examples, the three dimensional Chern-Simons gauge 
model and the B-C string ghost system will be discussed in detail. 

I Introduction 

Nowadays it is an established fact that the search of the possible anomalies and of the counterterms 

which arise at the quantum level in local field theories can be done in a purely algebraic way (lj. 

Following the standard general BRS procedure, a local field theory is characterized by a set of 

fields (0) (gauge fields, ghosts, matter...), a set of anti-fields fcb") (the BRS sources needed to 

properly quantize systems with non-linear symmetries) and a set of transformations described by 

means of a nilpotent operator b whose action on the fields and on the anti-fields can be generically 

written as 
= Q(0, 0") , 

W = 	5  ,15. ) 
1,2 	0 

with Q,P local polynomials in (0,01. In addition, if 

S = d p z ,C(44 ,0') 	 (1.2) 

'Talk given at the XVI Encontro Nacional Ffsica de Particulas e Campos, C:AXAMBU, MG, Brazil, October 
1996 
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denotes the fully quantized classical action, we have the Slavnov-Taylor (or Master Equation) 

identity 

bS =0 , 	 (1.3) 

summarizing the symmetry content of the model, i.e. the invariance of S under the transformations 

(1.1). At the quantum level, the radiative corrections lead to an effective action 

I' = S + WO )  + 002)  + , 	 (1.4) 

which obeys the broken Slavnov-Taylor identity 

	

br = h"A + 0(h" 1-1 ) , 	n> 1 , 	 (1.5) 

where, according to the Quantum Action Principle, A is an integrated local polynomial in (0, 0*) 

and their derivatives whose ultraviolet dimensions are bounded by power counting requirements I. 

As it is well known, the breaking term A, due to the nilpotency of the operator b, obeys the 

Wess-Zumino consistency condition, i.e. 

bA 	. 	 (1.6) 

Supposing now that the most general soultion of (1.6) can be written as a b—variation of a local 

polynomial A, 

A = bA , 	 (1.7) 

then it is very easy to check t lat the redefined quantum action 

P = r — h"n■ , 	 (1.8) 

turns out to be symmetric up to the order h."+ r  , 

br = 0(h'41 ) . 	 (1.9) 

This equation tells us that. if the breaking A is a pure b—variation, then it is always possible to 

extend the invariance of the c assical action S at the quantum level by means of the introduction 

of appropriate local countertei rns. The procedure can be iterated by induction, allowing ourselves 

to prove that the Slavnov-Taylor identity (1.3) can be maintained at all orders of perturbation 

theory. Otherwise, if A cannot be written as a b—variation of a local polynomial, 

	

A" 0 bA , 	 (1.10) 

then the symmetry cannot be iestored and the theory displays an anomaly. In particular, equations 

(1.6), (1.10) show that the existence of an anomaly is related to a nonvanishing cohomology of the 

operator b in the space of integrated local polynomials. It is apparent then that the knowledge 

of the cohomology classes of b is of great importance in order to establish if a given model is 

anomalous or not. 

As a first step in the computation of the cohomology of b, let us translate the integrated 

consistency condition (1.6) at the nonintgrated level. Writing 

	

A = f c.a.rb , 	 (1.11) 

I We shall consider here only power counting renorrnalizahle models. 
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tab denoting a local polynomial in the fields of ghost number 1 and Form degree D, the integrated 

condition (I.6) is equivalent to 

biu lD  + 	= 0, 	 (1.12) 

d = droO p  being the exterior space-time derivative which together with the operator b satisfies the 

algebraic relations 

6 2  = d 2  = bd + db = 0 . 	 (1.13) 

For the sake of generality, equation (1.12) is usually referred to an arbitrary value G of the ghost 

number, i.e. 

/Ito?)  + do.fiG)+ 1 = 0 , 	 (1.14) 

the values G = 0,1 correspond respectively to invariant counterterms and anomalies. Acting now 

with the operator b on the equation (1.14) and making use of the algebraic relations (I.13), we get 

db41: 11  = 0 , 	 (1.15) 

which, from the algebraic Poincare Lemma [2], i.e. 

dAg_, = 0 	dA?)_, 	 (I.16) 

implies the new equation 
b  4+1 d wis+22  = 0  , 	 (1.17) 

with 4+_ 22  local polynomial of ghost number C + 2 and form degree D — 2. Iteration of this 

procedure yields a system of equations usually called descent equations (see [1] and refs. therein): 

CheIDG-1:1 = 0 t  

k“Gid. d uG+2 0 
""`"'D-1. -F 	D-2 - 

(1.18) 

b u,c+D-1 dw g+D = 0  

bc4+ 1)  = 0 , 

where the c..q +D-j( 0 < j < D) are local polynomials in the fields of ghost number (G+ D— j) and 

form degree j. The problem of solving the descent equations (1.18) is a problem of cohomology of 

b modulo d, the corresponding cohomology classes being given by solutions of (1.18) which are not 

of the type 

(1.19) 
G-FD 

- "1 0 

with Vs local polynomials. Notice also that at the nonintegrated level one looses the property of 

making integration by parts. This implies that the fields and their derivatives have to be considered 

as independent variables. 

Of course, the kriowledge of the most general nontrivial solution of the descent equations (1.18) 

immediately yields the integrated cohomology classes of the operator b. Indeed, once the full 

system (I.18) has been solved, integration on space-time of the equation (1.14) will give the general 

w C+D-Tril = c',G+D ■ Tn.-1 	.41;_%G+D - ` 171 

171 	 1 < 	< D , 
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solution of the consistency condition (I.6). The problem of finding the solutions of the equations 

(1.18) will be the main subject of this talk. 

It should be remarked that the last equation of the system (1.18) is a problem of local coho-

mology instead of a modulo d one. Actually the latter can be handled by means of several tools 

as, for instance, the spectral sequences technique. We shall therefore assume that the most general 

solution of the last of the equations (1.18) is known. 

For instance, in the case of the standard renormalizable Yang-Mills theory for which the MIS 

transformations of the gauge field A = A°Ta (Ta being the generators of the gauge group) and of 

the Faddeev-Popov ghost c = caTa are 

bA = 	- i[A c] , 	be = ice  , 	 (1.20) 

the cocycle c4,; + D  is given by polynomials in the ghost field c built up with invariant monomials 

of the type [3, 4, 5, 6, 7, 8] 

(1.21) 

II Solution of the Descent Equations 

We face now the problem of finding the solution of the full system of descent equations (1.18). 

To this purpose we introduce an operator 6 which decomposes the exterior derivative d as a BRS 

commutator [9], i.e. 

d 	- [b, 6] . 

Although not necessary, we shall also suppose for simplicity that 

[d, 	= 0 . 	 (I1.2) 

It is easily proven now that, once the decomposition (11.1) has been found, repeated applications 

of the operator 6 on the polynomial waG+ D  which solves the last of the equations (1.18) will give 

an explicit nontrivial solution for the higher cocycles 4 +1)- j 

G+D—j— 
	(.41 

G+D  •1 	0 j = I , , D 	 (11.3) 

This very simple and elegant formula displays the usefulness of the introduction of the operator 6 

whose existence turns out to be quite general. In fact the decomposition (11.1) is actually present 

in a large class of field theory models such as 

1. Yang-Mills type theories [9, 10] 

2. Gravity [11] 

3. Topological models (I3F models, Chern-Simons, Witten's type models, .. ) [12, 13, 14] 

4. String theory [15, 16] 

c G+D 

Tr 
(G D)! 	

(G D) odd . 
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5. Ws  - gravity [17) 

6. N = i four dimensional supersymmetric Yang-Mills theories in superspace [18). 

III The Zero-Curvature Condition 

Recently we have found 119) an interesting connection between the existence of the operator 6 and 

the possibility of encoding the full set of BRS transformations into a unique equation which takes 

the form of a generalized zero curvature condition 

= 	— ij2  = 0 , 	 (111.1) 

the operator d and the generalized gauge connection A being respectively the transformations 

under 6 of the BRS operator b and of the Faddeev-Popov ghost, i.e. 

e6  b e -6  , 	A = e 6  c 

In particular, in the case in which eq.(II.2) holds, we have 

b + d 

Notice that, as a consequence of eq.(111.1), the operator ,Iturns out to be nilpotent 

= 0 . (I11.4) 

The zero curvature condition (111.1) has a very simple interpretation and its origin is deeply 

related to the existence of the operator 6 entering the decomposition (11.1). Indeed, acting with 

the operator e 6  on the equation (1.20) expressing the BRS transformation of the Faddeev-Popov 

ghost we obtain 

es  be -6 e1  c = le °  C2 
	

dA = 1A 2 . 

This is not surprising since, as it is well known, the ghost field c identifies the so called Maurer-

Cartan form of the gauge group G and its BRS transformation is nothing but the corresponding 

Maurer-Cartan equation [201 which is in fact a zero curvature condi -,ion. 

Turning now to the cohomology of the operator d, it is apparent to see that the cohomology 

classes of d are obtained by 6—transforming the corresponding ccinomology classes of the BRS 

operator b. In other words, it is very easy to check that the generalized cocycles 

(111.6) Tr 
(2n + 1)! 

= e6Tr 
(2n + I)! 

identify cohomology classes of d. 

Introducing now the generalized cocycle 

E  
La G+D  = 	w • 

3 
j=0 
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the full system of descent equations (I.18) can be cast in the compact form 

(111.8) ric;G+D  = , 

from which one sees that Cr.P+ D  belongs to the cohomology of d. It follows then that LDG+D  is 

simply given by polynomials of the type (111.6), i.e. 

w—G+D = eb G+D 
c`1 0 	• 	

(111.9) 

This equation shows that the solution of the descent equations (1.18) are related to the cohomology 

of the operator d entering the zero curvature equation (111.1). Moreover, the cohomology of the 

operator d is given by 6—transforming the cohomology of the BItS operator b. It is clear thus 

that the existence of the operator 6 as well as the zero curvature .:ondition (111.1) give a complete 

and very elegant algebraic set up in order to deal with the solutions of the descent equations. Let 

us conclude by remarking that, although referred to a nonabelian type theory, the zero curvature 

condition can be generalized to gauge theories whose ghost content is different from the usual 

Yang-Mills Faddeev-Popov fields. An example of this will be provided later on by the so called 

B C string ghost system. 

IV Example I : D = 3 Chern-Simons Gauge Theories 

For a better understanding of the previous construction let us discuss in details the case of the 

three dimensional Chern-Simons theory, corresponding to G = 0 and D = 3. 

The relevant fields here are the one form gauge field and the zero form Faddeev-Popov ghost 

A = T°indrP 
c = Tic° , 

and the corresponding antifields, respectively a two form 7 (associated to the nonlinear transfor-

mation of A) and a three form r (associated to c) 

7 = —
1
Ta7a de A 	, 

2 	" 	 (IV.2) 

r = iT'ari,°„ pdxi' A de A 	. 

The invariant quantized action can be written as 

3  
S = 	(A F +

, 
— -yDc + irc2 ) , 

F being the two-form gauge field strength F = dA — iA 2  and Dc the covariant derivative 

Dc = dc — i[A, c] 

The action (1V.3) is invariant under the following set of transformations: 

b c 	ic2  , 

b A = —dc + i[c, A] , 

b-y = —F + i[c,7] , 

b r = —d7 + {c,r] + i[A,7] , 

b2 = 0 . 

(IV.3) 

(1V.4) 

(IV.5) 

(IV.1) 
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Introducing now the operator 6 [13] defined as 

be = A , 

6A = 27 , 

67 = 3r , 

Or = 0 , 

(IV.6) 

one easily checks that equations (II.1) and (II.2) are verified, i.e. b decomposes the exterior 
derivative d as a BRS commutator. For the generalized connection of eq. (111.2) we get 

.,I=e6 c=c+A+7+r. 	 (IV.7) 

Remark that the generalized connection A collects all the relevant fields, meaning that the external 
sources y and r are naturally included in the zero curvature formalism. 

The zero curvature condition 
ii;4` = iA2  

reads now 
(b + d)(c + A + + r) = i(c + A + + r) 2  , 

which is easily seen to reproduce the transformations (IV.5). 

As explained before, in order to find a solution of the descent equations 

buri3 _1  + (1411 = 0 , 	0 < j < 2 , 

b = 0 

it is sufficient to expand the generalized cocycle of total degree three 

453  = 1 Tr A . 
3! 

After an easy computation we get 

—Tr A = G.1 3°  + td 21  + 4 +tog , 
3! 

(IV.8) 

(IV.9) 

([V.10) 

( I V.11 ) 

(IV.12) 

with 
W 3 = 0 

1 
Tr c3  

3! 

2
Tr c2A 

1 
Tr (c2 7 + cA 2 ) 

 

 

2 
W1 = 

1 = 
(IV.13) 

From 

—Tr ( 
2 	

cur + citly 
A 3 )  

+c7A+ 

—iTr (c 2 r + cA7 + c-yA) = —Tr A F + bTr (cr + Ay) + dTrc7 , 	(IV.14) 

the three-form Lag can be rewritten as 

= 	
A 3 	i ° 	(AF+

. 
 —

3

) + —

2 

bTr (cr A7) +  3 ir (IV .15)  
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yielding thus the invariant action 

1 	 3 	1 

	

S = i jag = ilTr(AF i— 
A 	

2 
) –b ITr (cr Ay) , 

3  
(IV.16) 

which is easily recognized as the action of the fully quantized Chern-Simons gauge theory (IV.3). 

V Example II: the Bosonic String 

Let us discuss now, as the second example of the zero curvature construction, the so called B –C 

model whose action is given by 

Sn—c = dzcli BOC 	 (V.1) 

The fields B = B„ and C = C' are anticommuting and carry respectively ghost number –1 and 

+1. The action (V.1) is recognized to be the ghost part of the quantized bosonic string action. 

It is usually accompanied by its complex conjugate. However, the inclusion of the latter in the 

present framework does not require any additional difficulty. 

As it is well known, the action (V.1) is left invariant by the following nonlinear BRS transfor-

mations 
sC= CaC 

s = –(0B)C – 2 B C 
	 (V.2) 

Transformations (V.2) being nonlinear, one needs to introduce two external invariant sources p = 

p`, and L = L„ E  of ghost number respectively 0 and –2 

The complete action 

&it  = r dzcli(psB + LsC) . 

S = Sg—C Sext 

obeys thus the classical Slavnov-Taylor identity 

( 6S 45S SS 6S) 
dzcli 

 
k6B bp+ 	° 61,60 = =

2 bS, 

b denoting the nilpotent linearized operator 

SS 6 6S 6 LS 6 \ 
b = f dzdi (- 6S  6  

45B bp
+ 

 6/1•513
+ 

 61, 6C
+ 	

61, 

The operator 6 acts on the fields and on the external sources in the following way 

bC = sC 	ac 
bp=ac+ (0 p) C – p (0 	, 

and 

(V.5)  

(V.6)  

(V.7)  

bB=sB=–(0B)C-2BOC , 

bL=513–(2B)Op–pOB-F(OL)C-E2LOC 
(V-13) 
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Introducing now the two functional operators [15] 

	

6 	6 
W = dzdi 	, 	)7V-  = dzdi (pw, + L. 68 ) , 

one easily proves that 

15= dzW+diW 

obeys to 

d = —(b,o) , 	[d,6]= 0 , 

d being the exterior derivative d = dr8 + dib. We have thus realizei the decomposition (ILI). In 

order to derive the transformations (V.7), (V.8) from a zero curvature condition, we proceed as 

before and we define the generalized field 

a = e 6 	= 	+ dz + (hie; , 	 (V.12) 

so that introducing the holomorphic generalized vector field C = ( 8,, it is easily checked that 

equations (V.7) can be cast in the form of a zero curvature conditicn 

= [0, 	= Ca 	 (V.13) 

where, as usual, ciis the operator 

d =a° be -6  = b + d, 	 (V.14) 

and 	denotes the Lie derivative with respect to the vector field 2  

Concerning now the second set of transformations (V.8), we define a second generalized field 

as 

a, z  =edaz2 =B:a+dzL,, Y . 	 (V.15) 

To expression (V.15) one can naturally associate the generalized holomorphic quadratic differential 

/3= „ dz dz 	 (V.16) 

Therefore, transformations (V.8) can be rewritten as 

dee —rae=o. 	 (V.17) 

Let us consider now the problem of identifying the anomalies which affect the Slavnov-Taylor 

identity (V.5) at the quantum level. We look then at the solution of the descent equations 

dw? =0 , 

bw? + dwg = 0 , 	 (V.18) 

bwg = . 

As it has been proven in ret:s. [15, 21], the cohomology of the B11.5.: operator in the sector of the 

zero-forms with ghost number three contains, in the present Case, a unique element given by 

 

wg=caca2 c. (V.19) 

2  Of course, the bracket 10,61 in eq.(V.14) refers now to the Lie bracket of sector fields. 

 



co? = (CBC49 2 11— C a 2  C op- - "IOC& 	(W){a 2 	, 

w2 = (-- 8 C (9 2  p (9 02  C)dz A di . 
(V.22) 
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From the zero curvature condition (V.13), it follows then that the generalized cocycle of total 

degree three 

65 3  = eaeo26:, 	 (V.20) 

belongs to the cohomology of d. The expansion of t7.1 3  will give thus a solution of the ladder (V.18), 

i.e. 

with c4) 2  Lal given respectively by 

CA) = 4.1 0 	col 	cLi2 , (V.21) 

In particular, 	

J (.4 = 2 I dzdi Ca3/./ 	 (V.23) 

is recognized to be the well known two-dimensional diffeomorphism anomaly characterizing the 

central charge of the energy-momentum current algebra. 

Conclusion 

We have shown that the zero curvature formulation can be obtained as a consequence of the 

existence of the operator (5 realizing the decomposition (11.1). Th..s formalism enables us to encode 

into a unique equation all the relevant informations concerning the MIS cohomology classes. 
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The (-function technique is a useful device for regulating the functional determinant occurring in one-loop 

generating functionals [1-4]. It is possible to use the fundamental idea in this approach, that of regulating a 

functional logarithm through the equation 

	

In ft = lim 	— 
	

, 

	

s—o 	ds 
(1) 

in order to compute Green's functions in perturbation theory [5]. The fact that the initial Lagrangian is unaltered 

in this approach means that symmetries present in the initial Lagrangian arc not violated explicitly by the insertion 

of a regulating parameter (such as n, the dimension of space-time) into the initial action. This is particularly useful 

in supersymmetric models [6], non-linear sigma models with torsion [7], chiral theories [8] and gravitational theory 

[9]. No explicit divergences arise at any stage of a calculation when one employs operator regularization, eliminating 

the need for performing explicit renormalization; however one still can recover the renormalization group functions 

by examining the dependence of Green's functions on a mass scale parameter p 2  that arises [10]. An additional 

advantage of this approach is that one can circumvent having to perform the analogue of the loop-momentum 

integral by use of the quantum mechanical path integral [1.1]; this approach is also useful in thermal field theory 

[12]. 

To illustrate this technique, let us consider a 06 model whose action is 

	

s = j ex  {_ .1 5( 2 + m 2 )0  _ 03] 	= _0) 	 (2) 

Employing operator regularization is contingent upon splitting ci) into the sum of a classical background field (f) 

and a quantum field (h) so that 

	

= f + h 	 ( 3 ) 

To one- and two-loop order, the unregulated generating functional is given by 

	

ro )[/) —I In det ( P2 	+ 7n2 j‘ f 	 (4) 
2 	 1,2 

and 
1r  -1 	3  

r")[f)  = 1_2_A2P- 6 I d6  x d6  y [(z I 
(p2 

 + 	) 	I y) 	 (5) 

"Caxarnbu, M.G. October 26, 1995 
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respectively. (Here /2 2  is an arbitrary scale parameter that comes into play when considering the renormalization 

group equations.) 
We now regulate ro) in (4) using (1). If 11 = p2  m2  + A.1" , then 

r[i] = 1 
lim 	str(H /p 2 ) - ' 

2 3-0 ds 
	 (6) 

E ( 1 (0) 

where 

((s) = str(H/p 2 ) - ' 

p a, fo 

r( 8 ) 

(The supertrace, sir, in (6) must be used if H is a superoperator contz.ining both Bosonic and Fermionic sectors.) 
The divergence in the integral over I in (7) arising when s = 0 is the analogue of the usual ultraviolet divergence; 
it is cancelled by the explicit factor of ir(s) that occurs. 

It is possible to extract one-loop Green's functions from (7) by use of the Schwinger expansion (13] with Ho = 
p2 rn 2 H = Af t  

e-(no+H1)1 = e-Not 	du e-(1-0110i  (-t Hi)e - O HO' 
fo 

or, upon taking the trace of (8), 

{ sir e -(ii °+ /11) ' = sir e -11°` +(-tHi)e -11°' + -1  1 1  du e -(1- `' )H° t (-t H i ) e - " 11°'(-tH1)+ ... . 
2 0 

Green's functions correspond to particular terms in this expansion; explicit forms are determined by evaluating the 
functional trace in momentum space using the convention [13,5] 

( 21r)3 (P f I 	f(P — q) • 
	 (10) 

For example, the contribution to the (-function corresponding to the two-point function at one-loop order is 

A202., /co 
t 	

r(-0 2 	, 	d6P d46  e -(1-u)p 2 t 

	

4JJ (8) = P(s) 
	 f(p ,.., q) 0 	 0  au 	(2.06  

C ug  f(q — P)e
-1712I  

which, upon evaluating the integrals over t and q, gives 

Jo , A2  r(s - 1) 	d6p  
du {in r(8) 	(470, 0 	Ruo - u)p2 + m2)/p2] 

-[u(1 	ti)p2  m2 ]) 	 (12) 

At two- loop order, it is the inverse of operators that must be regulated, not their logarithm. This can be done 
in a way that is consistent with (1), 

= 
d
—
H

ln H= 
a
l;m —

ds
(811'1) , 	 (13) 

or, more generally, 

H -1  .. H -1  = lirn —dn
" 

(--sn  • 	P 	 HT I-1 	(n = 0 : 1 ,• • .) • 	 (14) +-0 ds 	n! - 

(8) 

(9) 
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Particular Green's functions can be considered by using the exponential representation used in (7), and then 

expanding the exponential in powers of the background field as in the one-.00p case using the Schwinger expansion 

of (8). In particular, the generating function 1'(2) in (5) when regulated becomes 

	

2 
m2 	\ 

0 2)  = 2 0-6 .1 drdy lim —d2  
,o ds2  2! 	0 r(s +

'
1)

(x ]exp ( I) 	m 	Af 	Y) 
12 	 P

2 
i=1 

(15)  

+ ("Parts from subdivergences"] ). 

(The "parts from subdivergences" in (15) are regulated forms of zero needed to ensure unitarity. Their form is 

constructed in analogy with the BPHZ procedure [10,7].) Expanding the exponential in powers of f in order to 

determine Green's functions is now a straightforward exercise. We use n = 2 in (14) in the regulated generating 

function of (15) in order to ensure finiteness as s approaches zero. 

Matrix elements of the form (x I e -11 ' I y) that arise in the regulated generating functional (e.g. (7) and (15)) 

can be written using the path integral provided H = 	- A) 2  + V [14] 

( 
(x C H ' y) = 113 	Dq(r)exp .1 dr 	

4227) 
 + i4(r) • A(q(r)) - V(q(r))] . 

q 

1(11=x 

 (0 )=y 	 a  

(113  - path ordering) 

By systematically using the standard result [15] 

Dq(r)exp jr dr [- 12-
2

-)  7(r) • q(r)] 
0  

= (211.1)-D12 exp 	(x —21y)2 

1 1 
 drdr'G(r, 

2 0  

(G(r, rt) 	r  _ .r / 

t  

J 
dr 	+ 	- r)] • 7(r) 

1 

717(r) 7(71 )/ 

1 	 1-7 1  
--2 (r+ 71+ -- ) 

(16)  

Green's functions can be evaluated without encountering loop-momentum integrals [11] This approach also has 

been used in [16-18] but with a different Green's function G. 

For example, let us consider how the contribution of the two-point function to the (-function in (7) can be 

computed from the path integral. We have 

((s) = 	

rcc 
dt 	f dx dy 45(x - y) [(x e -  Y(P24-At)i I y)] 	 (17) 

The matrix element in (17) can be written in terms of a path integral 

g(t)=x 	 r 	42( r ) 	A 

(x e - (P7+Ans  y) 	 Dq(r)exp 	dr 	- f(q(r))) 
L0)=11 	 2 	2 

which, to second order in f, becomes 

	

Ls)==

q(
(-  A/2)2 	dri 	dr2 ci C2 Dq(r) 

O)=y 	 (27) 6 	0 

 exp / dr {- ‘i2-(2 1 	(k i  5(r - 	+ k245(7 - r2)) • q(r)] 

provided f(q(ri )) is represented by a. plane wave field. Applying (16) to (19) we obtain when x = y 

(-.14/2)2 	 Ti 

(2r) 6 

dr, f  dr2 ele2 
 J0 0 

(18)  

(19)  

(20)  
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exp 
2 I 

PC 2G(Ti, 	+ 4G(r2,r2)+ 2ki • k2G(Ti.r2)] • 

The (-function consequently becomes 

	

2s J 

	[(—A/ 2) 2  EiC 2 
f f„— u(1—u)k 2 ] 

	

(if (8) = 	0  di t 1 +1  
(27)3  2 10  

yielding the same result as (12) but without ever encountering any loop-momentum integrals. 

Background Fermions and vectors can also be accommodated in this approach. For example, let us consider 

quantum electrodynamics in the presence of a background spinor field ri !  The classical and gauge fixing Lagrangians 

are 

-Co = 0(fi -  e — m)t,b 	— Aos)2 	 (22) 

1 
Go = - 2 (0 • A ) 2  

so that the term in the effective Lagrangian bilinear in the quantum fields is 

0 	- 	e(ii7OT 
	x 

	

E 2  = 2-1 (X 	Qp) 	fi ni 	0 	 (23) 

	

e(7p 11)T 	-/02 g 	Q. 

If Lid is the supermatrix in (23), then the one-loop generating functional is given by 

ir(o= In Met - 	 (24) 

which we will replace by 

iro) = In sder 	RI 	 (25) 

where Y is the field-independent supermatrix 

0 	fi + m 	0 

	

Y. = -
1 
	-(fi+ m)T 	0 	0 

0 	0 	—7pv  

that is chosen so that YIM is in the standard for i(p - A) 2  + V with 

0 0 -(6/2)7a7„ri 

	

AA = 	0 0 (e/2)(r)7„7A)T ( 
0 0 	0 

and, if m = 0 

	

V = (

0 	0 	(ici 2 )7A7• 11,a 

	

0 	0 	-(ie/2)M,A- ,,,TA T  ) . 
eirro, - e(7prI)T 	0 

In Minkowski space (with g p ,, = diag(÷ + + -)), the (-function is given by 

Os) = jij. I:3  dit(et)' -i  str(z I e - iii (P--  '1 )3  +v•Ii I y) 

with the matrix element in (29) to second order in the background fields given by 

I 	iiir -r, 	q( 1 )---c 	 i 	(T  
(z I C [ i (P -A)2 + v i e  I y) --.:. 	dn. 	dr2 	Dy(r) [exp i Jr dr62)] = 

o 	a 
	f 
	 o 	2 ' 

i [4(ri ) - A(q(7- 1 )) - V (q(r i ))] i [4(r2) • A(4(7-: )) - V (q(r3))] 

The background field in (30) can be taken to be a plane wave field, so that upon using (16) we find that 

I 

	

str(x I (HY Alf ' I 0 	
c2 t2 	

dx e -4k3r(1-r ) ti(-1 - 2z) fu. 
(27rit) 2  2 0  

(21) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 



f 	/3) 2  
exp t (n 

1  
(37) 
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Again, no loop-momentum integral is encountered at any stage. In general, computations with vector theories in 

this approach arc simplified by virtue of the fact that the vector field A :, enters only linearly in the Lagrangian 

occuring the path integral. 

The path integral can be modified to accommodate background field3 that are not necessarily local or plane 

waves [19,201. It. is also possible to treat situations in which there are different boundary conditions, in particular, 

the periodic boundary conditions that arise in thermal field theory [12). 

Let us consider the thermal field theory of a 03D  model. We are necessarily working in Euclidean space with 

cb(so,i) = 15(z o  + nfl, i) where ±n = 1, 2,3 ... and fi = 1/T. The same (-function as in (6) is encountered, so that 

we now must deal with 

M ;v) - - (x I e - "i (P 7 + A •f )t  1 y) = I Dq(r) 	- -1 f '  lir [4 2 (r)+ A f(q(r))1 
(-r 	

(32) 
2 0  per 

where "per" now means that q(0) = y, q(t) = x with invariance under q. )  — qo + nfi (viz we are doing the path 

integral on a cylinder). It has been shown [21) that 

eo 

M' —E e" -1- (x;Y) 	 (zon13,tl9) 
11= 

where 

bn  = 0 (Bosons) 	 (34) 

= nlr (Fermions), 

so that by (16) and (33), 

Dq(r) exp - f dr (011  + 7(r) q(r)) f 2  per 	 , 0 
(35) 

eibn 

	

( S O 	+ - Y0) 2  + - ) 2  1 f 
(27rt)D/2 

pyr, 	
2/ 

V."  	 dr 1((xo + ni3)7 + 	- 7 ))70( 7 ) 
4-d 	 D 

n=-0.0 

g  
+ 	+ fi(t 	r)) • 7 (T)] - 	drdr'G(r, ri)-,.(r) 7(.711 • 

lf, in (32), 	

VT/(27r) (D-1)/ 2 f(q(ri)) = exp 	w,-„q 0 (ri) -4- Ei Cri)). 
	

(36) 

= 
22n- Matsubara Frequency) 

then by (35), (32) becomes 

co jr , 
Tr MP = 	dri  • drN 

N-L 	 dx 	
CO 	ci6n 

(X;Y) 
=° 	 ((27) D 	1,1.3%  (2711) 1) 1 2  

	

N 	N 	N 
in,8 	 1 

-ix - E k ; - - — E k .1  . r. + 2  E G(ri , r,)ki - ki . t 	.to  

	

j=1 	1=1 	i,J=.1 

If D = 3, then systematic use of the Poisson resummation formula 

	

co 

 E A(m) = E
03 	

di; e 2 ' ii(p) 

op 

"". 
-Co— 

and of the representation 

171.=-■ •00 	 M=.- 03 

(38) 

ro 	 oo 

	

—le 	 co+ie 
f  27ri E f(n) 	 dA + 	

- 
m=—oo 	 Loo—ie 	foo-Vie 

(39) 
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(f - well behaved on Re) 

shows that the only Green's function with 16 dependence in the static limit kio = 0 is the two-point function [12], 

47r2 cif2 /I  do. 	1 	 1 

(271.0) 2  0 	ofro+000-e0 	lin 2  --i2 cr(1 - 170 .  

It is also convenient to employ the DeWitt expansion (22) 

03 
e -62 / 2' (x  cli(P-A) 2 +vle I 	= 	 
(2 11W/2 E a n (x°' 61)1n  

n=0 

(A a - y, X0 E (X y)/2) 

when discussing renormalization of a model, as the region t near zero controls the ultraviolet behaviour of a theory. 

At one-loop order, one needs only the diagonal elements a n (xo, 0), and - :here have been computed a number of ways 

[22]. Beyond one-loop order, the off diagonal elements are required. These have been examined using recursion 

formulae PA the Schwinger expansion [24] and the path integral (25]. 

Using Lhis approach, it has been possible to show that to two-loop order, the renormalization group functions 

vanish in both non-Abelian Chern Simons theory [26] and a renormalizr.ble model for Abelian gauge Bosons in three 

dimensions [27]. In this latter case, we have a classical action 

= [0" A„(3,A„ + p(A„ + ap c6) 2] + j+  g 41- m)tb 

which is gauge invariant under the transform 

	

A, — A„ + 0,A, rk 0- A, v.J) 	e -ig A TP. 

The fields and A t, decouple if we have the gauge fixing Lagrangian 

1 
Cal = 2au (°  A 

+ ap202 

leaving us with the propagator 

(A„A„) - 	 
1 	 11(1 - a) 

Opap 

	

02 _ ;42 f m ..aa  02 
- 

 p2 gO P  + (02 ._ p2 )(02 _ 	ap 2) 

demonstrating that this theory is renomalizable. 

The generating functional at two-loop order is 

_ ie z 
1(2)[A]. 	fclz dy(x l(-ic„„„p° + pg i,,)(p2  + 11 2 ) -1  y) 

Tr {711 (x I (to + g 4) 	+ gA) 2 	(c,,axFoo7a1 -1  V) 

7 1"(1/ I (fi + 4( ) [(P+ gA) 2  - 2cx6c,F7-i7cr] -I  I z) } 

 so that upon applying operator regularization as in (14), we need to consider 

Nx. v  = (x I e-il(P+sit)'-fe,..AF,,,,711.1 y) 

It is possible to show that the only contributions at s =0 to the divergences in the integrals over the proper time 

integrals in the regulated form of (46) come from a o  and a l  to A 2  and A respectively. It is possible to show that 
to this order [24] 

e iA 2 /41 	 92 
(Nyv = 	[ 	igA A - —(A A) 2) 

(47rit); 	 2  

(40)  

(41)  

(42)  

(43) 

(44)  

(45)  

(46)  

(47)  

(48) 
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+it (1 — igA • A) 1 2c oA „174, A A„)] . 

Explicit calculation shows that remarkably the contributions of these terms to the possible divergence at s = 0 all 

cancel, and hence in this model the renormalization group functions all are zero to two-loop order. 

The quantum mechanical path integral can be used to compute a r,(xo, A). In the path integral one writes 

q (r) = xo  + 6(r) 

and then makes the expansions 

A o (zo + b(r)) = E 	1 	
Mr) • D) N  b(r)1.),p (x0) 

NI(N + 2) 
gv=a 

(which follows from the gauge condition 6(r) A(xo + Or)) = 0 [28]) and 

	

°CI 	1 
V(xo b(r)) = E 17 (b(r) • D) N  V(:•7 0 ). 

N=o 

Simple power counting arguments can be used to show that ao (xo, A) is proportional to 1 while those contributions 

to al (c o , A) are of the form (A • D) k  V, (A . D) k (A'Di9 F,,p), and (A • D) k  (A'A/9 F„,),Ffi  a  )(k = 0,1,2 ...) while 

ak(x o , A) has thirteen separate possible contributions. Systematic applical.ion of (16) can be used to determine to 

coefficients of each of these terms. This technique can also be applied in curved space-time. 

We see that there is indeed a wide variety of problems in perturbative field theory to which the (-function and 

its generatlizations can be applied. 
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I Introduction 

One of the main motivations for field theoreticians to begin studying Quantum Field Theories (QFT) on a lattice 

was the fact that with the introduction of the lattice, one could probe, non-perturbatively, regions where the QCD 

coupling constant is greater than unity, that is, regions inacessible to perturbative expansions. But why specifically 

the lattice? In perturbation theory calculations, we know how to handle ultraviolet divergences that appear in QFT. 

This usually involves a redefinition of variable parameters like masses, coupling constants ... . A non-perturbative 

way of defining the theory and taming ultraviolet divergences is automatically achieved when one approximates 

the continuous space-time by a lattice, since it involves the introductior_ of a lattice parameter a, which is the 

smallest distance between any two lattice sites. There is, now, a maximum. momentum , A Pt,' a  for the lattice, and, 

as a consequence, the theory is now automatically ultraviolet finite without ever pre-supposing any perturbative 

expansion. 

II The Lattice Regularization of QFT-The Euclidean Method: 

Nearly all numerical simulations os QFT are based on the Euclidean Path Integral Formulation of those theories. 

Feynman's path integral formulation of Quantum Mechanics reveals a deep connection between classical mechanics 

and quantum Theory. Indeed, in an Imaginary time formulation, the Feynnian integral is mathematically equivalent 

to a partition function. Using this analogy, particle physicists have used a well known technique to study gauge 

theories. The formulation of field theories through Feynman's path integral is very similar to that of Quantum 

Mechanics. We can define the analogous in QFT of the partition function which is given by, 

ZE = 1 DO(x) exp (—SE(4)(x))) 	 (I) 

where SE is the Euclidean action defining the QFT. 

SE = I d N  X L(I(x)) 	 (2) 

We have made a Wick rotation, from Minkowski space to the Euclidean one, through the following transformations, 

t 1— —it 

iS(q5) 	—SE(0) 
	

( 3 ) 

in order to replace mathematically difficult-to-handle, oscillating, complex exponentials by well behaved falling 

exponentials, making it easier to distinguish important paths from unimportant ones. 
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When performing a numerical simulation, one has to deal with finite volumes, since infinite lattices would imply 

in infinite CPU time. In this way, when we approximate continous space-Lime for a discrete set of points and, we 

reduce the number of degrees of freedom from infinity to a large but finite number. 

In principle ;  the discretization procedure should preserve all the basic symmetries of the continuum theory. The 

problem is that this is not always possible. The only requirement one imposes on the lattice action - apart from 

gauge invariance in the case of lattice gauge theories- is that it yields tl,e correct continuum action in the so called 

continuum limit, a O. 

Following the same point of view, when we introduce finite temperature effects on the lattice we must simulate 

a lattice of infinite lenght on the spatial directions and of finite directions in the temporal direction, that is, 

Ng a> NT a 	 (4) 

why re Ns and NT are the number of sites in the spatial and temporal directions, respectively. 

As we cannot simulate lattices with infinite volumes, we consider rs zero temperature lattices as those which 

have the same number of lattice sites in all directions, that is, 

	

Ns a = NT a Ns = NT 
	

(5) 

If we work with a large number of sites :Vs and NT we can simulate the ;hermodynamical limit. On the other hand, 

the larger the asymmetry among the number of lattice sites, the higher the temperature, since NT a = r EY, 

It is worth to mention that the critical point in the formulation of t Lattice Field Theory is the discretization 

procedure. This procedure can lead to different actions on the lattice at will be seen below. 

When one discretizes the problem, the lattice Eucidean partition fu.iction version of eq. is given by, 

ZE = 	diO(n) exp {—Sp,(0(11))) 
	

(6) 

We can now identify our QFT as a Statistical Mechanics Problem where exp(—SE(0(n))) is the Boltzmann factor. 

Finite temperature QFT can be also be easily simulated on the lattice. In the continuum, to calculate a field 

theory at a finite temperature T, one simply takes the Euclidean Field Theory and makes it periodic in time with 

period = T = 

The fundamental quantities in Quantum field theories are the expciation values or Green Functions, 

< 56(xl) 56(x2) 	 >= 	E,0 0(.0 0(.2•... 0:ix_sE) = G(..,.2,..) 
	

( 7 ) 

HI Scalar Field Theories: 

Scalar field theories are the most simple examples of QFT on a lattice. The best example os such theories is the AO' 

theory on a lattice. Even though this theory is the simplest of interesting field theories, it has eluded a complete 

analytical understanding for quite sometime, and it provides an excellent laboratory for the study of more complete 

field theories. 

Scalar fields are easy to be studied on a lattice. In the discrete versic• of this theory, the scalar fields are defined 
at lattice sites, labelled by the number vector rt and field derivatives :.re substituted by finite differences, 

[42(rz + 	42( 71. )1 
at(r(x)) = 	 (8 ) a 

where a is the lattice spacing and 	is a unit vector in the direction i. 

The continuum action for a Ac6 4  theory in 4 dimensions is given by, 



where 4 
( 6  ( IVr  ) 	 3  ((n 61114 2  —4) ((En 61(1+11 )+ < S4  >`. ( 
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f 1 1 s = di x  
2 (00(x» 2  + 24 2 (x) 

which, when discretized, reduces to, 

--2+1 9(n) 	(9(n 
S = fie E 

(02 (n) 

where the first sum is over all lattice sites, p is an unitary vector, 

0 =  

is a dimensionless field and 

1 
= 

7.174 
+ 4— A04 M/ + T 

+ 0 (n — u)) + 4 02 (n) 
— 
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(9)  

(10) 

(11) 

(12)  

plays the role of a temperature in a statistical mechanics problem. We mus; pay attention to the fact that although 

we may do this kind of connection between A and the "temperature ", as long as we work with a square lattice we 

will be studying QM' at zero temperature. 

Adding an external current term JO. to the action, and defining the connected partition function in the usual 

way, 

Z(J) = exp (—WM) 	 (13) 

where W(J) is the connected Green function functional generator, we can ,:asily obtain expressions for the average 

of a functional of the fields in the presence of an external current, 

< A(0(n)) >r= 
f 130(n) exp( —13H ) 

such as magnetization 44, susceptibility x and the Binder-Challa-Landau ciimulant 

0(n)\ 	1 	ISW(J ) E l  
/3Na4  bJ 

n 

f DO(n) A(0(n)) exp(--PH ) 
(14)  

(15)  

64) 
X(.1 , 13) 	=bJ 

/3Na4 

	(E1) ) 2 	$2 1 j  
T1 	N  

(16) 

< S4  >,` 
= 1 	 

3 X 
(17) 

2  
n 

+ 124)2  (( 	
O() 

E 	 )) — 64)4  

Other very useful quantities are the internal energy density c and the specific heat C, 

1 	0 
c=(-17 	= — 	—{InZ(J)) No j 	No # 

2 

p2N.4{((Nh(n)) 	t2} 

(18)  

(19) 

(20)  
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IV Gauge Fields: 

When we have studied quantum fields on a lattice we have defined our operators at each point of the lattice and have 

replaced the derivatives by finite differences. However, we must modify this prescription because if we repeat the 

same procedure for gauge fields, we will verify that the resulting lattice action does not preserve gauge invariance, 

and as it was pointed out by Wilson, [1] exact gauge invariance may be .t crucial ingredient for quark confinement. 

So, in order to guarantee the preservation of gauge invariance we must replace, 

idx„ 	 exp[i e aA„(n)] 
	

(21) 

and redefine the gauge transformation on the lattice by[1] 

U4,(a) —t• G(o)11,,(a)G-1 (a + ti) 
	

(22) 

where a labels a point in space time, G rzexp (ix) and e is the dimensionless electric charge. f,/,,(n) is a link variable 

defined on a link, that is on a bond that links the site n to the site n v, where v is an unitary vector in any of 

the four lattice directions. 

The simplest example of a gauge invariant object that can be constructed with gauge fields U,(n) is the smallest 

closed Wilson Loop or a plaquette variable- a 1x1 loop. 

P,,,(n)= Re [U„(n)1.1,,(n 	 p)U;'(n)] 	 (23) 

and the Wilson action on the lattice is written in terms of this plaquette variable, 

SQED = /3E E 	 (24) 
n 

where fi = 1/e 2 . The above equation reduces to , 

SQED =- E fez FupFpoi 
	 (25) 

in the continuum limit a 	0. Ir the case of non-abelian gauge fields the action has the same form as that of 24 
except that now 13 = 6/g2  where g is the gauge coupling constant. The fields U,, are now matrices and a trace has 
to appear in 24. 

The observables to be measured must be gauge invariants , otherwise the expectation value will be equal to 0. 

V Lattice Fermions: 

Until now we have not verified the existence of any prpblems in the definition of gauge fields or scalar fields on the 

lattice. The free Euclidean ferrnion action in the continuum ( in 4 dimer.sions) is given by, 

S 	= ex 774(x) (yi % + rnl 1,14x) 
	

(26) 

If v follow the prescription used in the discretization of gauge and scalar fields, we will replace the derivatives by 

symmetric differences, 

0( 7 )70 ( .0(n + p) —1,14n — 	+ rn 	7,7(0,4 n ) 
	

(27) 
n,p 

This action suffers from the well known problem of doubling of fermionic species. This problem can be easily 

understood if we write down the propagator, 

G(p) = (i7 sin pp  a + mar l 	 (28) 



XVI Encontro Nacional de Fisica de Particulas e Campos 	 81 

If we consider the massless theory, we can observe that besides the pole r.t p = (0,0,0,0), there arc other fifteen 

unwanted poles at p = (r, 0,0,0), ... r,r,r). This is a model describing sixteen massless fermions instead of 

the expected one. 

It had been shown that [2] the individual contribution of these poles to thye triangle graph alternate in sign 

and add up to zero. One may ask if this unexpected property of the lattice Dirac equation is general in character 

or Light to this specific action. A no-go theorem by Nielsen and Ninomiy1 [3] tells us that if one do not sacrifice 

continuous chiral symmetry, it will end up with many fermions in the continuum limit (2 D ) . The only way of 

evading species doubling is by using a non local lattice derivative [4]. The problem with that approach is that those 

kind of theories have severe problems in the continuum limit. 

There are many ways of dealing with this kind of problem, and we will mention here two methods mostly used 

by physicists. 

V.1 Wilson Fermions: 

In this treatment one adds an irrelevant operator to the action in such a way that it has only one pole at p = 

(0,0,0,0) and, hence, describes one massless particle. Actually, the 15 unwanted fermionic species are still there, 

but as they arc given a large mass —n , they disappear from the theory as a 0. The irrelevant term is irrelevant 

in the sense that it vanishes — a in the continuum limit. 

The simplest version of this solution is due to Wilson ,and , in this case, a second order derivative-like term S W 

 is added to the naive fermion action, S );/, , 

sty 	Tb(n) {-4)(n + p) — 20(0 	/2)1 	 (29) 
n 

in which r is a parameter that lies between 0 and 1 even though usually r = I is more commonly used.. With 

Wilson fermions, it is conventional not to use the mass, but the hopping , parameter K = 2 (ma + 40 -1  and to 

rescale the fields ik VTITT/). In this way, the fermion action for the interacting theory is now given by, 

s = E ;)(n)0(n) 

— K E 1,4n)(r — ) m (n)11)(t, + p) + 0(n)(r + -y •,) U 11,0(n p)} 	 (30) 
rip 

What are the main advantages of this formulation? First of all, the Wilson formulation is very similar to the 

continuum formulation, since there is a four component spinor on every lattice site for every colour and/or flavour 

of quarks, and the 7 matrices also are present. 

Construction of currents and states are just like the continuum. The main disavantage is that chiral invariance 

of the action is lost at finite lattice spacing and is to be recovered in the continuum limit. 

V.2 Staggered fermions: 

This approach is due to Kogut and Susskind [5]. In this formulation the number of additional species is reduced 

by the distribution of each of the four components of the continuum spinor over different sites of the lattice. With 

this formulation, if one introduces different staggered fermion species on the lattice, the staggered fermion action 

will lead to rif = 4 f fermion species in the continuum. 

The staggered fermion action obtained after a diagonalization in the Dirac indices is given by, 

I 
•KS = E E yi ( n)M 	rn)xi(ra) 

i=1 nm 

(31) 
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where x,Y are anticommuting Grassman variables defined on the site of the lattice and the fermionic matrix 

Mi(n, m) is given by, 
3 

M '(n, 	= E DiA (n, rn) 	n, m) 	 (32) 
p=0 

where 

Dp(n, rn) = 2  rim (n) (U0  (n)6(n, m - p) - 11 ;:' (n)6(n,m 01 
	

(33) 

The phase factors 

17,,(n) := ( -1 )"+ “ ." -I 	 para 	> 0 	rlo(n) = I 
	

(34) 

are remnants of the 7 1, matrices. 

Staggered fermions preserve an explicit chiral symmetry as ni -4 even for finite lattice spacing, as long as all 4 

flavors are degenerate. For studies of chiral symmetry breaking and of deconfining transition at high temperatures it 

is convenient to work with such a lattice. Another advantage is that numerical simulations with staggered fermions 

are computationally less CPU demanding than those with Wilson fermions, since they involve less variables. On 

the other hand, flavor symmetr) and translational symmetry are all mixed together and the construction of meson 

and baryon states are much mote complicated than for Wilson fermions,. 

VI Simulation Methods: 

As Re have seen the relevant physical quantities can be extracted from expectation values like, 

f nd.r A(xi)exp {-5(zi)) 
< A >= 	l

in dzi exp {-.5(zi)} 
	 (35) 

On a finite lattice, this integral is a well defined multidimensional integral. Monte Carlo simulation is a numerical 

method to evaluate these kind of integrals. With the advent of powerful computers, this method became practical 

for investigations relevant to QFT. 

If we represent the integrals in the above equation by a sum over sufficiently many points, the multidimensional 

integral becomes a summation. Each term is represented by a set of field variables on the sites or links, called a 

lick configuration. The contribution of a given field configuration to < A > is given by, 

	

< A >=-. A ({th})exp (-5 Nip 	 (36) 

The number of configurations it so large (for continuous groups it is infinite) that is impossible to sum over all 

configurations exactly. This would not also be a wise procedure, anyway, since most of the configurations have a 

very small Boltzmann factor, making their contribution to the total sum negligible. The above equation suggests a 

sampling over configurations, where the probability that a configuration {lk} is included in this set is proportional 

to the Boltzmann weight factor exp (-S({0i})). This procedure is callei importance sampling. 

Let us assume that a sequence M of configurations is generated with the equilibrium.probability, 

	

Peg  ({,i}) c exp (-S  (0,/0)) 	 (37) 

then, the expectation value of < A > can be approximated by, 

1 
< A >=X = — EA({1,b„).) (38) 

v=1 

Configurations with the equilibrium distribution 130 ,7  can be generated by a Markov process, where the elements 

of the Markov chain are configurations. These configurations are generated subsequently, each configuration from 
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the previous one. The transitions probability of creating a configuration 10),„ from {O} L, in a step is given by 

W (a) 	v1), which must obey the following properties, 

a) w 	v') 
air 

h) Any finite action configuration should be reachable in a finite number of steps. 

c) A Detailed Balance condition must hold, 

	

Peq (u) W(/ 	or' ) = Poq (1. 1 ) W(/ 	a') 

There are many ways of constructing W(v 	vi) satisfying the above •:onditions. The method developed by 

Metropolis and collaborators 161 is the most commonly used. In this method, first, a new candidate value TY„ is 

selected with an arbitrary probability distribution Po  obeying, 

	

P.(0. 	;I;1,) = P0“3,, 	Viv) 
	

(39) 

Then, the change in the action AS caused by the replacement of 21,,, 	;7;„ is computed, where, 

AS = S(T,3,,) — 

	 (40) 

If AS < 0 the change is accepted and ;/),, = 0„,  is the next member of the Markov chain. If AS > 0 the change is 

accepted with a conditional probability exp(—AS). For that, a random number r E (0, 1) is chosen and the next 

element of the Markov chain is taken to be 7,3 if r < exp(—AS), otherwise it remains given by 0„. 

In general, the configurations are changed locally and the new configuration is nearly equal to the old one, 

except for the value of the field at a given site (or link), where tki 1//i . Only when one has updated all sites or 

links of a given lattice, one can say that a Monte Carlo step has been completed. Generally the number of Monte 

Carlo steps needed in a simulation is of the order of millions of steps. Usually, one has to wait until the system 

reaches equilibrium before starting to calculated the desired averages. ThiE• number N of steps required before the 

calculation of the mean values is called thermalization number and depends on the lattice volume, the model and 

the phase space parameters. 

Even after we have made a sweep through the system updating every variable, it may happen that the new con-

figuration is correlated to the previous one. This means that sucessive measurements of the interesting observables 

are correlated. This correlation can be described as, 

r(i) < 0(T)0(t r) > — < 0(T) > 2  
< 0(T) 2  > — < 0(T) > 2  

(41) 

For very large values of t , r(i) behaves like 

exp 
 (

t 
— — 	 (42) 

tc 

where tc is the autocorrelation time for the operator O. In principle, we sh.puld only perform measurements among 

non-correlated configurations. Close to a critical point, that is, when the continuum limit is approached and the 

correlation length diverges, the autocorrelation also diverges. Both quantities are related through a scaling law and 

a dynamical critical exponent Z. 

rc — 	 (43) 

The divergence of rc near the continuum limit is called critical slowing down. In the case of a standard Metropolis 

algorithm, Z = 2. In an ideal algorithm Z = O. Much research is now being done in order to improve methods to 

reduce the critical slowing down.For Ising systems and other models with global symmetry, it is known that cluster 

algorithms are able to give Z = 0 [7][8][9]. In the case of gauge theories th 3 situation is more complicated and one 

has to search for other algorithms. 
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V1.1 Fermion Simulations: 

When one deals with fermion fields life is much more complicated. Instead of ordinary numbers in the path integral 

we have anticommuting numbers or Grassmann variables. Thus, the action is not an ordinary number and we 

cannot use its exponential as a probability density. However, in many field theories, including QCD, the action is 

qu;idractic in the fermion fields. 

exp (—SF) f tdOdill exp{— 1 d 3.r dt 771)(7„00  — m)0} 'It. 

1 tdOdin exp — E7,1:, A4-1, oj  
id 

(44 ) 

	

where 	is the discrete interaction matrix on the lattice. If we integ:-ate out the 	fermion variables we will verify 

that the above integral is equal to det(M) times some unimportant no.malization factor. 

Let us consider a more general problem that includes both fermioni: and bosonic fields'and where fermions and 

bosons interact via the fermion matrix M , If we represent the real bosonic fields by ap, then the expectation values 

will have the form, 

	

< o( w ) 	[d7d;b1 [dv] O(o) exp (—s 2(0-- 	vimi; 	(cox') = 

f [th,0] O(ca) det (M(w))exp(—.i 2e,o)) 

	

yi  f [dso] O(w) exp { —S 2(0 + Tr In (M(so))) 	 (45) 

where Z is the theory partition function. If the fermion determinat is a positive real number, we can use 

del, (M(co))exp (—S 2) as a probability. 

In principle, there is nothing that forbids the evaluation of the fermion determinant in a Monte Carlo simulation, 

but an exact calculation of det (M(p)) involves N 3  operations (where N is the dimensionality of M (w) ,which is 

equal to the total number of lattice sites). As each Monte Carlo sweep involves the update of all lattice sites, this 

means that the total number of operations required by the fermion chterminant is equal to N * N 3  = N4  . For 

example if we have a Ittice with 32 4  sites, the number of operations required by the determinant, for each Monte 

Carlo sweep is given by,[32 4 ) r= 1208 x 10 24 . As a consequence, it turns out that Monte Carlo calculations are 

pratically forbidden in the case of fermions. This fact led to the use of the so called quenched approximation, in 

which the fermion detreminant is set to 1 . This approximation amounts to neglecting virtual fermion loops and 

treating fermions as static degrees of freedom. 

All fermions algorithms in use, which try to take into account the dynamical effects of fermions in the generation 

of field configurations make use of the following relation, 

d7dikdf,/, exp {—So(co) — ityM(4,o)0} = J dip exp (-50(co)) det (M(f,o)) = 

	

= dX exP { —S0(9) — J( T (M T  (951 ) 1  (V))) - I  X} 	 (46) 

where we have assumed that M is a real matrix and the x are real pseudofermionic fields, that is, bosonic fields 

that interact via the fermion matrix [10][11].11 the interaction matrix was complex, we would have to use complex 

pseudofermionic fields and one would have to pay the cost of simulating twice the number of fermion species. This 

ext,ra doubling can be eliminated in the case of Kogut-Susskind fermions by the use of the prescriptions suggested 

by Polonyi[12] . If we observe the above relation we will verify that we have traded the determinant for the inverse 

of the Dirac matrix, but as we now have pseudofermionic fields, in principle, we can use a standard Monte Carlo 

simulation. The problem now is that because the inverse of a spare matrix is not a sparse matrix, any local 
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updating scheme would be prohibitively CPU time consuming. On the other hand, if we try to do a global updating 

the acceptance rate would drop to zero very quickly. 

More recently, some algorithms based on the solution of differential equations were proposed. The Microcanonical 

method was first formulated to investigate scalar and gauge models by Callaway and Rahman [13] and was later 

modified to include ferions by Poloiiyi and Wyld [12]. In this method„ as in all other methods that will be mentioned 

below, an artificial time parameter (which can be thought as the computer time) is introduced. A Hamiltonian 

is built, the Hamiltonian equations of motion are integrated out and one obtains a deterministic evolution of the 

fields in the phase space at fixed energy. The Langevin method [14][151416] is very similar, in principle, to the 

microcanonical method, the difference being that a differential stochastic equation, the Langevin equation, is used 

to simulate the equilibrium configurations in the phase space. In the calm of those two methods, there are some 

drawbacks that should be mentioned. The probelms arises from the necessity of discretizing the equations of motion 

by the introduction of an artificial time parameter r in order to evaluate them in the computer. This means that 

we must work wth a finite value of r and, in the end, make a careful extrapolation of the results to the limit where 

r O. Besides this problem, the microcanonical method may suffer from ergodicity problems. If these problems are 

true, phase space is not swept uniformly and the results may be incorrect. The Langevin method, in the other hand, 

sweeps phase spcae randomly instead of following classical trajectories. As a consequence, the Langevin equation 

evolution in phase space is very slow and a great number of Langevin step:: is required to obtain the correct results. 

The Hybrid Monte Carlo Method [17] is by far one of the most used fermion algorithms nowadays. This method, 

was introduced with the idea that it. would be an efficient and exact way of .ntroducing dynamical fermions in Monte 

Carlo methods. Although this method has all the statistical errors associated to any Monte Carlo simulation, it 

does not contain non controllable systematical errors. 

The central idea behind the Hybrid Monte Carlo method is to combine the good qualities of both Microcanonical 

and Langevin methods, that is, ergodicity and fast progress through phase space together with those of a Monte 

Carlo simulation. 

One of the main advantages of the HMC method is that the fields are updated in a parallel way over all the 

lattice sites and later the new configuration generated is accepted or rejec ted globally. As there are no truncation 

errors coming from the discretization of the equiations of motion, one carL work with a diecrete time step as large 

as possible, the only limitation being the Monte Carlo acceptation rate, which shall be kept high if one wants the 

method to be efficient and fast. 

In the HMC algorithm an artificial time parameter r is introduced together with a Hamiltonian dynamics 

specifying the evolution of the scalar fields as a function of r. 

Let us consider the case of a fermion field coupled to a scalar field through an interaction matrix M(so) and let 

us add a quadratic termto the Kogut-Susskind action., 

tr. 
2 
_1 	

r 2 
+ SO(9)+ XT  ("T (W) A1 (0) X 

	 (97) 
n 

where x and xT  are pseudofermionic fields, So(so) is some action that governs the behavior of the scalar field so 

and the r fields are canonical momenta conjugate to the bosonic 92 fields are are located over the lattice sites. The 

above equiation can be thought as the Hamiltonian from which equiations of motion in a fictitious tune r can be 

derived. The equations of motion are given by, 

(IP = 	 (48) 

• .550 M  
7T= 

69 

xT  (M T  (9)M (40 )) -1 	(M T (W)M(40)} (M T  (9)M(A) -1  x 
	

(49) 
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and a new configuration (rp', x') is generated in the following way. supposing that an old configuration (so, x) 

already exists. 

I) A set of initial conjugate momenta r(r) are randomly generated, from a gaussian distribution of mean zer 

and dispersion 1, 

(50) 

x =MT  q (51) 

where ri is a vector whose elements are generated in a random way by means of a Gaussian distribution of mean 

zero and dispersion 1. Ergodicity of the process is assured in this way. 

4) Once the x fields are known, we build an auxiliar vector, 

= (mT comm ) x 
	

(52) 

by way of an specific solver ( Gauss Seidel, Conjugate Gradient ....) 

5) While the pseudofermionic fields are kept fixed , we perform the evolution of the and so fields using eqs 

4849 and the Leap Frog algorithm, which can be easily adopted to thi:; specific problem (17][18). 

6) After a complete (x, so) Molecular Dynamics evolution, the new configuration will be accepted or rejected by 

a Global Monte Carlo with a probability, 

PAC = PAC (( 71. 192 ) 	 (r ' , co)) = min (1, exp (—bin) 
	

(53) 

where 4511 = 	 H(ff,co) and H is given by eq 46. 

If the integration of the equations of motion could be carried out exactly, the acceptance probability for a 

configuration at the end of a trajectory would be unity. However, the necessity of discretizing the equations of 

motion numerically introduces integration errors which lead to small variations of energy conservation. The Hybrid 

Monte Carlo method compensates for these errors by performing the 1;lobal acceptation/rejection 

7) After each accept/reject Monte Carlo step we generate new values of the momenta according to eq 48 and 

new values of the pseudofermionic fields x according to eq. 49. 

It can be shown that the transition probability restricted only to the fields so obey the Detailed Balance Principle 

if die Dynamics is reversible. This can be achieved by letting evolve the fields and their conjugate momenta according 

to a Leapfrog discretization scheme. In this integration scheme, the pnase space volume is preserved for all values 

of Sr (satisfies the Liouville Theorem). The errors involved are 0(45r 3) and 0(6r 5) for the second and fourth order 

algorithms. 
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Introduction 

As it is usually presented in textbooks, the Standard Model of "fundamental interactions" is, mathematically 

speaking, a hideous construction. We can summarize its content thus: 

1 The interaction fields are gauge fields with a SU(3) c  x SU(2)L, x //(1)y symmetry. In other words, there are 

three systems of gauge bosons Avsu(3), Aro) , A tii,  (1) They cOntribu:e terms (F I F) := tr f Fp„Fliy d4x to the 

Action, where F is the gauge fvdd, which is obtained from the gauge pDtential by the recipe F = dA + A A A. 

2 The (fermionic) matter fields contribute terms f 01E42 = 10101,b2 + f 01402. 

3 Unfortunately, in order to give mass to the electroweak gauge bosons, there is the need to add a colorless scalar 

"matter" field, called the Higgs particle, with dynamics given by f 	D„¢ + V(111) where V(¢) 	—p 2 15 1 0 

A(c5 1'0) 2 . The "negative mass" pi is needed for symmetry breakdown to work. The introduction of the Higgs is 

justified on a technical basis: it preserves unitarily and renormalizability of the quantized theory and ... it works. 

It also gives mass to the fermions through the seemingly ad hoc and apparently non gauged ... 

4 ... Yukawa interaction terms, f 1,b1002. 

5 We summarize thus the several aesthetically unpleasant features of the SM: 

1. The Higgs sector is introduced by hand. 

2. The link between the parity violating and the symmetry breaking sector remains mysterious. 

3. There is no explanation for the observed number of fermionic ge.ierations. 

4. The choice of gauge groups and hypercharge assignments seems rather 'arbitrary, although it has the felicitous 

result that the model, despite being chiral, is anomaly-free. 

5. There is an apparent juxtaposition of gauged and non-gauged interaction sectors. 

6. There is no explanation for the huge span of fermionic masses. 

Noncommutative geometry goes a good bit of the way to solving Liege questions —except the last. 
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A new framework for thinking about the SM 

In noncommutative geometry (NGC) all the complexities and idiosyncrasies of the SM stem from a "pure QCD-like 

theory" with a unified noncommutative gauge boson A for the SU(3)c x SU(2)L x U(1)y symmetry. Thus the 

Lagrangian: 

£NCG = —4(IF I IF) +('I I D(A)11)) 

on a noncommutative space, to wit, the product of M4 by the space of the Internal degrees of freedom: colour, weak 

isospin and hypercharge. Here 

A = A(Asu(3), A su(2) ,  A tt(i) ,  0)  

That is to say, the Higgs is seen as a gauge boson (this helps to explain it:; quartic kinetic energy and its pointlike 

coupling to fermions). We still have IF = dA + A 2 , and therefore 

ii, (Fsu(3) ,  Fsu(2) ,  pu(i) ,  Do.  m i/ 2) .  

The spaces of noncommutative geometry 

The mathematical framework hinges on two related ideas: (1) geometrical properties of spaces of points (e.g., space-

time without chirality) are determined by their c-number functions; (2) other geometrical settings (e.g., spacetime 

with chirality) can be accommodated by allowing noncommutative algebras of q-number functions; both are thought 

of as algebras of operators on Hilbert spaces. 

Many structures arising in classical geometry are thus replaced by their quantum counterparts. For instances, 

measure spaces are replaced by von Neumann algebras, topological space` by C"-algebras, vector bundles by pro-

jective modules, Lie groups by smooth groupoids, de Rham homology by cyclic cohomology, and spin manifolds by 

spectral triples. 

Think of functions as forming an algebra A of multiplication operators on a Hilbert space H = 7-1+ El) 7-r . If I' 

is the sign operator ( = ±1 on Ht ), then b f = [I', f) is an "infinitesimal" operator. Differential calculus is done 

with a "spectral triple" consisting of the algebra A, the Hilbert space and an odd selfadjoint operator D on 7-1 

(e.g., the Dirac operator on the space of spinors L 2 (.5m)). Integration of functions is effected by the Dixmier trace 

of operators: if T has eigenvalues > 0, then 

I T = 	Pe(T)-1-  • • . 4.  P' (T) 	where 	f = /ID'''. 
n—ce 	 loge 

Other classical geometrical objects have their quantum counterparts. A complex variable becomes an operator 

in 'H, a real variable is a selfadjoint operator, and an infinitesimal is a compact operator. An infinitesimal of order 

k is seen to be a compact operator whose singular values p r, are 0(n - k) as n oo. The differential of real or 

complex variable is replaced by bf E [I', .1]= rf — /I"; and the integral of a first-order infinitesimal is given by the 

Dixmier trace. 

The spectral triple (A,'H, D) determines the geometry completely. For example, here is the formula for com-

puting distances between points (i.e., pure states of A) on a conventional Riemannian manifold: 

d(p,q) = sup( If(p)— f(q)I : f E A; II[D, 	I }, 

where D = 0 is the usual Dirac operator. Thus, we now have a fully quantum formalism for the classical world, 

and we notice that distances are better measured by neutrinos than by scalar particles! 

The reconstruction of the SM 

We need to have more details on the noncommutative differential calculus. One can embed A in the "universal 

differential algebra" cl•A = ED rb>0 fin A, generated by symbols ao da l ... da„ with a formal antiderivation d satisfying 
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d(oodai ... clan ) = dao dal 	dl = 0 and d2  = 0. Having a spectral triple allows us to condense this large 

algebra to a more useful one. We first represent the whole of 12'A on fie Hilbert space 7/ by taking: 

r(ao dal 	da„) := ao  [D, 	...[D,a„). 

The algebra of operators ir(11%.1) is not a differential algebra, in general. This problem is handled by a standard 

trick: the differential ideal of "junk' J := { c' dc" E : = arc" = 0 ) is factored out thereby obtaining a 

new graded differential algebra Df "noncommutative differential forms" by 

ntA := r(SVA)/r(J). 

The quotient algebra SPD C°"(A/;C) for the standard commutative spectral triple is an algebra of operators on 

L 2 (SM) isomorphic to the de Rham complex of differential forms. The Connes model is given by 

A := Ceo(M, Lt) CF = C c*  (M ,C) 1 C'(M, ERE) Ala(Cc° ( C)), 

:= L2 (SM) 0 PIP. IS 	D := (0 0 1; ®(1 0 DO. 

The Db- operator holds information about the Yukawa-Kobayashi-Ntlaskawa couplings. The mimimal coupling 

recipe leads then to the usual fermionic action plus the mass terms. The noncommutative gauge potential A and 

field IF, on the boson side, are selfadjoint elements respectively of: 

Q1DA 
	

e A°(A4,lifo ® A °(M, Ei() eft' (M,191) e m3(A 1 (iii,c)) 

fl 2DA 
	

A 2 (m,c) e e(m, e A °(M,1H1) ED A l (M,H) 

eAl(M, 	A 2 (M, IHE) e A/3 (A 2 pr, q), 

from which the Yang-Mills Action and thus the (classical) Lagrangian &-e obtained by a noncommutative procedure 

strictly parallel to the usual one. To avoid a U(3) x SU(2)x U(1) theory, however, an ingredient is missing. Following 

Connes we impose the "unimodularity condition" 

Str(A + JAJ) = 0, 

where the supertrace is taken with respect to particle-antiparticle spitting; here J is the conjugation operator 

that interchanges particles and antiparticles. One gets the reduction to the SM gauge group and the correct 

hypercharges; this happens now irrespectively of whether neutrinos are massive or not. We have recently shown 

that the unimodularity condition is strictly equivalent, within the NCG framework, to anomaly cancellation: a first 

exciting hint at a deeper relationship between quantum physics and NCG than was known before. 

Recapitulation 

The picture that emerges is that of a "doubling" of the space stemrr ing from chirality, with gauge bosons cor-

responding to the displacements in continuous directions and the Higgs boson correspOnding to the exchange of 

quanta in the discrete direction 

There are 18 free parameters in the SM (leaving aside the vacuum angle 0): the strong coupling constant a 3 ; 
the electroweak parameters a 2 , 3in 2  Ow , mw; the Higgs mass; the nine 1:or twelve, if neutrinos are massive) fermion 

masses; and four Kobayashi-Maskawa parameters. One has as inputs the fermionic constants only; one can treat a2 

as an adjustable parameter. When all computations are done, one obtains the constrained classical SM Lagrangian: 

	

= A A B,„ Buy - 4EF:„ Fr - 	 SA,45 DNS 

- L(110111 2 
 
+ 11 0 211 2 ) 2  + 2 1, (110 1 1 1 2  + 1102 112), 
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where B, F, G denote respectively the U(l), SU(2), SU(3) gauge fields and the coefficients A, E, C, S, L are given 

in function of four unknown parameters Cif, Ci c , Cqj Ccc , which play thc: role of coupling constants in NCG. 

The appearance of parameter restrictions is only natural, as all gauge fields now are part of a unique field. As 

only the ratios among those NCG parameters are important, there would remain only one 'prediction", i.e., the 

Higgs particle mass. We can be a little more explicit if we take the values which are more natural in the NCG 

framework: Cf .( = Cie, Cq  f = Cqc. Introduce the parameter x := (Cif - Gcf)/(Cif +CO), with range -1 < x < 1. 

The most natural value is x = 0.5. When one identifies the previous constrained Lagrangian to the usual SM 

Lagrangian, it yields: 

/ 3 1  x 
raW = Mtn/ NF 4 - 2x 

Then m top  > N/5mw . Similarly, gs = Ig2 ,/(4 - 2x)/(1 x). 

For the Weinberg angle, in the massive neutrino case, one gets sin 2  Ow := (12- 6x)/(32 - 8x). Then one obtains 

the constraint sin 2  Ow < 0.45. Finally, for the mass of the Higgs: 

3 1 - x 	 6m?y  
= Mtop 3 ivFriqop  mil = Mtopi1/4/41 

NF 2 - x 
- 

from which we get the relatively tight constraint V7/3 mtop < rrIti <— 	nitop  

Open problems 

One can accommodate the experimental values of the strong coupling constant and the Weinberg angle by choosing 

Cie >> Co . Thus, NCG offers no real predictions for the ratio of the coupling constants to the Weinberg angle. 

Though raw < m tc,p/VNT- is a suggestive constraint —it gives at once the right ballpark— there is no true 

prediction for the mass of the top quark, either. Rather, the experimentally determined top mass helps to fix the 

more important parameter of the theory, namely x. Once the top mass is pinned down, the model seems to fix the 

value of the Higgs mass. For instance, if tu tor, = 2.5 rnw 200 GeV, we get x = 0.53, and then mH = 328.3 GeV. 

Note that for x > 0.8, we are outside the perturbative regime in Quantum Field Theory. If there were a compelling 

reason to adopt Connes' relations on-shell, the theory would stand or fall by the value of the Higgs mass. 

On the other hand, unless and until someone comes out with a quantization procedure specific to NCG that does 

the trick, there seems to be no such compelling reason. It is only reasonable to apply the standard renormalization 

procedures of present-day QFT to Cannes' version of the SM Lagrangian. The constraints are not preserved under 

the renormalization flow, i.e., they do not correspond to a hidden symmetry of the SM. The view that any constraints 

can be imposed only in a fully renormalization group invariant way is, nevertheless, theoretically untenable. 

It is just conceivable that Nature has chosen for us a scale pa at which to impose Connes' restrictions. If we 

choose x = 0.5, the present experimental values for the strong interaction coupling and Weinberg angle are regained 

on imposing Connes' relations at the energy scale pc sr 5 x 108  GeV (in the massive case). This "intermediate 

unification scale" would mark the limit of validity of the present, phenomenological NCG model, essentially corre-

sponding to an ordinary, but disconnected, manifold; at higher energy scales, the regime of truly noncommutative 

geometries would begin. On imposing the mass relations at pc, and running the renormalization equations at one 

loop, we get. miop  = 215 GeV (within the error bars of the DO experiment ) and mH r._-: 235-240 GeV. The 1-loop 

approximation is not very accurate; inclusion of quantum corrections at 2nd order would give somewhat higher 

Higgs masses. 

There is also a direct relation between NCG and gravitation: the noncommutative integral f /3 -2  gives the 

Einstein-lililbert action of general relativity. However, there seems to be at present no unambiguous unification 

strand, within NCG, of gravitation and the subatomic forces. 
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Some sources 

The original groundbreaking paper was [1]. For the "old scheme" of NCG (as presented in the 1992-94 period), 

and the introduction of the "new scheme", see [2]. For the mathematics of NCG, see [2] and [3]. The parameter 

re:ations were derived in [4). Renorinalization of NCG models, and i he role of anomalies in NCG schemes, have 

been explored in [5]. A noncommutative geometry model with massive neutrinos was proposed in [6]. Links between 

gravitation and NCO have been studied in [7). For the philosophy of the whole thing, see [8]. 
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Nesse seminario apresentamos uma introducao ao paradoxo de perda de informacio devida a buracos negros 

corn a consequente quebra regra de evoluclo unititria da Mecinica Quant.ca, na qual estados originalmente puros 

sao convertidos em estados mistos (Radiaciio de Hawking). 

Baseando a discussio em argumentoS envolvendo a mecanica quantic t, teoria de informac45es e experimentos 

rnentais, analisamos as varias sugestoes para a resolucao do paradoxo existentes no mercado. Mostramos a irn-

possibilidade quantica de que a informacio absorvida pelo buraco negro seja copiada nos estados finals. Tambem 

pudemos excluir urn cenario envolvendo buracos negros remanescentes. Discutimos a opcao radical em que a 

Mecimica Quantica a modificada na presenca de campos gravitacionais para acomodar uma evolucao nao unitaria 

e vimos que implicaria em serios problemas coma a nil° conservacao de energia/momento. 

F'inalmente, concluimos que para a resolucao do paradoxo faz-se necessai io que efeitos quanticos da gravitacio en-

trem em asio ji no processo de formacao do horizonte de eventos do buraco negro, mesmo que esse seja macroscOpico. 

Referencias 

[1] S. Hawking, Phys. Rev. D14 (1976) 2460. 

[2] G. 't Hooft, IVucl. Phys. B335 (1990) 138. 

[3] C.G. Callan, S.B. Giddings, J.A. Harvey, A. Strominger,Phys. Rev. D•I5 (1992) R1005. 

[4] W. K. Wootters and W. H. Zurek, Nature 299 (1982) 802. 

[5] S. Coleman, J. Preskill and F. Wilczek, Nucl. Phys. B378 (1991) 175. 

[6] J. Preskill, "Do Black Holes Destroy Information?", Proceedings of the International Symposium on Black Holes, 

Membranes, Wormholes and Superstrings, Texas, January 1992. 

[7] T. Banks, A. Dabholkar, M. R. Douglas and M. O'Loughlin, Phys. Ret).D45 (1992) 3607. 

[8]Danielsson, U. H. and Schiffer, M. Phys. Rcv.D48 (1993) 4779. 

•e.mail: schiffereime.unicamp.br  



94 	 XVI Encontro Nacional de Fisica de Particulas e Campos 

Field theoretic approach for systems of 

composite hadrons* 

G. Krein 
Institute de Fisica Tedrica, Universidade Es.!adual Pautista 

Rua Pamplona, 145 - 01405 - 900 Sdo Paulo - SP, Brazil 

Received March, 1996 

Effective chiral Lagrangians involving constituent quarks, Goldstone bosons and long-

distance gluons are believed to be able to describe the (trong interactions in an inter-

mediate energy region between the confinement scale and the chiral symmetry breaking 

scale. Baryons and mesons in such a description are bound states of constituent quarks. 

In this talk we discuss the combined use of techniques of effective chiral field theory and 

of the field theoretic. method known as Fock-Tani representation to derive effective hadron 

interactions. The Fock-Tani method is based on a change representation by means of a uni-

tary transformation such that the composite hadrons are redescribed by elementary-particle 

field operators. Application of the unitary transformation on the microscopic quark-quark 

interaction derived from a chiral effective Lagrangian lead( to chiral effective interactions 

describing all possible processes involving hadrons and their constituents. The formalism 

is illustrated by deriving the one-pion-exchange potential between two nucleons from the 

quark-gluon effective chiral Lagrangian of Manohar and Georgi at tree level. 

1. Introduction. 

The quark-glucin description of the interactions among hadrons and the properties of high temperature and/or 

density hadronic matter is one of the most central problems of contemporary nuclear physics. Such problems 

are characterized by processes that involve the simultaneous presence of hadrons and their constituents. The 

mathematical description of the processes requires approximations where a drastic reduction of the degrees of 

freedom is unavoidable. In this sense, one would expect simplification:: by describing the hadrons participating in 

the processes in terms of macroscopic hadron field operators, instead of the microscopic constituent ones. At low 

en( rgies the hadron-hadron interaction can be described by an effective chiral field theory in which the quarks and 

gluons are "integrated out" in favor of hadrons and Goldtone bosons (1, 2). At higher energies it is very likely that 

the substructure of the hadrons will play a role and another effective field theory involving these degrees of freedom 

must be introduced. 

There is a widespread belief that there exists an intermediate energy region in which it makes sense to describe 

the strong interactions in terms of an effective field theory of constituent quarks subject to weak color forces that 

become strong only at large separations and keep the quarks confined. The u and d constituent quarks have a 

mass of m 300 MeV, which are believed to be the result of the spontaneous breakdown of the SU(2) SU(2) 

chiral symmetry. If this is so, the Golstone bosons of the spontaneous (.ymmetry breakdown (pions in the case of u 

and d quarks only) must be included among the degrees of freedom of the effective theory. The lowest order terms 

of the Lagrangian of such an effective field theory were written down by Manohar and Georgi [3]. Many of the 

successes of the simple nonrelativistic quark model can be understood in this framework with a chiral symmetry 

breaking scale AxsB 1 GeV, which is significantly larger than the confinement scale A con f. This scenario of weakly 

interacting constituent quarks has recently been shown [4] to provide a nice interpretation of lattice calculations. 

Also it has been shown recently that the Manohar and Georgi model can be derived from QCD models of the 

Nambu—Jona-Lasinio type and QCD effective action calculations [5]. 

'Talk at the XVI Particles and Fields, 24.28 October 1995, Caxambu-MG, Brwil 



G. Krein 	 95 

The description of the hadron-hadron interaction in such a theory beeomes complicated because hadrons are 

not the basic degre es of freedom of the theory; hadrons are composites and in general cannot be described by 

field operators of the sort, used to de scribe elementary particles. In this talk we discuss a method we believe 

can be very useful for treating composite hadron interactions at the quark-gluon level. The method is known as 

Fock-Tani representation and was invented independently by Girardeau [3],[7] and Vorob'ev and Khomkin [8] to 

deal with atomic systems where atoms and electrons are simultaneously present in the system and the internal 

degrees of freedom of atoms cannot validly be neglected. The method is based on a change representation by 

introducing fictitious elementary hadrons in close correspondence to the real hadrons. The change of representation 

is implemented by means of a unitary transformation such that the composite hadrons are redescribed by elementary-

particle field operators. In the new representation the microscopic interquark forces change, they become weaker, 

in the sense they cannot bind the quarks into hadrons, they describe only truly scattering processes. In the new 

representation, in addition to the modified interquark forces, one obtains effective interactions describing all possible 

processes between hadrons and their constituents. In the new representation all field operators representing quarks, 

antiquarks. gluons and hadrons satisfy canonical commutation relations and therefore the traditional methods of 

quantum field theory can be readily applied. 

The use of the hock-Tani representation for studying hadronic interactions at the quark-gluon level shares some 

similarities with the program outlined by Weinberg in the last section of his 1979 paper on effective Lagrangians [1]. 

Weinberg makes the suggestion of using the "quasiparticle" approach [10] for making perturbative calculations in 

QCD at low energies. The quasiparticle approach is a formalism developed by Weinberg in the 60's to deal with 

potentials that arc too strong to allow the use of perturbation theory. In the quasiparticle approach the bound 

states of the theory are redescribed by fictitious elementary particles and, in order not to change the physics of the 

problem, the original potential is modified in such a way that the new potential does not produce the elementary 

particles as bound states of the theory. With such a modification the potential becomes sufficiently weak that 

scattering amplitudes can be calculated perturbatively. Weinberg imagines the possibility of implementing a quasi-

particle approach to QCD. The program would start by weakening the forces of QCD with the introduction of an 

infrared cut-off. In order to preserve the physical content of the theory, the bound states (hadrons) are introduced 

as fictitious elementary particles which should be described by an effect.ve  chirally invariant Lagrangian. The 

parameters of the effective Lagrangian would have to be functions of the cut, off, defined by differential equations 

which guarantee the cut-off independence of the S-matrix, with the boundary condition that for higher enough 

energies one recovers pure QCD, where there is no cut-off. The program would work in practice if the solutions of 

the equations could he continued at low energies to cutoff values sufficiently small that perturbation theory could 

be employed. 

The use of the Fock-Tani representation in connection with an effective quark-gluon Lagrangian involves a two-

step process implementation of a similar program as Weinberg's one outlined above. In the first step the QCD forces 

are weakened by the introduction of an infrared cutoff A, which we choose to be A,,,„f < A < A xsB, and the QCD 

Lagrangian is replaced by an effective Lagragian, as for example the one of Manohar and Georgi. In the next step, 

fictitious elementary particles with the quantum numbers of hadrons are introduced and their effective interactions 

are derived from the microscopic effective quark-gluo ►  Lagrangian througl. the Fock-Tani unitary transformation. 

The parameters of the resulting effective hadronic interactions are functions of those of the quark-gluon Lagrangian. 

The program will be completed, in the sense of Weinberg's program, when the cutoff independence of the S-matrix 

elements is enforced. Of course, this is the most difficult part of the entire program and not much progress can be 

made without, a better understanding of the underlying mechanisms which govern the confinement and dynamical 

chiral symmetry breaking phenomena of QCD. While such an understanding is not reached, progress in the study of 

the hadronic interactions at the quark-gluon level can be made by fixing the parameters of the effective quark-gluon 

theory experimentally. 

Recently the original Fock-Taiii formalism was extended to hadronic physics for deriving effective meson and 
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baryon Hamiltonians in constituent quark models [9). here we discuss is application in the context of the effective 
chiral field theory of Manohar and Georgy. In the next section we explain the formalism using a simple example. 
Wi: consider mesons as bound states of a quark-antiquark pair and Ise a simple microscopic quak model. We 
derive the effective Hamiltonians describing the quark-antiquark, quark- and antiquark-meson, and meson-meson 
interactions. We discuss the properties of the effective Hamiltonians and make contact with the quasiparticle 
approach of Weinberg. In section 3 we consider baryons in the Georgi-Manohar model and derive an effective chiral 
Hamiltonian for baryons. One particularly important component present in the effective nucleon-nucleon interaction 
is the one-pion exchange intera:tion. In the last section we present conclusions and discuss future perspectives. 

2. Fock-Tani representation: real and ideal particles. 
In this section we use a simple example to explain the rock-Tani formalism. In the next section we use the 

formalism to derive effective Hamiltonians in the chiral quark model. We start specifying the model microscopic 
Hamiltonian in Pock space (Fr. We consider a Hamiltonian where quarks and antiquarks interact by two-body 
forces: 

H 	T (p)ql,q, T (v) 4,4; + Vqg (pv; 7p) iiI,Y,qpqa 	 (1) 

+ 
1

2 " 
V— (pm; a -  p)Itu t7,t,q p ri + Va. (vv; op) gip  qt,,C7p90 

where a summation over repeated indices is implied, and the quark and antiquark creation and annihilation operators 
obey standard anticommutation relations: 

	

{4 0, , ) = {gp,g t) = 6, , 	 fq„,qpi• = {4 N , IL) = 	0. 	 (2) 

The indices p, v, • • • represent s'atial, color, spin, and flavor quantum numbers of the quarks and antiquarks. 
We consider mesons as bound states of a quark-antiquark pair. In rock space the state of a meson composed 

by a quark-antiquark pair, la)) where a represents the meson quantum numbers (c.m. momentum, internal energy, 
spin and flavor), can be represented as: 

= M,110) (1)ri),V10), 	 (3) 

wliere 10) is the vacuum state, defined as q i,10) = L,10) = 0, Mcf, is the meson creation operator, and 	is the 
meson wave function. The meson wave-functions $'s are taken to be orthonormalized: 

(10,;,PY 	= 	. 	 (4) 

In free space, the equation of motion for the single meson state is given by: 

H (pv; p'v1) 
p , y ,

=  {6,,,[0,,i6„[„,][T (p) + T (v)] + V q ,i(ov; v')). 	= E[c ]4bro) , 	
( 5 ) 

where E„, is the total energy of the meson. Here we are using the convention that there is no sum over repeated 
indices inside square brackets. 

Using the quark anticommutation relations of Eq. (2), and the orthonormalization condition for the 4's, Eq. (4), 
one can show that the meson operators satisfy the following noncanonical commutation relations: 

[Ma, 	= 643 — Aco, 	f/14, Mid = 0, 	 (6) 

where 

	

6.0/3 — (1)r 	Vt4,47,„ + tit:” V; gig • 	 (7) 
In addition, one can easily show: 

[V. , MI ] — 	 [go, MI] = 	 [qv, M = [4v, M a] = 0 . 	(8) 
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One observes that the composite nature of the mesons is manifested by the term A n/3 in Eq. (6). Eq. (8) 
indicates that mesons and quarks are not independent degrees of freedom. The presence of these terms complicates 

the direct application of field theoretic techniques such as Wick's theorem and Feynman graphs for the Mt and Ma, 

operators, since these techniques are set up for canonical field operators. 

The change to the FT representation is implemented by means of a unitary transformation U, such that a single 

composite meson state la) = A410) is transformed into a single ideal-meson state la) = 410) U -1  la), where U 

is of the general form: 

U = exp(-212F), 	 F = > (74,0, — 	. 	 ( 9 ) 
a 

The nita, and ma  are the ideal-meson creation and annihilation operators and the Ota  and Oa  operators are functionals 

of the M. Ma  and Aap. By definition, the m's and O's satisfy canonical commutation relations: 

[ma, 	= [Oa , Otid = b ap, 	[ma„ ni/3] = [rn!, rnto ] = .0„, Op] = PLO ill= 0, 	 (10) 

and, by definition, the ant and rn commute with the quark and antiquark operators. 

The operator U acts on an enlarged Fock space I, which is the graded direct product of F and an ideal state 

space M, the space with the new degrees of freedom described by the ideal meson operators rrit a  and ma  . The 

vacuum state of M is denoted by IO)M and so, the vacuum state of z is 

10) = 1 0) x 10)m. 

In I the physical states, 10), constitute a subspace /0 isomorphic to 1-  and satisfy the constraint equation: 

	

ma  Irk) = 0. 	 (12) 

Now, the new degrees of freedom acquire physical content when the unitary operator U transforms the physical 

states lip) of /0 to states kb) = U -1 10). The image states l‘G) span the FT space r FT = U -1 /0, and satisfy the 

transformed constraint equation: 

	

u - lynauito = o.10) = 0 . 
	 (13) 

Although the physical content of the Fock spaces Y and 1 j' is the same, the mathematical representation of states 

and operators in .irr  involves only canonical field operators. A more detailed discussion of these and other formal 

aspects of the mapping procedure can be found in the original publications [7], [11]. 

The operators 01 and Oa  are constructed by an iterative procedure as a power series in the I's: 

ov, 	 (14) 
n 

where n identifies the power of 4? in the expansion. The expansion starts at zeroth order with: 

	

= Ma . 	 (15) 

The construction of the higher order terms 01" ) , 	> 1, involves addition of a series of counterterms such that 

commutation relations of Ot and 0 are satisfied order by order. Since at ;:eroth order one has: 

	

[0(°)  ,Ort) = b ap — A ap , 	 (16) 

and D aft is of second order [see Eq. (7)], one has that 

(17) 
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The next nonzero term is then of order n = 2. It is not difficult to slow that the second order counterterm that 
ha-3 to be added to OP to cancel the A no in [0 (2) ,0(0°)1 ] is equal to: 

2
-

1

A
a

pitfp. 

Then, up to n = 2, 
,, 	A  

Oa  = Da 	l-1 0/3 , 
2 

and one obtains 

[Oa, Ifi  = 1500 1[61071 MP] M1 	[Mal A709] 

= bap + 0(4,3 ). 

A third order counterterm has to be added such that the 0(4) 3) piece cincels, and so on to higher orders. However, 
for our purposes here one needs O a  up to n = 3 only: 

1 	1 
P 

	

O n  = Ma  + 2 
	2 

— — M' [Ap 	
7 

. 	 (21) 

The transformation of the Hamiltonian is made by transforming initially the quark and antiquark operators. 
Since the 0 operators are given by a power series, the transformed qt. ark operators are also obtained as a power 
series, which can be obtained -Oy expanding the exponential in Eq. (9) to the desired order or, equivalently, by 
means of the "equation of motion" technique [7]. Up to third order, one obtains: 

= qp, 4.(vo) = 	(41 = 	t Viv 
( ma a  Ma  ) p 	= oic:ivqtp.(mo ma) 

q(,2)  = 14):',"2'1 Uv,  (mtmp + MI Mp + 2M cimp) 

'42) 	1  4,•,,ii.,20PIY (m t m 	mt m 	2 m  p 	.13 	13 mt  13 l  iv 2  1 2 
(a) 	. pa [....0a po —t 	t = I (1)„, w p  R.P7 	(—m.mpm-r  — McImpa +r  rn,tmp 	+ M;1,114M-y ) 

+ Vet" ( (lc , 	0 + O P/3 1  '7  4 q t  0 ,4 p) (mp  2M/3)1 

TO)  = — 	[4,741"1  (—mtmorni  — Aictm l3 M -7  + mtm0M- T  M cti MpM7 ) 

+4)f,'v (dc' qL7t„,y,, + (1):" 1 4:11' d  qi,,q,t i qp)(mp — 2Mp)} . 	 (22) 

The transformation of the microscopic Hamiltonian is obtained by using the transformed quark operators 
of Eq. (22) in Eq. (2). This is done [7] by considering all possible combinations of the form T(p)e t  

V49(1 4 v;(7 12)4 (; )t  q (17 )t  q (pk) q (j ) , etc. where n,rn, k,/ = 1,2,3. One obtains that the general structure of the trans- 
formed Hamiltonian is: 

HFT = Hq  H,n  + H mg 
	 (2 3) 

where the subindices identify the operator content of each term. The quark Hamiltonian Hy has an identical 
structure to the one of the microscopic quark Hamiltonian of Eq. (2), except that the term corresponding to the 
quark-antiquark interaction is modified to: 

Vg(pv; op) 
	

Wil(PviaP) — A(tni; 	erP) — H(tivi cr'P')A (c  

A(pt,; isi)H(01; cr ip')A(cri ; ern] 4,4-,typ qa , 	 (24) 

where A (pv;0 1 1/) = (Dr 0.  v .  is the "bound state kernel". When (1) is an eigenstate of the microscopic Hamiltonian, 
Eq. (5), the quark-antiquark interaction is then modified to: 

110(Pv; GT) 	[Va(1-111 ;crP) — 	 41,34.7.1pqa, 	 (25) 

(18) 

(19) 

(20) 
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It is not difficult to show (see Appendix C of Ref. [7]) that this modified interaction does not produce the quark-

antiquark bound states . This feature leads to the same effect of curing the Found state divergences of the Born series 

as in IVeinberg's quasi-particle method [10] discussed in the Introduction: - ;he modified quark-antiquark interaction 

is unable to form, mesons, the mesons are redescribed by the H m  part of the effective Hamiltonian. 

H,mq  describes quark-meson processes as meson breakup into a quark. antiquark pair, meson-quark scattering, 

meson-meson total break up into two quark-antiquark pairs, etc. In models where quarks are truly confined, these 

terms contribute to free-space meson-meson processes as intermediate states only. However, in high temperature 

and/or density systems hadrons and quarks can coexist and the breakup and recombination processes can play 

important role. 

The term involving only ideal meson operators has a component that represents an effective meson-meson 

interaction. This meson-meson interaction is of the general form: 

H m  = Eo rnt,„m„ + 	f3; 7b) mt. m 1;3  I n 	, 	 (26) 

where the effective meson-meson potential V m,n  can be divided into a sum of direct, exchange, and infra-exchange 

parts: 

Vmm =Vmm +Vmm + VZ„ 	 (27) 

where: 

vmdinir (0;  ,y6) = 24,4;1.10 4) ;PY Vqi (p v  ; p i vl )4 r' le:0 + 40210 41,5,01,  vg  Cop; p l 1041'  P 

4>7,m° O p*Pv  1/( 	; ii')(137' (1);‘,°' 
	

(28) 

V:g (a 15; 76) = 21 [(1?:a"V  4)1°  Virri(pf.; ti l t/)<V6" 	+ 	+1' Va(pu; tii )(11"' (1).!;' 

4);3Pir Vqr2(ti v; 1111/)Voli P' (ley°  + VaPP (1)1 17  V001  

+ 207f7 (1)711,79 (pp; p1 )41 11"(1■ 12:c + 241)r° 	V.fi (c 	41°1 , 	 (29) 

V„,,„; (c 113; 76) 	— 21  141):,P' 4:1r H (pp; pi' ,./')(1)6" d r"' + 417,1" troP" H (my; p i  ')451,r 

4)„. "(1);" fl(pv; 	(1)7 + (1):r (I) )9"°  11(tiv,i..1 1 114)7 Cr"'l . 	 (30) 

The higher order terms in $ which arc neglected in the above expressions give rise to many-meson (higher 

than two-meson) forces, and also introduce orthogonality corrections. The orthogonality corrections have the effect, 

among others, of weakening the "infra-exchange" interactions [11], and appear in powers of the bound state kernel 

A (tiv; o- p). To lowest order in A, the orthogonality corrections exactly c;:ncel of Eq. (30). The cancellation 

of the intra-exchange terms to lowest order is the dominant effect of the crthogonalization terms and higher order 

corrections are small. 

3. Effective chiral Hamiltonian for baryons. 
Now we discuss the application of the FT formalism to the effective QCD field theory of Manohar and Georgi. 

The lowest order Lagrangian density is given by: 

r = 	+ y - rng  + g A $75) + 711  f,?trO''Et „E — 2trG„,,Gs" 	 (31) 

where the SU(3)navor vector 1/,,, and axial-vector A, fields are given by 

V, = 	((tm + ogt) , 	 (32) 

A,, = 2 i (stag._ om 0) , 	 (33) 



and 

Ko 
II  

2 
[

1 o 1 r+ 10-  757  + 7V1 

 K-  

(35) 
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where is given in terms of the Goldstone boson fields as 

= e i if 	 (34) 

The E field is simply 
E 	e2irif 	 (36) 

D is the covariant derivative involving the gluon field G M , 

= Op + igGp, 

Go, is the gluon field-strength tensor 

Goy  = 	0,,,Gp  + ig[G0 ,(3„], 

wi -,h the gluon field normalized as 

tr rTb  = 1 da b  
2 

where Ta, a = 1, • • • ,8 are the SU (3)coior.  generators. The four-quark Lagrangian is: 

£4-7 = 7(7x00)(7Prcto)- 

= — 
— 71 	74 

where ra, stands fOr 1, 75, 	-ri,75 and v i,„. mq  is the constituent quark mass matrix and f is the Goldstone boson 
de•:ay constant (f„ = 93 MeV). 

As discussed in the Introduction, since the effects of dynamical chiral symmetry breaking are included in the 
constituent quark mass the interquark forces become weaker in the effective theory. This allows to identify the 
low-lying hadrons with nonrelativistic bound states of the constituent quarks. The quarks are presumably bound 
by the confining QCD interactions, along with effects of multiquark and multigluon operators that appear in high 
orders of 1 / A conf in the effective Lagrangian. 

Calculations of matrix elements of strong and electroweak couplings of quarks are performed using perturbation 
tlwory or large N, expansion techniques, where N, is the number of colors. For the calculation of matrix elements 
involving hadrons, such as the calculation of baryon magnetic moment:: and the GA/Cy ratio in ft-decay, the usual 
nonrelativistic quak-model wave functions are used for the hadron bound states. The nonrelativistic wave functions 
are obtained by solving the SchrOdinger equation for three quarks (baryons) or a quark-antiquark pair (mesons) 
using a phenomenological confining interaction. 

The combined use of an effective chiral field theory of the type of Manohar and Georgi and the Fock-Tani 
representation for the study of hadronic interactions seems interesting and would proceed as follows. From the 
Lagrangian of the effective quark-gluon theory one derives an effective quark-quark interaction by means of the 
techniques of effective field theory up to a certain order in the chiral •:xpansion . Given the quark-quark interac-
tion one solves a Schrodinger-like equation for the bound-state hadrons. This would proceed in a similar way as 
the calculation of the deuteron properties from a nucleon-nucleon interaction derived from a nucleon-pion chiral 
Lagrangian [2]. Once one has the microscopic quark-quark potential and the hadron bound-states, one implements 
the Fock-Tani transformation to obtain effective hadron-hadron interactions. The loweSt order Lagrangian density 
of Eq. (31) would be appropriate for low enough scattering energies, and higher dimensional terms are introduced 
as higher scattering energies are considered. Of course, there remains the problem of the confining forces which are 

(37) 

(38) 

(39) 

(40) 
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difficult to access in such an approach. Perhaps the simplest assumption one can make is to invoke previous studies 

of the hadron-hadron interaction in nonrelativistic constituent quark models. The great majority of such studies 

have been performed using the Resonating Group Method (RGM) [12]. The microscopic quark-quark interaction 

is composed of one-gluon-exchange between the constituent quarks and a phenomenological two-body confining 

interaction of the form 

Vcon f E7T77V(ri — ri ), 	 (41) 
I>i 

where V(ri 	ri ) is a linear cm harmonic confining potential. More recently, 7r and a (chiral partner of the 7r) 

exchange between quarks have been considered (13]. Perhaps one of the most interesting results of these studies is 

that the confining interaction of the form of Eq. (41) contributes very little to the hadron-hadron interaction; in 

particular a harmonic confining interaction gives no contribution to the scattering. 

From this it seems that at the moment the simplest assumption one can make is to invoke previous RGM results 

and postulate that confining forces are not relevant for the hadron-hadrcn scattering. The situation can possibly 

be improved if the effects of the gluon degrees of freedom for the quark-quark interaction are treated in a lattice 

gauge theory formulation similarly to the nonrelativistic QCD (NRQCD) technique for the heavy quarks [14]. 

Let us consider just the pion-quark interaction piece of the Lagrangian of Eq. (31). The corresponding pion-quark 

Hamiltonian at tree level is the standard pseudovector coupling: 

1 
xx4 = gA1775taa.vra0, 

where l a  = 1/2 r°. This leads to an effective nonrelativistic quark-quark interaction of the form 

Vrq  = 	(gA 2 ,,(1) 	 i7(2).q 

f= 	1 	q2 	rn!. 	• 

The three-quark baryon states are of the form: 

Lit - 	P2P•3 a  t a t u t 	 (44) 
a 	vrai.  a 	lila -pgp.: 

where 1 is the baryon wave function. Given this and the quark-quark interaction, one obtains through the lowest-

order Fock-Tani transformation the following effective baryon Hamiltonian PI: 

Hb = Or "  H (pV; p)CIT A 	+ 	 btobto bbb.., , 	 (45) 

where Vbb is the effective two-baryon interaction, which we write as a sum of a direct and quark-exchange parts: 

vbb  = vbdo'r + vorc 	 (46) 

The direct term Ver, represented in Figure 1 below, is given by: 

Vbdblir  (Cr 57) = 9 149(111/; Cr raPP2P13.4)0.1,1,21,34)::i121,34,C6,02P3 
	

(47) 

When the baryons are nucleons and the microscopic quark-quark interaction' is the one of Eq. (43), the explicit 

form of this term is the familiar one-pion-exchange potential in momentum space: 

(42)  

(43)  

ir 	 25 
Vi•IN(q) = —9 81 

(1) 	(2) 
gA 

2 
 ..a2 ()1 T a(1) 1.-q q2) (TN 	.1:1F( q 2) ,  

fg 	
'N N 	k 	q2 + rni 

(48) 

where the Iv , a = 1, • • • ,3 and erN are respectively the nucleon isospin and spin Pauli matrices, and F(q 2 ) is the 

nucleon (matter) form factor. 
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Figure 1. Graph of Vbr. 

'The exchange term Vol ch  involves simultaneous exchange of pions between two quarks and the exchange of 
quarks between the baryons. The different contributions to Vr h  are represented in Figure 2. below and are given 
by 

Vbb(a 1;67) 9 V9 ,7 (pv; p) [4.7„"" 3 0 -,5"2 " (—(1);""c11" 1" — 44:11" 2 ° 3 4T'') 

+ 24);"° 3 47'""cbfr y2 "3 41 1°P' — 20:,'"" 2 '43 013"'"'41 ,..,""(1);"°1 . 	 (49) 

Because these terms involve quark exchange between the baryons, they arc of shorter range than the one of Var a'. 

Figure 2. Graph of the terms in Vbrch. 

The multidimensional integral over the quark coordinates in Virch camot in general be done explicitly. However, 
when the baryon wave functions are of a gaussian form, Volf`h  can be expressed •in terms of a single integral. For 
illustration we present the final expression of the first term in Eq. (49) (First graph of Figure 2.] for quarks in the 
s-state of nucleons: 

ues 	 = 
I S.t

ch 
 term  (PAP ,) 	 (cr, r) ( gt: ) 2  ( 	) 312  e - 62 1 5(P 2+P'2 )/ 12 -p-p'oi 

x 	d3 q  giqj  	e -o2 K1 2  -q.(P' -p)) , 
rn3 

(50) 

where Oij(cr,r) is given by: 

r) = { [25 + 3  11;(2) .rg,(1)  (1 + 184) 	+ (1 + 1942) 71,(1)) cr iVoi/j 2) } 	(51) 
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The other terms in Eq. (49) can be expressed in a similar form as Eq. :50). 

Work is in progress where the the four-point interactions and the one gluon-exchange at the tree level arc 

summed to the tree-level pion exchange just discussed. The aim is to calculate phase-shifts of the nucleon-nucleon 

scattering and compare with the traditional one-boson exchange models [15]. 

4. Conclusions and future perspectives 

The combined use of the techniques of effective chiral field theory and the Fock-Tani representation seems to 

provide great opportunities to study the role of quarks and gluons in hadronic interactions. The fact that in 

the Fuck-Tani representation all operators satisfy canonical (anti)commutation relations allows the direct use of 

the known field theoretic techniques such as Feynman diagrams and Green's functions which have proven to he 

very useful in the study' of processes involving elementary particles. Particularly interesting applications of these 

techniques are the study of short-range hadron-hadron interactions and tFe problem of hadron properties in a hot 

and/or dense medium. 
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We discuss leading charm production and the intrinsic charm model. Using a D meson cloud 
model we calculate the squared charm radius of the nucleon . The ratio between this squared 
radius and the ordinary baryon squared radius is identified with the probability of "seeing" 
the intrinsic charm component of the nucleon. Our estimate is compatible with those used 
to successfully describe the charm production phenomenology. The connection between 
leading charm and energy deposition in the central rapidit: ,  region is considered. Attention 
is given to the correlation between production in central and fragmentation regions. If the 
fraction of the reaction energy released in the central region increases the asymmetry in the 
xF distributions of charmed mesons will become smaller. We illustrate this quantitatively 
with simple calculations performed using the Interacting Gluon Model. 

1. Introduction 

In the early eighties there was a hope to understand charm production solely in terms of perturbative QCD. 

Inspite of all uncertainties in defining the scale, it would be in any use of the order of a few GeV and therefore 

the coupling constant would be smaller than one. As more and more data became available it became clear that 

perturbative QCD alone was not enough to properly account for the measured differential cross sections. Higher 

order corrections improved the results but did not solve the problems. The main difficulty was that the produced 

charmed particles were too fast. In other words, there was a remarkable excess of particles with large Feynman x 

( 2' F ). In adition a "leading particle" effect has been observed, i.e., charmed mesons carrying one of the valence 

quarks of the projectile are faster than those carrying no projectile valence quark. This is very hard to explain on 

the basis of parion fusion alone and is considered as an evidence of some non perturbative production mechanism. 

Several new experiments have reported [1] a significant difference between the xF dependence of leading and 

nonleading charmed mesons. It is still not possible to explain these data with the usual perturbative QCD [2] or with 

the string fragmentation model contained in PYTHIA [3] and some alternative mechanisms have been advanced. 

Already over ten years ago, the idea was advanced [4], that the hadroi wave function contains a charm component 

even before undergoing a collision. This component is originated in higher twist QCD interactions inside the hadron. 

The so called "intrinsic" charmed pairs produced by these interactions dire different from usual sea quark pairs. The 

crucial difference between them is that the intrinsic charm is part of the valence system and therefore very fast 

in contrast to the sea charm, which is slow. During the last years, an intrinsic charm' component was added to 

the perturbative QCD component in a quantitative and systematic way [5]. As a result, a very good description 

of data was achieved. In order to obtain such good agreement with experimental data the crucial point was the 

normalization of the intrinsic charm component, cri c  of the hadron + nt cleon c E X cross section. The quantity 

vi e  is related to the probability of observing the intrinsic charm component of the hadron, Pi, [6]. It is very difficult 

to calculate this quantity from first principles. It was estimated from .t phenomenological analysis to be less than 

1% [7]. In fact, Pi c  = 0.3% seems to be the best value to describe recent data on charm production [5]. 

A very important question is, of course, whether this 1% of intrinsic charm can be supported by any model based 
calculation. In ref. [8], such a calculation was done using the MIT bag model. It was found that the probability of 
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finding a five-quark component luncicE) configuration bound within the nucleon bag is of 1 or 2%, in good agreement 

with tie above mentioned phenomenological estimate. The first purpose cf this work is to calculate Pi c  using an 

approach, which is completely different and independent from that used in refs. [4, 5, 6, 7, 8] and can therefore be 

used as a cross-check to those estimates. 

The intrinsic charm model (1CM) can make predictions for asyrnmetiy and leading particle effect at higher 

energies. In the ICM another essential ingredient (apart from Pic ) for a good description of asymmetries is the 

recomEination mechanism which binds together the intrinsic (fast) charm quarks and the valence quarks of the 

projectile. Toghether with this fast component there is a slow one , which populates predominantly the central 

rapidity ( low xt- ) region and is given by perturbative QCD. The !CM is thus a two-component model where 

the central (parton fusion) and fragmentation regions (containing intrinaic -  charm) components are completely 

independent and added in a simple way. In particular, there is no energy !  conservation constraint imposed on 

both components, which would obviously result in some simple kinematical correlations between them. The second 

purposa of this work is to show that such kinematical correlations between central and non-central production is 

relevant for the study of the observed asymmetries in the production of charmed mesons and that it is also connected 

to another characteristic of high energy multiparticle production processes, namely to the inelasticity K of reaction. 

It defines the fraction of the initial energy f  which is released and deposited in the central region of reaction. 

In particular its energy ( Nrs) dependence will be important here. All models that adress charm production in the 

central region predict that there is no asyMmetry in this region. Asymmetry comes from the fragmentation (large 

rapidity y) region. Therefore, if K increases with energy there will be less energy available in the large y region 

and this will result in a softening of the leading xp distributions. Notice a at this is independent of all ingredients 

of the - hadronization process since they are universal and energy independent (like, for example, the fragmentation 

functions). The xF distributions of the leading charmed particles will thus eventually merge with the distribution 

of the centrally produced charmed particles, which will then become broader. The asymmetry will then not be 

observed! The opposite might also be true if K decreases with energy. In this case the leading system will carry 

proportionally more and more energy, implying a faster leading charm and resulting in stronger asymmetry [10]. 

The asymmetry problem can therefore be well formulated just in terms of kinematical considerations. All 

dynamics will show itself only in the way through which initial energy of projectiles will be distributed in rapidity 

space. For example, one would naively expect that, if perturbative QCD becomes more important at higher 

energies (due to, for example, increased minijet activity), the central prcduction (and also energy deposition in 

central region) will become dominant and the asymmetry will decrease or even disappear. This goes along with the 

expected increase with energy of inelasticity deduced from the analysis of accelerator and cosmic ray data [II]. 

2. The meson cloud and the charm form factor 

The existence of intrinsic charm is here associated with low momentum components of a virtual c-E pair in the 

nucleon. At low momentum scales, the virtual pair lives a sufficiently long time to permit the formation of charm 

hadrordc components of the nucleon wave function. It is this component that, when the nucleon is boosted, will 

move as fast as the valence quarks. 

Generally speaking, we can say that the proton is a fluctuating object, being sometimes a neutron plus a pion, 

sometimes a strange hyperon plus kaon and so on. It can be any combiriation•of virtual hadrons possessing the 

right quantum numbers. In particular, if charmed pairs pre-exist inside the nucleon, it can fluctuate into a charmed 

hyperca plus a D meson, as e.g., by the process 

(1) 

We calculate the intrinsic charm contribution to the matrix element (NlcIN) arising from this virtual D 

meson cloud. The idea that intrinsic quark contributions to nucleon matrix: elements can be given by meson clouds 
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is not new. It was used in refs.[12, 13, 14, 15] to estimate the intrinsic strangeness content of the nucleon and it 

was suggested in ref [4] as a picture to understand the existence of intrinsic charm in the nucleon. 

As in ref.[12], we compute the D meson loops using an effective meson-nucleon vertex characterized by a monopole 

form factor . 

F(k 2 ) = k2 	A2  , 	 (2) 
TT2 2 _ A2 

and we introduce "seagull" terms in order to satisfy the Ward-Takalialthi (WT) identity. In Eq.(2) ru is the meson 

mass and A is the effective cut-off. The inclusion of the meson-nucleon form-factors is important to properly take 

into account the underlying nucleon structure and its spatial extension.. As shown in ref.[14], when the sub-structure 

of the nucleon is considered, it is the size of the proton, rather than the masses involved in the loop, that determines 

the. effective momentum cut-off. We expect therefore the effective cut-cuff in the D meson-nucleon form factor to be 

approximately the same used in the pion-nucleon or kaon-nucleon form factors. 

The pseudoscalar meson-baryon coupling for extended hadrons is s.:hematically given by 

IBM = — igliBM 4175* F( — O 2  )0 
	

(3) 

where 41 and 40 are baryon and meson fields respectively, F(k 2 ) is the form factor at the meson-baryon vertices and 

k is the momentum of the meson. The fact that the nucleon-D-A, coupling constant is not known is not important 

here because we are mostly interested in arriving at some upper limit to the intrinsic charm content of the nucleon 

and riot at. definitive numerical predictions. Accordingly we will use the pion-nucleon coupling constant as an upper 

limit to the nucleon-D-A, coupling constant. 

We employ pointlike couplings between the current and the intermediate meson and baryon. For the vector 

current one has 

0,011E7pc lAc(P ) ) = U(11 )7p 1 r(P) 
	

(4) 

and 

(D(P1 )1E7pc1D(v)) = —(P 	 ( 5 ) 

in a convention where the c-quark has charm charge=+1. 

The effective lagrangian Eq.(3) is non-local and this induces an electromagnetic vertex current if the photon is 

present. In order to maintain gauge invariance we have to take into account the "seagull vertex" 

F(k2)— 	
k 	 

F((q k) 2 )  
ilsP(k, q) =  givit et7r 5(q 	2k) 1, 	 (6) (q 	k)2 	2 

which is generated via minimal substitution [16]. The upper and lower signs in Eq.(6) correspond to an incoming 

or outgoing meson respectively. 

The three distinct contributions to the intrinsic form factors, associated with processes in which the current 

couples to the baryon line (B) (figure la), to the meson line (M) (fi@,ure lb) or to the meson-baryon vertex (V) 

(figure lc and Id) in the loop are given by 

4  (p`, p) = 	1 (271-7d  r„B k)4 A(k 2 )F'Qc1755(pi  — k)7 p S(p — k)7 5 F(k 2 ) , 

d4 k 
,p) = ig2 	0--717A((k + q) 2 )(2k + q),,A(k 2 )F((k + 02 )75.5(p k)75F(k 2) , 

(p',P) = 

	

[ 	 q(q +2k), 	, 2  

	

ig 2sAF  I T27---w F(k 2 )A(k 2 ) 	k2 , (k ) — F((k + 0 2 )) x 

 

 

— 
"isS(P — A7)75 	(q

(q 
 — k 

 2k). 
 — k2 (P(k 2 )— F{(k — 	 75S(P` — k)751 (9) 

(7) 

(8) 
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Figure 1 

Figure I. Diagrams which contribute to the calculation of the vertex function. Folid external lines represent the proton and 
solid internal lines represent the A,. Dashed and wavy lines represent. the D and the vector current respectively. 

In the above equations 

	

(k 2 ) =  	 (10) k2 ,n2 + i f  

is the meson propagator and 	

S(p 	
1 

k) = 	 (11) m A  + if   

is the A, propagator and p` = p q with q being the photon momentum. In figure 1 we show all momentum 

definit ions. 

W.th these amplitudes it is easy to show that the Ward-Takahashi identity 

	

( 1',111  (Pi , P) + rip°  (T1 , p) + 	p)) = Q.(1,- (;)) — E(p')) , 
	 (12) 

is sati:;fied. In Eq.(l2) Q, is the nucleon charm charge, Q c  = 0, and E(p) the self-energy of the nucleon related to 

the D A, loop. The sum of the three amplitudes also ensures the charge non-renormalization (or the Ward Identity) 

	

(rpa + rpm + 	= Q (— 	1:(p)) = 0  - 
	 (13) 

The intrinsic charm form factors are obtained by writing these amplitudes i ti terms of the Dirac and Pauli form 

factor:; 
p)  = "2)  ± 	Fic (q 2 )  

The intrinsic squared charm radius of the nucleon is defined as 

re2  = 6 8G`k, (q 2 ) 
a„1 2 	1 92.0  

(14)  

(15)  
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where GE(q 2 ) is the electric form factor introduced by Sachs [17] 

q 2 	c 6102 ) = Ff(q 2 

4M2 
)+ 	 F2 (q ) . (16) 

The numerical results for lilt are shown in figure 2, as a function or the form factor cut-off A. The value of the 

coupling and masses used are MN = 939 MeV, MA ‘  = 2285 MeV, rnr  = 1865 MeV and g i,,tA u/NATrr = 9N/iv/NA; = 

—3.795 

Square Radius 

0.20 

rtI- 

0.10 

0.00 
00 	2.0 	4.0 	8.0 

A (CcV) 

Figure 2 
The intrinsic charm mean square radius of the nucleon as a function of the cut-off A in the baryon-meson form factor. 

As it can be seen the results depend very strongly on the value of A. The region of very small values of A does 

not give realistic results for ir,2 1 because it corresponds to a very large proton size. The region with values of A 

around the meson mass is also not reliable because it gives results which are just an artifact of the parametrization 

of the form factor. The asymptotic region of large A is interesting because it provides results which are weakly 
dependent on the cut-off. 

3. The intrinsic charm probability 

The probability Pie  which is relevant for the calculations done in [9] is the square of the coefficient of the 
corresponding Fock state. Since we have no access to this quantity we shall estimate it in a geometrical way. In 

terms of the wave function, we shall make use of its shape instead of its (unknown) normalization. 
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The intensity of a given proton fluctuation may be associated with its average squared radius Ir 2 1. The larger is 

1r2 1, the more frequently we will find the proton in that particular fluctuation and the larger will be the probability 

of "seeing " it. 

We shall assume that the average barionic radius of the proton (r p  = l< 713  >1 4 ,— 0.72fm) associated with 

the isoscalar part of the electromagnetic current is a good measure of the proton "total size", i.e., the size which 

takes into account all possible fluctuations that couple to isoscalar currents. The intrinsic charm probability is then 

given by 

ir 2 i Pic  = 	= 0.9% 	 (17) 

where 1,11 = 0.0047fm 2  is the average charm squared radius calculated above with a cut-off A = 1.2 GeV. Pic  is 

the ratio between the charm "area" and the total proton "area". 

We want to compare our results with those obtained by Donoghue and Golowich in ref. [8] for the five quark 

components of the proton wave function, luuds3 > and luudqq >, where q represents a light quark. We repeat 

then the calculations for kaon and pion loops ( with the same cut-off A), obtaining the average strange radius 

lr,,2 1= 0.025fm 2  and the average light quark radius Ire 1= 0.130frn2 . Dividing these radii by the barionic squared 

radius used above we obtain the probabilities Pi, = 5 % and Pi g  = 25 % The calculations done in ref. [8] arrive 

at Pi, = 16 % and Pi t  = 31 %. The discrepancy in the strange sector su.;gests that the vector meson dominance 

model contribution coming from the w — et) mixing ( see ref. [15]) is really important. In fact, it will change the 

result from Pi , = 5 % to Pi, = 10 % [15]. As there is no experimental evidence for a w — JR) mixing, the vector 

meson model will not contribute in the charm sector. With the inclusion of the w— 0 mixing our results agree with 

those. Dbtained in ref. [8] within 6 %. 

The charm squared radius increases with A (as it can be seen in figure 2) reaching Ir e2 1 = 0.016fm2  at asymp-

totically large values of A. In this limit we would have Pi c  = 3.0 %. Considering that we are overestimating the 

coupling constant in the charm loop, this number can he taken as an upper limit for the intrinsic charm probability 

in the context of our calculation scheme. Our result seems to be consistent with previous estimates [4, 5, 6, 7, 8]. 

As a further point we would like to compare our predictions for the xc distributions of A, and D in the meson 

cloud model with distributions obtained by Brodsky and collaborators. Following ref. [4] we make a Fock state 

decomposition of the proton. The difference is now that instead of, for exrmple, live quarks (uuda ) our state will 

contain a baryon plus a meson (D-A, ). The probability distribution corresponding to this two particle Fock state 

is, as in [4] and [6], assumed to have the form 

N6(1 — xn. — zo)  
P(zn o  zo) = 

	

( rn 2 	_ 61;2)2 

	

P 	ZA. 	XI) • 

where fill = m1-1- < kr >q are the effective transverse masses, with < kr > being the average transverse momentum. 

Since m2A. ,m2D  >> mp2 ,< kT > 2  we can write 

	

N 1 X 2A. Z 2D6(1 — 	— 2  D) 
P(ZA, XD) =  	 (18) c  

(xn,, + (77—,?)-) 2 zo)2  

where N' = 50.68 is determined by imposing a normalization condition on P(x 	0). Integrating the equation 

above in xo (x/t.,) we find the A, (D) xF distribution, which is shown in figure 4(3) (solid lines). For the sake of 

comparison we also show in these figures the corresponding distributions Dbtairied in ref.[4] for A, and D (dashed 

lines), by combining respectively the u, d and c and the u and c quarks in the lunda > Fock state. IL is interesting 

to notice that the xF distributions look very similar in the two approaches. The results obtained here have a mass 

scale •Nhereas there is no information about the A, and D masses in the calculations of ref.[4]. The existence of 

mass scales is responsable for the slight differences between the xF distributions. From the phenomenological point 

of view the differences will not be noticeable. The resemblance between these curves is a strong indication that the 

idea of intrinsic charm can be well understood in terms of the meson cloul model. 

(17) 
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D Meson Momentum Distribution 
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Funman x distribution of D mesons in the meson cloud model (solid line) and in the intrinsic charm model (dashed line). 

A Momentum Distribution 
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Figure 4 

Fuyriman x distribution of the charmed baryon A in the meson cloud model (solid line) and in the intrinsic charm model 

(d ashed line). 

Another straightforward extension of our calculations is the estimate of the beauty content of the proton. Assum-

ihg g NAbB = YNA4 13 = griviv, the only differences will be the masses of the baryon and meson. In the asymptotic 

limit we get Po/Pic ti 1/3, which is different from the scaling proposed in ref.[4]: Po/Pie (me/m/0 2  I /9 - 
However, this should not be taken as a discrepancy between the two approaches, since a very strong approximation 

about the value of the coupling constants was done by us to get the %Mite 1/3. 

00 	02 	 OA 0.4 0.0 t o 
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In this work we have only considered loops involving the particular combination D-A e . In principle we could 

include loops with and also with vector mesons. However, due to the lack of knowledge of the relevant 

couplings and cut-offs, no attempt is made to go beyond the D-A, loop. W3 expect this contribution to be the most 

significant, specially in view of the very large values of the coupling constant and cut-off used here. This might be 

sufficient for an estimate of the order of magnitude of Pi,. 

4. Leading charm and the IGM 

In this section we shall study leading charm production in terms of the Interacting Gluon Model (IGM) [18], which 

has been invented to describe the inelasticity and its energy behaviour and recently used also to successfuly describe 

many aspects of multiparticle production (including its semi-hard minijets component, which can be important for 

charm production at high energies). 

Since the 1GM has already been described previously in great detail [181 we shall provide here, for completeness, 

only the most basic formulas and concentrate our attention on the specific mechanisms of charm production and on 

the calculation of the asymmetries between leading and nonleading charm mesons. The asymmetry has been most 

accurately measured in the irp scattering, therefore we shall start discussing this process first [19]. In Fig. 5a we 

show i he 1GM description of the energy flow in a hadron- hadron collision at high energies. Through the cooperative 

action of a certain number of soft gluons, carrying an overall momentum fraction x i  of the incoming pion, colliding 

with a similar bunch of gluons coming from the target nucleon and carrying fraction x2 of its momentum , an object . 

 called central fireball (CF) is formed. It will decay later on producing observed secondaries. In the 1GM [18] the 

probability for this to happen is given by the function x(x i , x 2 ) . The pion remnants leaving the central region 

(i.e., their valence quarks plus some gluons which did not interact) carrying momentum xi, are called in the IGM 

the lending jet (Li) and, being themselves excited objects, may also produce particles (including D mesons) . From 

the basic function x(x i  , x 2) we can compute the Feynman momentum distributions of the CF , x(xcF) , where 

XCF = xi — x2 , and of the L3 , ft../(xL) , by a simple change of variables : 

1 	l  o 
rix i  I rix 2 b (rep — 	+ x 2.) x(x l , x 2)0 (x i x2 r3 — 4mL) 	 (19) 

13 
X(xcF)  

.11., (xL) = 10  dxt 	dx26 (1 — xi --x(xl, x 2 )0 (x i x 2 s — mg) 
	

(20) 

where mp (1.8 GeV ) and mo  are the masses of the D meson and of the lightest state produced in such collisions 

[181 . In the above equations we clearly see the connection between cent ral and fragmentation production. The 

momentum distributions of the systems which will later give origin to charmed particles are derived from the same 

quantity x(x i , x 2 ) . Moreover , x(xcF) and ff,,i(xL) carry all the energy ( ifs) dependence of the process , which 

is both explicit , in the theta functions , and implicit , since x(x i  , x 2 ) depends on f . In Fig. 5b we show central 

DD meson production where D(D) is any D meson carrying a c(E) quark. Notice that, in the spirit of IGM, the 

central production ignores the valence quarks of target and projectile (defined here as those which carry the essential 

quantum numbers of the colliding pions and protons) which, in the first approximation, just "fly through". Because 

of this, the centrally produced D's will not show any leading particle effect. There are two distinct ways to produce 

D mesons out of LJ's: fragmentation and recombination. It is assumed here that, whenever energy allows, we shall 

have also cc pairs in the Li (produced, for example, from the remnant gluons present there). These charmed quarks 

may undergo fragmentation into D mesons, as shown in Fig. 5c, but ma) also as well recombine with the valence 

quarks as depicted in Fig. 5d. It turns out that only this last process will produce asymmetry. 
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FIgnre 5 

(a) Illustration of a pion-nucleon collision: fractions x i  and z2  of the incoming hadrons momenta form a central fireball (CF) 
with probability x(xl, x2) . Fraction 1 — x i  = xL is carried by the leading jet (L3). The leading jet momentum spectrum 
is f 1.); (b) Nonlcading D meson production by central fireball fragmentation; (c) Nonleading D meson production by 
leading jet fragmentation; (d) Leading D meson production by leading jet recombination. 

In the case of pion-nucleon scattering, the measured leading charmed mesons are D-  and the nonleading arc 

D+. We shall now write the Feynman xi: single inclusive distribution of D-  mesons produced by the CF, by the 

fragmentation in the LJ (F) and by the recombination there (R): 

d a.CF 	 t 	 re!,  

dXC F X( X C F) dx e  g(x e ) D 
dxp- 	 c o _ 	 xe  

f dr 
r t. dcrF 	

eg(x e)19 (X-  
dip- 	 S 	

dxrfr,r(xL) 
E" 	 rn- 	

zE 

dal 
dx D  - rizaz..r(xL) J cir c  I (Ir a  J dx„, f dz a  g(ze)g(xE) f(xa)f(rd) 

6(XD- — 	Xd) 6 (XL —  X? —  Xc —  Xd —  Xd) 

where f(x) and g(x) are distribution functions of valence and charm quarks respectively and the D(z)'s are charm 
quark fragmentation functions [9]. The D+ momentum distributions are given by (21) and (22) with the replace-

ments: D-  D+, e c. These nonleading mesons will not be produced by recombination (eq. (23)). The 

functions f(x) and g(x) are essentially unknown since they arc momentum distributions of partons inside the CF 

(21) 

(22)  

(23)  
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and inside the LJ after the collision. Following our assumption that the valence quarks interact weakly we shall 

approximate f(x) by the initial state valence quark distributions and tare them from reference [20] . As for the 

charm quark distribution , g(x) , the situation is less clear. The c — E pairs do not come directly from the sea : in 

the CF they are produced and in the LJ they may be excited. It is therefore reasonable to think that the charm 

quarks will be somewhat faster than ordinary sea quarks. Accordingly we shall use for g(x) the ansatz proposed by 

Barger and collaborators [21] : 

g(r) = 
	) 1/2 	

(24) 

which is less singular than 1/x but still much softer than an intrinsic charm distribution which behaves typically 

like x(1 — 	. The fragmentation functions have the Peterson form [22] : 

	

De—D(z)= x[i — l/z — 0(1— z)] 2 

	 (25) 

+ (700.0  where c =  1 1  , mg , pgT , mq , pgIT are mass and transverse momentum of the light and of the heavy quark 
(ma +Par) 

respectively and N is a normalization constant. In the present case e e 0.06. In Fig. Ga we show the (unnormalized) 

contributions coming from the three processes above (eqs. (21), (22) am: (23)). As expected , central production 

(solid line) leads to the softest D meson xp- distribution , recombination in the leading jet (dotted line) leads 

to the hardest final distribution and leading jet fragmentation (dashed 'ale) lies in between. This is so because 

x(xcF) is softer than hj(xf,) and because recombination adds momenta whereas fragmentation causes always some 

deceleration. Note that , although flat , the dashed and dotted curves have a pronounced maximum at very low 

xp . This is a direct consequence of the behaviour of g(x) . if instead of the form (24) we use an intrinsic charm 

distribution we will obtain a strong suppression at low x and a maximum around xi) = 0.4 — 0.6 . A final comment 

on this figure is that our distribution of centrally produced D's (solid line) is broader than the one obtained from 

perturbative QCD. This is so because the cooperative mechanism adds together soft gluons, increasing the energy 

released in the central region , favouring higher values of x i  and x2 (in Fig. 5a) and allowing for fluctuations 

with higher xcF. . Considering all that was said above we can conclude that the IGM (like the 1CM) is a two 

component model in which the components are not very much different in shape from each other ( in sharp contrast 

to what happens with the components of the 1CM) and have some overlap. Because of this we expect to find smaller 

asymmetries than those found in ref. [9] ,but this depends, of course, on how one mixes the different components. 

5. Momentum distributions, asymmetries and energy dependence 

In what follows we write the differential cross section as the sum of a central fireball (CF) and leading jet (LJ) 

component and the last one as the sum of a fragmentation (F) and a recombination (R) component , using a similar 

notation as in ref. [9] : 

	

1 dercF 	di 

	

= (1 11) er cF dxD _ 	a ,:-1  dxp- 

	

1 do-Li 1 dcrF 		1 dcr 8  • 

a" dxD- _(1 	cr F  dxD- 	cr R  d2:D- 

wher: the mixture parameters are (0 < < 1) and 

0 LJ 

q = 0.CF 0.LJ 

In the case of the D+ distribution, the expressions above are the same but = 0. 

1 do 
dr D - 

(26)  

(27)  

(28)  
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Figure 6 

x F distributions of D mesons calculated with the IGM. The solid line shows the contribution of the central fireball fragmen-

tation. The dashed line shows the contribution of the leading jet fragmentation and the dotted line shows the contribution 

of the leading jet recombination. 

The 1CM parameter 7 -1 has been chosen 0.2 because of an analogy between ai, (our a." ) and the diffractive 

charm cross section. On the other hand , in the Valon Model (23) the same data are adressed without any central 

component. 'Phis would correspond to taking q = 1. Here , because of the kinematical mixing between CF and LJ 

the value of ri is essentially free. In what follows we will choose it to be q = 0.7 . Note also that , in our case 4 = 0 

corresponds to no asymmetry. Since existing data on open charm production [1) apparently do not show nuclear 

effects [24], we use here (as all other models which address these data) the IGM for hadron-nucleon collisions [25). 

In Fig. 7 we compare our calculations with WA82 data. Fig. 7a and 7b show the zp-,  spectrum of D+ and D", 

respectively, and Fig. 7c shows the asymmetry which is given by : 

do 	do 

A ( F ) 
	

de 	do 
	 (29) 

sib • ar,771. 

In Fig. 7b and 7c solid , dashed and dotted lines correspond to = 0.8,0.5 and 0.2 respectively. Data points 

are from the WA82 , E769 and E791 [26] collaborations. As it can be seen, a satisfactory description of data can be 

obtained with the IGM . The best description can be obtained with a large ammount of recombination (4 .  = 0.8) . 

This is ultimately due to our choice of g(x) . We have checked that the choice of an ordinary sea distribution for 

the charm quarks in the CF and LJ requires ri = 1.0 and = 1.0 for a reasonable fit. The choice of an intrinsic 

charm distribution allows for small values of ri and 4 .  . The conclusion seems to be that although data do not rule 

out usual sea distributions as an input , good fits with more reasonable values of. the parameters can be obtained 

using harder charm quark distributions like (24) or the one used in ref. 4. 
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Figure 7 

(a) x 1. distribution of D +  mesons calculated with our model and compared with WA82 data; (b) xp distribution of 13 -  
mesons calculated with our model and conpared with WA82 data. Solid line corresponds to e = 0.8 in eq. (27) while 

dashed and dotted lines correspond to = 0.5 and f = 0.2 respectively; (c) tl e asymmetry calculated with the IGM and 

compared with WA82 (solid circles) , with E769 (open squares) and E791 (open triangles) data. Solid , dashed and dotted 
lines correspond to the same choices of e of 7b). 

We consider now the energy dependence of the asymmetry. All details concerning the particularities of charm 

production arc energy independent. In equations (26) and (27) q , c.nd the differential distributions , i.e. , 

respectively normalization and shape of the curves, can depend on fs. For simplicity we shall assume that 4 
does not change with the energy. The distributions 	will depend on Is through x(xcF) and fi,J(xL) . The 

behaviour of these last functions with 	is shown in Fig. 8a and 8b ..espectively. We observe a very modest 

broadening of x(xcF)  implying a small increase of (xc ?) and a more pronounced softening of J./Az f,) with the 

corresponding reduction of (xL) . As for pi an extensive analysis [18] of charged 'particle production up to Tevatron 

energies has shown that it decreases by a factor 3 when we go from ISR o Tevatron energies. Assuming a similar 

reduction for the case of charmed particle production q will change from 0.7 to 0.25. Considering what was said 

above we evaluate again all the expressions (19)-(27) at Vi = 1800 GeV. The resulting asymmetry is shown in 

Fig. 8c with a dashed line. For comparison we show in the same figure (with a solid line) the asymmetry at 

\Fs = 26 GeV calculated with the same parameters. It decreases 20% in the region xF 7 0.5. Although this is 

not a very impressive change it illustrates the trend. Moreover, we know that the asymmetry goes asymptotically 
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to zero since ij 	O. We emphasize that this is so because the IGM (in its version (18]) predicts that at higher 

energies, because of the action of minijets, the energy deposition in the, central region will increase implying two 

effects : a growth of the central multiplicity ( implying thus an increase of 1 — rj ) and a softening of the leading jet 

momentum distribution. We can therefore conclude that, irrespective of details of charm production, these both 

effects combined will reduce the asymmetry. It is interesting to mention that the data collected in Fig. 7c come 

from three different collaborations E769 , WA82 and E791 with beam energies of 250, 340 and 500 GeV respectively. 

In the CMS this corresponds to a variation of Vir = 23 GeV to N.5 = 33 GeV. This energy change is small, the 

error bars are large and therefore no change in the asymmetry is visible yet. At higher energies there is a chance to 

experimentally verify this behaviour at RHIC or LHC. 

6. Leading beauty 

As a straightforward extension of our analysis we calculate now the asymmetry in B meson production. This 

is done by simply replacing rnD by m u  = 4.75 GeV in (19) and e = 0.06 by E = 0.006 in (25). In principle we 

should also change g(x) but in a first estimate we keep the ansatz (24). If we would use an intrinsic distribution for 

g(z) it would be very weakly dependent on the heavy quark mass [9). In Fig. 9 we show the x(xDF) distribution 

for charm (dashed line) and for beauty production (solid line) with the proper change in eq. (19) . The energy is 

= 26 GeV . The effect of increasing the production threshold (rnD mB in the theta function in eq.(19)) is 

to select events with a more massive CF and with larger lower limits for x i  and x2, suppressing thus larger values 

of XCF x2  with respect to charm production (in the limit of total energy deposition, i.e., x i  = x2  = 1, the 

CF would be at rest). This effect is however very small. This is expected and seen in Fig. 9. In Fig. 10a (lOb) 

we show the xF distributions of nonleading (leading)D and B mesons. The energy is the same as in Fig. 9 and 

the parameters are the same as before (rt = 0.7 and = 0.8). Nonleading spectra are calculated with eqs. (21) and 

(22). The Peterson fragmentation functions , appearing in those equations, are very sensitive to the value of c. In 

the case of beauty, the strong reduction of e makes the fragmentation function strongly peaked at very large values 

of z. The emerging B's will therefore be much less decelerated than the D's . This effect compensates the previous 

one and the final nonleading B distribution is harder than the nonleading D one. The leading distributions include 

recombination , given by eq. (23) , which is not affected by the change in the heavy quark mass. Because of this 

, the spectra in Fig. 10b exhibit the same qualitative behaviour ( B's faster than D's ) seen in Fig. 10a but the 

difference between B's and D's is smaller. The asymmetries of B —  /B+ and 13 —  /DI-  are shown in Fig. 11 with 

solid and dashed lines respectively for Nrs = 26 and 1800 GeV. The asymmetry in beauty is about 50% weaker than 

in charm at xp = 0.8 and both show a similar decrease with energy. 

In conclusion: the 1GM describes the energy flow in high energy hadron collisions. It takes properly into account 

the correlation between energy deposition in the central region and the leading particle momentum distribution. 

It accounts for charmed meson production in a natural and satisfactory way and makes the prediction that at 

higher energies the increase of inelasticity K (see [18]) will lead to the decrease of the asymmetry in heavy quark 

production. It also predicts a weaker asymmetry for beauty. We believe that this point should also be adressed by 

other models which deal with asymmetry in heavy flavour production [27]. 
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Figure 8 

(a) Momentum distribution x(xcr) of the central fireball at ./ = 26 GeV (solid line) and at V.; = 1800 GeV (dashed line) 
; (b) momentum distribution fLi(zz.) of the leading jet at Vi= 26 GeV (solid line) and at Vi= 1800 GeV (dashed line) ; 
(c) the asymmetry in pion- proton collision calculated with the 1GM : solid line corresponds to V.; = 26 GeV with 7 = 0.7 
and dashed line corresponds to Nrs = 1800 GeV with I/ = 0.25. In both cases = 0.8. 
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Figure 9. xp distribution (x(rcF)) of centrally produced b E (solid line) and c E (dashed line) quark pairs. 

Figure 10. (a) xF distribution of nonleading B (solid line) and D (dashed lin!) mesons; (b) the same•a.s (a) for leading B 
(solid line) and D (dashed line) mesons. The energy is in both cases %Ts = 26 13eV. 
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Figure 11 

' B - /B+ (solid lines) and D - /D+ (dashed lines) asymmetries at Vi= 26 and 1800 GeV. 
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We present the first B-Physics results from the 1992/93 collider run at Fermilab, using the 
DO detector. Results are given for the b-quark production cross section using inclusive single 
muons and J/0 to tag the heavy flavor production. Preliminary results on B° B° Mixing 
are also presented. We compare the results with theoretical predictions where appropriated 
and present the prospects for future runs. 

1 Introduction 

Although the DO experiment is optimized for high pi ,  physics, its extensive ninon detection system capable on 

triggering on muons in a large pseudorapidity range, combined with the large bb cross section at ,/- .; 1.8 Tell 

make it possible to study the b production in single muon and inultimuon channels. The inclusive single muon 

and .1/0 cross sections, measured as a function of muon transverse rilOrientIT1 A. and pseudorapidity rt , can 

be used to infer the bb cross section for which QCD predictions have been calculated in the in next-to-leading 

(NLO) order [I]. Measurement of heavy quark production at large pseudorapidity provides information on the 

gluon structure function at small x. 

2 DO Detector 

The DO detector [2] is a large general purpose facility with no central magnetic field. The detector consists 

of central drift chambers, a transition radiation detector, a highly segmented liquid-argon uranium calorimeter 

with good energy resolution and a 111L1011 system. 

The muon detector consists of five magnetized iron toroids between the firs two of the three layers of proportional 

drift tubes. It provides a measurement of a muon momentum over a pseudorapidity range fril < 3.3. The 

momentum resolution is limited by the Multiple Coulomb scattering to > 20%. Test beam data indicate that 

the intrinsic diffusion limit on the spacial resolution is 200 pm. The reolution is currently limited to 700 pm 

by the accuracy of the geometric alignment. The central tracking system helps in identifying muons associated 

with the interaction vertex. The calorimeter coverage extends down to !ill of ~ 4.9 and is used in this analysis 

to detect jets associated with the anions. The total thickness for the calorimeter plus the toroid varies from 13 

to 18 A and reduce the hadron punchthrough to a negligible level. 

The DO detector design was optimized keeping in mind three main objectives: 

'Universidad de los Andes (Colombia), University of Arizona, Brookhaven Nationa Laboratory, Brown University, University of 
California, Davis, Irvine, Riverside, Centro Brasileiro de Pesquisas Ffsicas (Brasil), CINVESTAV (Mexico), Columbia University, 
Delhi University (India), Fermilab, Florida State University, University of Hawaii, University of Illinois, Chicago, Indiana University, 
Iowa State University, Korea University (Korea), Lawrence Berkeley Laboratory, University of Maryland, University of Michigan, 
Michigan State University, Moscow State University (Russia), New York University, Northeastern University, Northern Illinois 
University, Northwestern University, University of Notre Dame, Panjab University (India), Institute for High Energy Physics 
(Russia), Purdue University, Rice University, University of Rochester, CEN Saclay (France), State University of New York,Stony 
Brook, SSC Laboratory, Tata Institute of Fundamental research (India), University o Texas, Arlington, Texas A&M University 
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• Provide excellent identification and energy measurement for electrons and muons, as one expects that 

new phenomena generally have large branching fractions into final states with one or more leptons. On 

the other hand, those processes typical of QCD, which are much more frequent, have comparatively lower 

semileptonic branching fractions. 

• Allow the observation of parton jets with excellent energy resolution. Emphasis was given to the observa-

tion of parton jets instead of the individual particles, because the jets as a whole are more directly related 

to the fundamental processes occurring in a high energy collision than each isolated particle. 

• Provide. a good measurement of Z.T. , the missing energy necessary to transverse energy-momentum bal-

ance, as an indirect means of detecting neutrinos and other neutral particles with low interaction rate 

with matter. 

Figure 1. Isometric view of the DO Detector showing its subcomponents 

3 Inclusive muon. Cross Section 

3.1 Event Selection 

The DO event selection consists of 3 levels of trigger (21 which reduces 43 mb [3} of inelastic cross section to 2 

Hz of data written to magnetic rape. The Level 0 trigger selects inelastic collisions from beam-beam scintillator 

coincidences and measures the vertex position. Level 1 hardware muon trigger requires 2 hits in either 2 or 3 

layers of the muon system, depending on the geometric region, in a coarse road of 60 cm width. The efficiency of 

the Level 1 muon trigger for high pr. muons is 60%, the losses being mostly geometric. The Level 2 software 

muon trigger requires a good quality muon track with the reconstructed transverse momentum 12,7,> 3 GeV. 
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3.2 Data Analysis 

The inclusive muon cross section measurements are based on special runs taken at low luminosity. These runs 

used single muon triggers for two regions of pseudorapidity, central (a ri < 1) and forward (2.2 < I n I < 3.3), 

with integrated luminosities of 73.3nb -1 , and 37.7nb -1 , respectively. The data presented here comes from the 

1992/93 collider run. The results for the forward region are still preliminary. 

For the online analysis the muon was required to have er > 5 GeV. Quality cuts require: hits in all the three 

layers of the muon system; a matching central detector track; at least 1 GeV energy deposition in the calorimeter; 

good impact parameter vertex projection in both bend and non-bend vioms; the muon track passing cosmic ray 

rejection cuts and synchronized within 100ns with the beam crossing time. 

For the single muon analysis the overall efficiency was evaluated using ISAJET (4) b6,  /IX Monte Carlo events. 

These events were put through a complete GEANT detector simulation Level 1 and Level 2 trigger simulators 

and the offline event reconstruction. As shown in Figure 2, the overall efficiency is 26% for pl-.> 5 GeV and I ri 

< 1. For muons in 2.2 < 7/ I < 3.3, it is 17%. 
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Figure 2. Overall efficiency foi muons with 	< 1. 

3.3 Results and Discussion 

Thc inclusive muon cross section for I ri I < 1 and 2.2 < I I/ < 3.3, is shown in Figures 3(a) and 3(b), 

respectively. The main sources of systematic error are the uncertainty in the luminosity measurement (12%) 

and the cosmic ray and combinatoric backgrounds ( 	10% for 	< 1 ). The data have been compared to 
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(NLO) ISAJET Monte Carlo predictions. Figures 3(a) and 3(b) show the predicted contributions to the cross 

section from 	pX , c—i pX, and r or K decays summed together. 

The shape of the At spectrum is in good agreement with expectation. Although no jet was required either in 

the trigger or the analysis, it was found that nearly 60% of the events have jets associated with them, suggesting 

that most of the events arc indeed from b decays as expected. 

I 

2 	3 	4 5 6 7 8 910 
(0eV/cr 

Figure 3. Inclusive muon cross sections compared to Monte Carlo predictions from ISAJET 
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Figure 4. b-quark production cross section compared to NLO QCD predictions of NDE using MRSDO structure functions, 
Ref. [11. 

Work is in progress to decrease the systematic uncertainties and to extract the bb cross section in the forward 

region. In the central region, the bb cross section was extracted folowing E, general procedure developed by the 
llAI collaboration [5].The relation between the b-quark cross section and the experimental muon spectrum is 

given by: 

pv. ) 	0,t, (41 .197.2 )  crr 

'Mc 
(I ) 

where at(91, 1 ,4.2 ) is the muon cross section integrated over the interval 4 1  < pT < p p2 The resulting cross 
section as a function of pT in is shown in Figure 4, where similar CDF [6) ineasurements using inclusive leptons 

are shown for comparison. Details of this work can be found in ref. [7) and in the Ph.D. thesis of V. Oguri and 

J.G.R. Lima [8] 

4 Inclusive J/0 Cross Section 

4.1 Event Selection 

For the J/I,b study it was required that the events have at least two muons at both Level 1 and Level 2 trigger, 

with > 3 GeV at Level 2. The data for this analysis were taken during normal high luminosity runs, and 

correspond to a total integrated luminosity of 6.6pb - I. It represents a totflly independent sample from the one 
used for the single muon analysis. 

4.2 Data Analysis 

In the offline analysis two good quality muons were required in the fiducial volume I ri I < 1.0 with a dimuon 
transverse momentum pl,g > 8 GeV. In addition, both muons were required to be consistent with the recon- 
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Figure 5. The mass spectum for opposite sign muon pairs. The solid curve is the fitted sum of the J/1,6 signal and 
background contributions. 

strutted vertex position, to h ► e a calorimeter energy deposition consistent with a minimum ionizing particle 

and not be back to back in q and (AO< 170° and AO< 160°) to avoid cosmic background contamination. 

In view of our modest dimuon mass resolution, 1-'4 12% at the J/tP mass, we limit the invariant mass of this 

analysis to Mu g, < 6GeV/c2  

4.3 Results and Discussion 

Muons coming from leptonic decays of b quarks are associated with jets, while Drell-Yan processes and direct 

charmonium production yield muons isolated from jets. Other mechanism that generate isolated dimuons is the 

decay of light quark mesons, such as p, 0, and r). 

Isolated dimuons are defined such that neither muon is associated with a jet with ET > 8 GeV, within 0.7 in ri 3 O 
space. If one or both of the mucns are within a jet, the muon pair is defined to be non-isolated. For non-isolated 

dimuons we define RV rei  as the transverse momentum of the dimuon with respect to the associated jet. 

For each of the dimuon production processes mentioned above, we generated a sample of Monte Carlo events 

using the ISAJ ET program. To estimate the relative contribution of each process we applied a maximum 

likelihood fit to the invariant mass(Mp o„), Isolation and p,V rei  distributions. The results are shown in Fig. 5. 

The total estimated number of J/1/) events is 407128, of which 147±33 are isolated. 

The inclusive J/V, production cross section as a function of transverse momentum is shown in Fig. 6. The 

data points are shown with statistical and p-r dependent systematic errors added in quadrature. Also plotted 

are theoretical predictions [9]. They agree with our measurement within the total experimental and theoretical 

uncertainty but tend to be less steeply falling with pr. 

To determine the fraction fb of J/IP from 13 meson decays, we have examined the distribution of the impact 
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parameter of the muons relative to the event vertex, in the r — j Oahe. We have performed a simultaneous 

mass and impact parameter maximum likelihood fit to the opposite sign dimuon data. The resulting value of 

the JAL b fraction from this fit is fb = 0.35 f 0.09(siat)± 0.10(syst). Using this fraction, we determine the b 

quark cross section using the same method explained for the single muon data. The resulting integrated cross 

section as a function of pfi",`' is shown in Fig. 7 together with the inclusive muon results. 

"; 
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Figure 6. Inclusive JAL cross section times Branching Ratio into muons. 

Figure 7. Integrated b quark production cross section vs kV'. The curve represents the QCD NIA prediction of NDE, 
Ref. [1]. 
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5 B° - B° Mixing 

B° - 11° mixing can occur in the Standard Model through the well-known box diagrams, which result from the 

non-conservation of quark flavor in the weak interaction. 

In the case of semileptonic decay of B mesons into moons, the time averaged mixing probability x can be 

writer' as 

P(B° 	—> X) 

	

X = NB° ju + x)_f_ p(Bo _ Bo 	x) 
(2) 

which is an average over both B c°1  and L3 3° mesons. 

Experimentally, one measures the ratio R of like to unlike sign dimuons. In order to extract x from R it is 

necessary to model the relative contributions of all processes which contribute to dimuon production. 

5.1 Event Selection 

The data set used 'in this preliminary analysis was collected using both a dimuon and a single muon plus jet 

trigger. The dimuon trigger was the same used for the J/0 analysis, while the muon plus jet trigger required 

one muon candidate in ri < 1.7 with pT > 3 GeV/c, and one reconstructed jet in r? I < 3.5 with 4°` > 10 

GeV. The corresponding integrated luminosity for these triggers was 10.3 pb -1  . 

5.2 Data Analysis 

The of line requirements for this analysis were essentially the same as for the J/1/, case, except for the dimuon 

invariant mass, required to be between 6 GeV and 40 GeV, in order to remove events from Jitl, and Z° decay. 

Correcting for the estimated cosmic ray background, we find the ratio of like to unlike sign dimuons to be 

likesign 
R = 	= 0.43 ± 0.07(stat) ± 0.05(syst) 	 ( 3 ) 

untikesign 

Thc relative contributions of the differepi  t dimuon production processes were determined using ISAJET Monte 

Carlo plus the full DO detector and trigger simulations. Sources of systematic error to the relative fractions 

given by Monte Carlo were investigated using checks from the data wherever possible. 

5.3 Results and Discussion 

Combining the experimental parameter R, as given above, with the relative fractions of the dimuon production 

processes, we determine the time and flavor averaged mixing probability to be 

x = 0.09 ± 0.04(stat) ± 0.03(syst) 	 (4) 

The measured value for x is in agreement with other recent experimental results from UA1, CDF and LEP [10] 

as shown in Fig. 8. 
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Figure 8. Mixing probability measurements. The average does not include the preliminary DO and CM' results. 

6 Summary 

The DO experiment has completed several analysis with data from its first run, using nearly 15 pb - lof data. 

We have measured the inclusive muon and the inclusive J/t,b cross-sections, and extracted from them the b quark 

cross section. The cross section results in both cases are in general agreement with the values expected from 

QCD calculations in the next to leading order. Preliminary results for B° mixing were also obtained using 

muons to tag the heavy flavor decay. The measured value for the averaged mixing probability is in agreement 

with recent results from other experiments. Searches for T, x states, as well as for additional particles such as 

Kg. and A associated with the Jhb are in progress. We expect to increase our statistics by a factor of 5-10 using 

new data coming from the second run (Run lb) scheduled to end by february 1996. 

Several upgrades of the DO detector are scheduled for the Main Injector era, near 1998, including a new 

Silicon Vertex Detector and a central magnetic field, which will improve both the momentum resolution and the 

capability to detect the secondary vertex from beauty decays. These improvements will enhance our B-Physics 

program for the future, with the addition of exclusive decay channels, search for rare B decays, CP violation 

and much more. 
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Extended gravity theories are an embedding of Einstein's theory of gravity in a broader 
framework. In such theories the internal symmetries (gauge groups of Yang-Mills) and the 
space-time symmetries (gauge groups of Poincare) are unified in an algebraic structure. In 
this way also the internal symmetries show a geometrical feature that extend the geometrical 
interpretation of pure gravity. In this letter geometrical structure from an extended Einstein-
Cartan theory sketched on the group manifold  C = g ® SU(2, 2/1) (g, is the Yang-Mills 
group, a general gauge group and SU(2, 2/1) is the appropriate contracted supergravity 
group). 

I Geometrical Einstein-Cartan Theory 

The group manifold of our extended Einstein-Cartan Theory (ECT) is determided by the fact that this theory is 

directly coupling to the supergravity. The group of the theory turns out then to be the diret product between that 

of supergravity and a general gauge group , with r parameters: 

G = 	SU(2, 2/ I) 

In the supergravity case it is shown that exists a gauge invariance of the theory with respect to: 

If = SO(1,4)0 U(1) 

Then, the coupling between ECT and supergravity acquires a bundle structure, where, 

11 1  = g SO(1,4)0 U(1) 

will be the fibre, and the quocient space 

the base space of the principal fibre bundle. 

As the ECT in five dimensions has a gauge invariance with respecto to I!', then by expressing the 2-form 

(curvature associated to the gauge group g) in the whole multiplet of 1-forms, vie obtain that: 

F = r Bc  B .r  A C  

= Fo b . Gte ab  A pG  F-,,Gt,b 7  A pG  FiiVi  A V' Pea B A p G  

then 

F = FY, c 1,b A  PG  Fii Vi  A Vi , 	 (I) 
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Fab,G = 0 (2) 

Fe,G = 0 (3) 

Fcr ,G = (4) 
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as consequence of, 

and 

We have also, as a starting point, that, 

G43Gij  are constants. 

The condition (4) is called Rheonomy, and it is the compatibility requirement to establish the curvature F. It 

is worthwhile to come back once again to N = 2 - d = 5 supergravity. For this theory the components "in" of 

the curvature (that is, those components with respect to the basis VV) are related to the components "out" (with 

respect to the basis tkV or TN). 

From the way it has been formulated, our theory lies in superspace., that is, the fields depends on ro' and 

OA (pseudo-Majorana fermionic coordinates). We can consider the space-time M 5  as a hypersurface embedded in 

superspace. 

The components "in" of the curvature are substantially the derivatives of the pseudo-connection along M 5 , the 

components "out" being those along orthonormal directions. The Rheonomy thereforeis equivalent to the possibility 

of developing all the dynamics in space-time, giving to the the theory a physical meaning. In order that the ECT; 

formulated in superspace, also acquires a physical meaning, it will be necessary that the derivatives "out" may be 

expressed in terms .of the derivatives "in". 

We may try to express, so, a hypothesis for the explicit relations for eA ("curvatures" defined in a generalized 

way 	2)): 

e l  = F 

e2  = DA A  

e3  = Do. 

ai  = DF" 

A general hypothesis will be the following: 

dA = Fa' A V b  + icAA A 1 .,0A A Vm  + 

-i- idCADAA A rrn;8 A V r" ifc A OA A 'A; 

DAA = A mA  A+ 	A Eab lbA 

-Fkba A ra tka itFab A EABE ab On 

+Zq5. A rtABOB; 

Da = V -- "3. 1  A 	; 	X AA — a  , 	 -.EAB—A 	' — 

DF4b  = G;Inb  A 1/"I iniC,Z a  A 141 0A + ip(ABVt a  A rbil,B 

(7) 

(8) 

where cia  = Or and GQ„,,b  = am rab. 

The Rheonomy requirement (4) suggests that C = f, so we will make both of them egual to one. 



XVI Encontro Nacional de Fisica Particulas e Campos 	 133 

II Conclusion 

To find the remaining free parameters the integrability conditions for the equations (5 - 8) have to be apIlied. 

Such conditions on a manifold are usually called Bianchi identities. The determination through the analysis of the 

Bianchi identities of a compatible system of equations for the parameters of the theory would be important for the 

explicit construction of ECT Lagrangeanl, which I expect to present in a future report. 
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In this work the explicit determination of the parameters for the curvatures of a five di-
mensional theory sketched in a early paper is possible through the solution of the Bianchi 
identities. 

I Bianchi Identities 

From criteria, such •as, consideration of the degree of the forms, Lorentz covariance, respect of the charater of reality, 
dimensional analysis and factorization wich is associated to the use of the restricted basis Va and IPA, a general 
hypothesis proposed [1] for the exterior covariant derivatives DA A , Da and DFab of a 5-dimensional manifold is 
the following: 

DA A 	AmA A V"' + igFo b A Eab tPA 	 (1) 

-Fh0a  A rat,bA + it Fab  A eABEab i,b2 + 
1-ZIS, A racAB013; 

Da = ra A V °  ikAA A OA + ilEABAA A OM 	 (2) 

DFab 	C7.,b, A V rn  + inAaa  A rocbA + p€AB AA a  A i-410B 	 ( 3 ) 
where O a  = oa cr and G: k: = 	ltheonornic symmetry and the property of factorizatiom imply that 

dA = Fo oV a  A Vb + 	rm  IPA A Vni + 	 (4) 

+idfAB AA  A rruTAR A V"' + ifa AlbAM,bAi 

To find the remaining free parameters the integrability conditions for the equations above will be applyed [2]. Such 
a kind of identities on a manifold are usually called Bianchi identities. We shall adopt this nomenclature for the 
preceding equations, even though the last three have more than one covariant derivative. By solving the Bianchi 
identities for the system of equations we will find that: 

DDF" = D(Gr,,f;) A Vtm + 2 Gm A ALGA  A r — 	 ( 5 ) 

—inDrit a  A 1.41 0A + ipatT; 14  A rbit,bB  = 0 

where we have already used the fact that DV'n = -1-0 A  A I'mipA  and DOA = 0 if the curvatures of SU(2,2/I) vanish. 

Upon substitution of the expressions of D(Gamb ) and DT'1/47,1  we obtain 

Dn G:! 	AV" Vm inamr,ta  rbil,b A  A V" + 

+ipD,,,TP A rbit,bn A Vm + -G" A Tb A 	+ 
2 "1  

+inDla A,,, A  A V rn  A r°1 0A  + ngDia Fi,„, ATA  A Ehn rb4A 

-1-inhIPOi A 1,bAr i rbi /PA + nicAB Di°  Fin. A BE"  rbilliA 
+inzeAn Dia  Of A oBr'rbloA + ipeABDIa117-rnA A Vm  A ro0A + 

+PYCAB Di° Fi n, A IPA A sim  rbioB + iphcBc 	hl A OA A 14  r bi t,bc + 

+pt(ABCACEP Fin, A 0/3 A Elm 	+ 

+ipzc A BeA c D[a 01 A1PB A rirotpc  = 0 
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The projection on two fiintbeins leads to 
Din 	Fab  = 0 	 (6) 

By picking those terms containing El' and ri' and developing them in the basis of Dirac matrices, one finds that 

	

Dm Fab  — 2(ng + pk)Dr' 	= 0 	 ( 7 ) 

which coincides with the homogeneous Maxwell equations 

G[ a b Fro = 0, 	 (8) 

and one then has rag + pt = 1 and 

1 2039 noccdt ml[b Dal  Fa + 2(ph — nz)ri n r.°  D°1 01  = 0 ( 9 ) 

In order that the relationship (9) be satisfied without requiring the validity of non-physically acceptable relations 
betwwen the derivatives of different fields, it is necessary that; py — nt = 0 and ph — nz = 0 

We have therefore obtained the first three relations among the parameters of the curvatures. By using (2) and 
working in zero supergravity, one has 

DDc = Dark A V °  A V b  + ikD a AA A OA A V a  + 

+ iicABDartA A OB A Va 	Oa A ITA A ra lPA 

+iamA  A V"' A ALA kgFab AlitA A E abih 

+ikhcka  A ra ,PA + kic AB F„b  A TB  A E a 	+ 

-Fik2C AB &Oa  A tkBr a ,A + ircABL,A A V"' A OB 
+ 19E AB Fab A OA A Eab  ;GB ilheABOa A OA A ra lb.i3 

+11€ABeAc Fab A ;GB A Ea lirc 

-Fil ZC Ali CACOa ATBA r a t,bc = 0 

Where use has been made of the developments for Dq5° and DXA. As in the preceding case, one does not get 
any information from the projections over VV and 95V. We have only to examine the terms containing two cbts. By 
separating those with AllAr alkA and OA E° 6 41 A, one gets 

2 Oa A EGA + ikh46. A ;/ A  A ratpA + itz(ABc6,. A VB A ra cbA = 0 	 (10) 

Whereby it follows that 1/2 + kh + lz = 0 and 

HE AB Fab A ;TB  A Ea6  + igCAB Fab A11; A A Eab  B = 0 

and then a new equation for the parameters kt g = O. 
By following a reasoning analogous to the previous two which we have presented, we develop the Bianchi identities 

for DA and DAA, and we can thereby find the remaining equations for the parameters of the curvatures. There 
will be compatibility among the equations, Therefore the hypothesis made for the curvatures is acceptable: a more 
restrictive hypothesis could imply the non-solvability of the system. 

II Conclusions 

The determination, through the analysis of the Bianchi Identities, of a compatible system of equations for the 
parameters of the theory indicates that the hypotesis made for them is acceptable, and that Rheonomy can infact 
be regarded, in this case, as an underlying symmetry; Some calculations in supergravity [3] may be performed by 
using a simbolic manipulation package, written in Reduce. A program called SUPERGRAV, written in Reduce 3.2 
for the manipulation of differential forms of arbitrary degrees, in arbitrary representations of the Lorentz group, 
and in whatever space-time dimension, can assist in computing the step by step intermediate results, A further 
development of this present work can be that of verifying if SUPERGRAV can be used to implement The Bianchi 
identities in theories of Yang-Mills type. 
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The Einstein evolution equations for linear perturbations on a background consisting of a homogeneous isotropic 

universe filled with a perfect fluid, which is described by a barotropic equation of state of the form p = - p and 

obeying conservation of energy-momentum tensor, lead to the vanishing of density fluctuations. This basically . 

 means that, in the Standard Cosmological Scenario, within the framework of general relativity, there are no density 

perturbations during de Sitter phase. There are three ways that one can attempt to get non-zero density per-

turbations during a de Sitter phase of the evolution of the universe, namely, either to consider theories where the 

energy-momentum is not conserved, or to remove the condition of a perfect fluid, or, as in our approach, to work 

with multi-dimensional theories. We will consider here the third choice. 

The Lagrangian density in a n-dimensional spacetime, coupling gravity to ordinary matter, is 

I. = 	T1M - L, , 
167ra 

where a tilde refers to the multidimensional quantities. From this expression, we can deduce the field equations in 
higher dimensions 

	

RAB — 
 2

ABR = 87OTAR 
	 (2) 

TAB ;B 	0 	
( 3 ) 

It will be supposed that each spatial section is divided into two spaces, the external one of dimension d i  and the 

internal one of dimension d2 , such that u = 1 + d i  + d2 . We assume the metric to be of the form 

ds2 = _di2 + a(1)274dx idr3  b(t) 2 7dbdedx b  , 	 (4) 

where 	is the external metric and ^y„ b  the internal one, and both spatial sections have a constant curvature, not 

necessarily zero. Normalizing the curvature, we write k i  = -I, 0 or I and k 2  = -1, 0 or 1 for the curvatures of the 

spaces with dimensions di  and d2  respectively. 

We consider an anisotropic energy-momentum tensor, with different pressures in each subspace. Thus, it takes the 

'Current address: Universite de Geneve, Departement de Physique Th&rique, 24 quaff Ernest A nserment, CH-12I1 Ge&ie, Switzer-
land; e-mail address: mairitaarystas.unige.ch  
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form 

TAB 
= 	+1000 _ u i u(A 5:3 ) F.,,o u(A60B) 

159.AB 	
2 

gi(A op) + 
2 

g a(A 6B) 	 (5) 

where i = 1, ...,cl i ; a = 1, ..., (4; p = i(p i  + p2 ); 	uB) = " (UAUB + Up ). We consider that both pressures 

have a barotropic equation of state: p i  = a l p and pa = alp. 
Then, the differential equations we obtain from Eqs. (2) and (3), relating 

di el + d2 .  a 

[d i 	+ al) + d2(1 + 	•a) - 21p 
d1 

+81rd62  _ 1 	(1 

a(t), b(t) and p are 

b 

.1 	=  

P  

P 

= 	0. 

(6) 

(7) 

(8) 

(9) 

a 	 a i) 	ki + (d i  — 1)(-a ) 2 + ria- - + (di - 1)- 
a 	 a 	a b 	a 

[ 1 	+ d2(ai  - ad d i  +87d62 - 1 al  

6 	6 	a i) 	k2 + (d, — 1)() 2  + d i  - - + (d2 - 1) b2 b• 	 b 	a b 

di(a2 - di +87rdG2  -1 [1 	co + 	ai) 

a 	 b 
ii+ d i (1 +al) Ti p + d2(1 + eta)EP 

Some special solutions for these equations were found by Sandev [1]. 

We now proceed with the perturbative level. We introduce in Eqs. (2) and (3) the quantities gAB = °gAB+hAB, 
= °p + 6p .  = Op + e p ,  o where °gA B, °p and °p represent the background solutions while hAB,  by and by are 

small perturbations around them. We will also impose that the perturbations behave spatially like plane waves. 
Due to the anisotropy of the space, the equations take a tractable form only if the wave is 'defined in just one 
space. So, we will consider that all perturbed functions depend only on the coordinate of the external space, i.e., 

(5(xi,t)= b(t)exp(ici I), where xi denote the coordinates in the space of dimension d1. 
We will impose the synchronous coordinate condition (2), 

hAo = 0 . 	 (10)  

We define h = h k k i/a 2 , H = v iirb2 ,  A = ,p ,  . o 1 p After a long but straightforward calculation, we obtain from Eqs. (6) 
- (9) the following system of differential equations 

11+2
a
'il+//+2-i'll 

b 

if + (d i l +2d2 Tib  )1:1+{5 - 2(d 2 . - 1) kiiiH 
a 

.. 	 . 	. 

2d 2 [ 1i+ (d2 - 1)(b) 2  + d is il + (d2 - 1) ti] A 

1 
A + (1 + ai)bui,i +

1 
 (1 + cri)ji + -i(1 + 0(2) 1:1  

(1 + eti)6te + (1 + a i )[(2 - d i ot i ) ila  - d2o2t1bu i  

--2 (al -(2(2)1P - aia'i 

= 

= 

= 

= 

2(
a 

 di. -- + (12 11A ; 
b 

b • 
-d2-h + 

• , 

0; 

(11) 

(12)
 

(13) 

(14) 
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These equations describing the evolution of scalar perturbations, are too complicated to be solved in the general 

case. We will solve them in two particular cases, where the external space . is in a de Sitter phase. The two cases 

are the following: 

(i) The external space is a de Sitter flat space filled with a perfect fluid described by p i  = -p. Both the external 

and the internal spaces have scale factors with a power-law behaviour, a « tr (r > 0) and b oc is, respectively. The 

internal space is also flat. To get a non-vanishing bp/p, the set of equations describing the evolution of density 

perturbations requires a.2 -1. On the other hand, the background equations and the energy conservation equation 

imply 

2 

.s = d2(1 + a2) 

	

r = 
	d2 s(s - 1) 

des + d1  - 1 

One can easily check that Eqs. (11) - (14) imply 

A = 2(1 c12)H + const 

and lead to the following third order equation for H : 

II"' + H" 	
r) 

[d i r + d 2s - r + 1] 

+' [g 2  + 
in(1 -

1 

012 
{d i  (r 2  + 2r) + d 2 s(2 + 3r - 2s) - r2  211 If  

+H 
2  

(18) 
ri(1 	

+ 
- r) 	[11(1  013 

(di r2 + d2s(2r - s) - 2r + 1)1 = 0, 

where primes denote partial derivatives w.r.t. conformal time q, defined by adri = di. After some manipulations, 

we obtain that, as far as time evolution is concerned, Eq. (18) reduces to the second order equation 

d 2g 	1 dg 
r —dr + g [

1 7.2 40 1 	 11 + r 2 (d? - 4d1 + 4) 
- 	 _ 	I 

+s2 d2(d2 + 8) - r(6d1 - 4) - 6d2s + 2rsd 2 (d i  - 6))] = 0 , 	 (19) 

where 

EH T2 1/(1-1 1 7.-y ; 

	

g = 	 (20) 

3  - r - d2s 

	

7 = 	 (21) 
2(r - 1) 

r2 
4

2
7/

2 
• 	 (22) 

Equation (19) is a Bessel equation, whose solutions are Bessel functions of order 

= 484  + 2d3s3(s + 2) + dis 3(s+ 4) + 8d4s 2  + 4d 2 s(s  + 2) + 4 
4(d2s(2 - s) + 2) 2  

(23) 

This expression simplifies a lot if d i  = 3 and d 2 s = -I, which means that the external space grows like t r  with 
r > 1, while the internal one goes like t' where s < 0. In that case, 

1 + d2  
=  	 (24) 2(1 - r) 	2 

The general solution of Eq. (19) is 

(15)  

(16)  

(17)  

g(r) = uJ,,(r)+ td_ v (r) , 	 (25) 
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where u and v are arbitrary constants. For the sign in the argument of the Besse! functions we choose r = +qpi. 

In terms of the density contrast, we find 

	

A = 	+ 0'2)71711'e 
J 

R y (uJ„(gr1) + uJ-v(gn))dil- 	 (26) 

For the particular case we are considering here, and reexpreasing the solutions in terms of. the cosmic time t, we 

find the asymptotic behaviour for A, for t 	0 (II 	oo) and t 	(r)-, 0), namely 

.1,±2 
0 	A 	W(ci cost ... * + c2 sin I -77 )1 

	

t 	oo 	A t 
-N-51  

2d2
2(4 2 +1z.  

So, initially the density contrast has an oscillatory behaviour with decreasing amplitude, while asymptotically it 

tends only to decreasing modes. 

(ii)The external space is a de Sitter flat space filled with a perfect fluid described by pi = -p, and its scale factor 

goes like a cc c' 1 , where r is a constant. The internal space has dimensions d2 > 3, constant non-zero curvature 

and constant scale factor. The energy conservation equation implies p = const and the background equations lead 

to d 2  < 2/(1 + a 2 ). To get a non-zero 8p/p, the perturbation equations require a2 0 -1. The system of equations 

describing the evolution of the scalar perturbations simplifies to : 

Clearly, Eqs. 

d i r 

(30) - (32) again imply 

- [2(d2 - 

A = 

+ 2rh + 
k2 	tir 2 

II 	= 

H = 

= 

= 

+ const 

6r 20  ; 

(d2d2 - 1) 
k2 

Ada ; 

0; 

0 . (32) 
 

(29)  

(30)  

(31)  

(33) 

1 ) -2* 

-(1+ a 2)ii 
2

1 

+ 
2 
 -(1+ a 2 )H,1 

1 
--

2
(1 +02)11 

To get a growing solution of Eq. (30), assuming that the 	/e2re ) term will soon become negligible, we find the 

same requirement as the one imposed by the energy conservation equation, namely 

2 
d2 < 

1 + 02 

Then, the solution for the density perturbation is 

A = -1(1+ a2) exp [-d i  + i(d 1 12.1 ) 2  + (d2 - 4{2- (1+a 2)d2 } it} , 

w hich exhibits an exponential growth. 
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1 Introducio 

Os problemas do Modelo Padrao (problemas do horizonte e entropia) sac) normalmente tratados atraves de uma 

fase inflacionaria, onde a condicao da energia forte é violada drirante um breve periodo de tempo apos o big bang, 

enquanto a fator de escala do Universo aurnenta exponencialmente. 

Urn cenario completamente diferente pode ser tracado se a condicao da energia forte for violada desde o comeco. 

Tal violacao pode ser efetuada mediante o acoplamento ilk trivial da gravitacao a dois campos escalares. Neste 

caso, o Universo exibe uma singularidade initial, Inas a distancia propria entre quaisquer dais pontos do espaco- -

tempo é infinita.• Existe inicialmente uma breve fase de contrack, que persiste ate o momenta em que o fator de 

escala do Universo atinja urn valor minima a partir do qual segue Irma fase de expansk que resgata a cosmologia 

padrao. Este cenario cosmologico primordial, o qual denominamos de cenario anti-big bang, é obtido para valores 

negativos do "parametro de Brans-Dicke" w em uma teoria de gravitacao acoplada a dois campos escalates. 

2 Descricao do Modelo 

A extensk da acio de Brans-Dicke a fim de incluir o efeito de urn segundo campo escalar acoplado minimamente 

a gravitack, mas nao minimamente ao primeiro campo escalar, pode ser escrita coma 

	

W 0 4,0;P 	1 4I. 	
) 

k9; 0 	, 	. 
A = I 4x1 -( d/17 	 + L., 

167rG R  167rG 0 	161rG 0 

onde L n., e a densidade lagrangeana para todos os campos de materia. 

Desta acao extraimos as equacoes de campo: 

1 	87r 	„ 	1 	0 , 
R i,,, - 

2
gpurt. = 	, + —02 k0;"1,  2-gor•co ' 	I 

1 	 1 	 1 
+ - (0 . pr y g i 3 O0)+ 95-2( 11 .- pW;v 	2-9p0;p 4IiP ); " 

1)  

CI(15  + 0 '9 	'P 
' 

'11  = 47 	= 	 3 + 2u, 	 (3) 

Ny;P 

	

= 0 	 (4) 

Considcrando a metrica de Robertson-Walker e o tensor fluido-perleito, obtemos coma equacoes de movirnento: 

3( L-L) 2  + 3kci4  = 81rE.46- tj.(Cf) 7  - 3 (± c61 	I ( 	12 
a 	0 	2 0 	a  -0-- 	) ; 

(I) 

(2) 

(5) 
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(A" + 16 
(4 

 )— = 47113(p — 3p)a6 ; 

‘1, " 	‘11 1  = . 

' 
pi + 3—

a
(p + p) = 0 . a 

Aqui a coordenada tempo foi reparametrizada: 

dt = a 3 dO 
	

(9) 

Podemos agora atraves dos parametros w e f3 determinar e classificar as diferentes soluciies cosmologicas para 

este modelo. 

3 Solucoes Cosmologicas 

A equacao (7) nos fornece facilmente uma integral primeira para o campo escalar ‘11 

1111  = CO 	 (10) 

A obtencao de a e 4  depende da natureza do conteud° material do Universo. Estudaremos as soluceies correspon-

dentes a um Universo vazio e as relativas ao Universo dominado pela radiacio. 

3.1 Vacuo - (p=0,p=0) 

Fazendo C = 1 e introduzindo (10) nas equacoes de movimento, somos levados a diferentes classes de soluciies 

conforme o sinal do parametro 13. 

3.1.1 	< 0 (cv < -g) 
Desacopiando as equacoes de movimento obtemos as seguintes soluvies para yt, e a: 

= d ■ o cosh(VIT30); 	 (11) 

a„ 
	 exp( 73± 1  tan-l isinh(V7-730)1) 

Njcosh(12TO) 
1 + kerp(±1-o tan - lisirth( N./='.g0)1)) 

Como caracteristicas principals observamos que: 

a) o Universo corrieca corn urn valor finito para seu fator de escala a; expande inicialmente em seus momentos 

iniciais, mas acaba por colapsar. 

b) o campo escalar 	inicialmente constante (0 = 0), e cresce continuamente ate explodir em tempos maiores. 

Estee urn resultado bastante indesejavel, visto que, o efeito dos campos escalares deve ter sido relevante apenas no 

Universo primordial. 

3.1.2 p>0 (w > 

Novamente obtemos solucoes analitica.s para e a 

= c6osen(V719); 

a, 	tan(*) 

isin(,/00) ( 1+ ktan k 	(*))
i.  

(6)  

(7)  

( 8) 

a = (12) 

a = 

(13)  

(14)  
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Estas soluçöes revelam que: 

a) A evolusao do Universo segundo seu fator de escala apresenta dependencia do parimetro w. Quando /3 > 0 

temos w > contudo w pode ser positivo ou negativo, o que pode vir a gerar cenirios cosmologicos bastante 

distintos. 

a.1) # > 0 	> 0) 

Neste caso, o Universo esti em expansio desde o seu inicio. Esti caracterizado entao urn cenario do tipo 

big-bang. 

a.2) /3 > 0 (-3 < w < 0) 

Temos urn Universo que comeca infinito, contrai ate que seu fator de escala atinja urn valor minimo, e entao 

entra em uma fase de expansao. Este comportamento do Universo define urn cenirio do tipo anti-big bang. 

b) A evolusao do campo escalar mostra que o mesmo cresce nos momentos iniciais do Universo, ate atingir urn 

valor ma..ximo e entio comesar a decrescer, cessando seu efeito em tempos posteriores. 

Existe a possibilidade de encontrarmos dentre estas solusoes tipo anti-big bang, solusoes de carater nao singular 

na origem (t = 0) do Universo. Assim sendo, a conveniente realizarmos urn estudo assintotico de (14) acerca do 

tempo 0: 

a (VT30) 2  " 	(0 -0 0) 
	

(15) 

0 tempo c6smico t pode ser escrito como funsio do tempo 0 

2  .16 	rL-30 
I (6 - ,163) WT3°) 3 6°  ( 0 	0); 	 (16) 

o que nos permitiri revelar a natureza singular ou nao desta solusao. 

Em termos do tempo cosmic° t: 

a 	
6 — 
	 t 1 6- 6° 	(0 	0) 	 (17) 

203-  

Podemos agora classificar os possiveis cenirios cosmologicos segundo o parametro w: 

a) (2 — \Mr) > 0 

Temos neste caso uma classe de solusoes relativa a < 3 , ou ainda w > 0. 

Como (2 — /) e positivo, (6 — ArtI) tambern o seri, de modo que o expoente de t em (17) a sempre positivo. 

Por outro lado, (16) mostra que o momento 0 = 0 corresponde a t = 0, ou seja, a singularidade inicial esti presence 

nesta classe de solucOes. Conclui-se entao que pars w > 0 prevalece o cenirio big bang singular. 

b) (2— VW) < 0 

Existem duas possibilidades: 

b.1) (2 — 	< 0 c (6 — Vrgi) < 0 

Neste caso /3 > 6 implica em w < —1, entretanto, w e necessariamente maior que —t quando# > 0, restringindo 

assim uma classe de solucOes para — z < w < 

Observe em (16) que para > 6 o expoente em 0 e negativo, o que faz o valor do tempo conforme 0 = 0 

corresponder ao tempo cosmico t = —co. Este fato implica que para —1 < w < — a singularidade inicial esti 

deslocada para tempos t negativos infinitos, de modo que nao existe singularidade ern urn tempo proprio finito. 

Tern-se solusoes anti-big bang nao singulares. 

b.2) (2 — V67) < 0 c (6 — 1/6-0) > 0 

0 parimetro # esti agora restrito aos valores s < # < 6, como consequicia temos 	< w < 0. 
De (16) nos notamos que o momento inicial 0 = 0 corresponde a t = O. Pode ser visto ainda, (17), que o fator 

de escala do Universo evolui segundo urn expoente sempre negativo. Portanto, para < w < 0 temos novamente 

o cenirio anti-big bang, mas agora o Universo tern uma origem singular em t = O. 
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Table 1: Classificacao das solucoes cosmolOgicas. 

Parametro # Parametro w Cenario 
0 < 0 s w < - 5  solucan nao fisica 
0 < 13 < ;4 ta > 0 big bang singular 

< # < 6 -I < w < 0 anti-big bang singular 
0 > 6 1 < (., < - 1 anti-big bang nao singular 

3.2 Fluido de Radiagio - ( p = p/3 ) 

Ao considerarmos urn Universo preenchido corn urn fluido de radiacao somos conduzidos as seguintes solucOes: 

3.2.1 f3 < 0 (w < 	(k = 0) 

a = 

(18) 

(20) 

a = 

(1) = 0,,cosh(V789); 

exp( %7-etan - llsinh(V:30)1) 
ao  

Vc"h( 	°) (1 - exp(±V72ap tan- ilsinh(V7- i0)1)) 

3.2.2 [3 > 0 (w > 	(k = 0) 

= cbosin(V, -30 ) 

as 	tanfr' (48 ) 

isin(‘g0) (1 - ean ± 	0.1q)) 	

(21) 

Uma anahse detalhada destas sohicoes revela urn comportamento semelhante ao caso vicuo, no que concerne 
aos parametros da teoria. Contudo, para urn Universo radiativo podemos tracar a histOria termica do Universo. 

A definicao da temperatura do Universo como 

T(0) oc cT93 ; 

nos permit° descrever o sett comportamento termico, durante a evolucao da solucao (21), em fungi° dos parametros 
do model°, j3 e w. 

Observamos os seguintes comportamentos: 
w < --q 	neste caso a temperatura do Universo inicialmente decresce, mas rapidarnente passa a aumentar 2 

indefinidamente. Este comportamento contradiz as informacoes observacionais. 
w > 0 	o Universo corneca corn uma temperatura infinita, e resfria a medida que o mesmo expande. Estes 

caracterizado o cenario big bang. 
— z < w < 0 	a temperatura initial do Universo e zero, e aumenta ate atingir urn valor maxim°, a partir 

do qual conteca a decrescer novamente a zero. Esta temperatura maxima e obtida no rnomento em que o raio do 
Universo alcanca urn valor minim° diferente de zero. Este e o cenario anti-big bang. 

4 Problema do Horizonte 

A existencia da fase de contracao no cenario anti-big bang nos possihilita sugerir. uma solucho alternativa para o 
problema do horizonte, visto que, a distincia do horizonte prOpia pode ser uma funcio crescente do tempo cosmic°. 
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A definicio da distincia do horizonte prdpia e dada por: 

	

dH 	
dt 

a(t) 	= a(9) I a 2 (0)dO • 
	

(22) 

Por simplicidade nos restringiremos aocase > 	k=0ep=p= 0, o que nos fornece 

ae3  

	

(ill 9 	 (23) 
2  Oin(f/10) an 	2 1.  

Ao efetuarmos urns analise assintotica, nos verificaremos que d u  e uma furicao sempre crescente para w > 	para 

< co < 	dH a inicialmente uma fund.° decrescente de 0, inas torna-se crescente antes que o fator de escala do 

Universo atinja seu valor minimo. Este comportamento sugere uma soluciio para o problema do horizonte, ja que 

o Universo pode estar completamente envolvido pelo horizonte causal nos primeiros momentos de sua existencia. 

[1] C. Brans and R.II. Dicke, Phys. Rev. 124, 925(1961); 

[2] D. Dominici, R. Holman and C.W. Kim, Phys. Rev. D28 ;  2983(1983); 

[3) F.G. Alvarenga and J.C. Fabris, Astrophysics and Space Science 226/1, 109-124(1995); 

[4) F. G. Alvarenga e J.C. Fabris, Classical and Quantum Gravity 12, L69-L74(1995); 

[5] F.G. Alvarenga and J.C. Fabris, A Primordial Cosmological Scenario and the Horizon Problem, a ser puplicado 

na General Relativity and Gravitation em 5/96. 
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In recent paper[1] it was determined cosmological and static spherical symmetric exact solutions for a five 

dimensional theory with internal timelike dimension. Can this spherical static solution, with its non-standard 

properties, describes the physics at local scale, for example, at the scale of the solar system? Row can we impose 

observational limits on the strength of the scalar fields (and as a consequence on the introduction of extra time-like 

dimensions)? These are the questions we want to answer here. 

We will consider the three classical tests of General Relativity in the context of the above theory. We will use 

the Parametrized Post-Newtonian (PPN) approach. 

The effective Lagrangian which comes from the dimensional reduction of the Einstein-Maxwell theory in five 

dimensions can be written as [I], 
3 41,,V 

L - 	 ' 	
P 

; 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8)  

V 	(4)R  + 
2 	

) 	
, 

which leads to the following field equations: 

1 	 1 
41., 	— 	40') +1 	— Rom 	R 	 AI 	— (). 	 ) = 	- -3 

	
(41. 	— 	 g 	. 	 . 	g 

20 2 	' P 	2 	P 	' P 	41 	PP 	°
„04) — VO" 

	

41 . 	40 ;P 
04) 	•P 	0 = 	; 

4) 

	

4). 	41 ;° 

	

040 ' P 	0 

	

-
= 	. 

The static spherical symmetric metric has the form, 

ds 2  = B(r)dt 2  — A(r)dr 2  — r2 (d02  + sin0d02 ) 

With this choice for the metric, the field equations become 

B” 	1 13 1 	B' 	A' 	1 	A' 	4,'1 B' (11' 

171 	473 ( 73 + 7 )—  T. ( 71 	2 717) 	= 	2 B (I) 

	

1 13" 	1 B' ,B' 	A' 	1 B' 	1 , 41 1  0 	1 B' (1) 1  
TT 

12 

	

„ 	A' 	B' 	2_, (7. ; 	
)4) 	= 



 41"+(-2)V27/ +;)*, = 
r 	A' 	B' 	1 

1  FA-(—  + 3)  A 

4)' 

r2 r 4) 1 
 271( T)2+  AT • 

(9) 

(10) 
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Equation (9) admits the first integral, 

A) 1  1 
B r 2  

With the aid of (11) we obtain from (8) as 

= 	+ a'Wou , a' = cte . 	 (12) 

If we denote F as a primitive function of u (F' = u), we have 

= 	+ be-4°F 
	

(13) 

= 	be"° F  — a' 
	

(14) 

The solution found in [1] corresponds to the case where a = 0, k 2  = To and B4' = 1. It leads to the expressions 

2 
	)±2 A =  	 ±2  

1 +x2 1+N/1-FE 2  

B = ( 	z 	)±2  
1 + ■,/F x2  

where x = F 
In general, the PPN parameters are obtained by developing the static spherical symmetric metric in its isotropic 

form, 

ds 2  = B(r)dt 2  — A(r)(dF 2 + P2 d0 2  + F2sin 2 9452) . 	 (17) 

The central mass field is described, in the post-Newtonian approximation, by means of a development in t3 and A 
[2]: 

„ GM „,,G 2  M 2  
= 1— La - LA) _ 	• ± 

	

rc2 	r2c4 

 A = + GM
+ . 

TC 

One can also use the standard coordinates, 

ds 2  = B(r)dt 2  — A(r)dr 2  — r 2 (d0 2  + r 2 sin 2 Ode) 

In this case, the PPN development takes the form, 

	

B = 1— 2a—
rc2 

+ 	— 7 
G

r
2
2
Af
474

2 
+ 	, 

GM 

GM 
A = 1+ 27—rc2 + 

The experimental values are a = 	7 = 1: 

• a = 1 permits to find the Newtonian theory in the low speed limit; 

• J3 = 1 leads to acceptable values for the advance of the perihelion of the planets; 

• 7 =1 is compatible with the observed deviations of light rays by the Sun and with the Shapiro's effect. 

(18) 

(19) 

(20) 

(21) 

(22) 
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Among the Eddington and Robertson parameters (a, 	and -y), 13 is experimentally known with the lower 

accuracy; however, its uncertainty remains smaller than I%[3]. The General Relativity theory predicts a = Q = 

= 

We develop now the functions B and A given by (16,15). We get, 

n 	n2  1 
B = 	– + 	+ 	 (23) 

x 	2 Z 2  

A = 1 – + 	, 	 (24) 

where n = ±2. The condition o = 1 leads to nk = 2%1 . So, 

GM G 2 M 2  
1 – 2 	+ 2 	+ 	 (25) 

rc2 	I,2 C 4 

	

A = I – 2 GM 2  + 	. 	 (26) 

Identifying this development to (22,21) we obtain 7 = –1 and /3 = O. As consequence, the deviation of light rays 

A = 25,74 (1 + 7) and the advance of the perihelion of the planets A4 ,  = 6 GM  ( "3+2" ) are zero. 

Remarkably, we have a null result for the gravitational effects of a space-time with spherical symmetry described 

by (16,15), in spite.of the fact that this space-time is strongly curved. This suggests that the considered solutions 

may not describe the field of a central mass. 

The field equations (10,9,8,7,6) admit as a spherical symmetric static solution • = cte and %II = cte, leading to 

GM 2 	GAI,_id 	 sin20452) ds2  = (1 – 2-7,-)dt – (i – 2 	r
2 

r
2 ido2  

TC re -  

that is, the Schwarzschild metric in the standard coordinates. The theory under consideration can describe the field 

of a central mass. We can ask if this "trivial solution" is unique. 

To answer this, we consider the following development for B and A: 

B 

A 

= 

= 

a 	[3 
1--+ 	+ x 	x2 

6  1 + 7  x– + —x2 + 

(28)  

(29)  

where 	_ 	cm 	Using this relation we can rewrite the field equations (10,9,8,7,6) s 	ram' 

. 

Moreover, the substitution ‘D o  . 241 0 implies .,111  

employing the substitutions 

(30)  

(31)  

(32)  

; 	 (33) 

+ 04 	; 	 (34) 

(35)  

(36)  

&it 	 A 	1 , V 	ki, 0 ( 	 .14 	 ,:1)  
dx 	 Hi 	,2 

Then, we find the following developments for the terms of interest for us: 

a 	p B = 	1 –
X 
 + —2 + 03 	 A = 1 + 7 – + 

22 
— + 03 

X 	 Z  
B' 	a 	01. 2 ___ 2,6 	 A' 	7 	72  – 26 

+ 	
04 

-if 	
= 

	

1 	= 	+ 
x2 	x3 	

+ 	
A 	x 2 	x3 

2  B" 	a 	6f3 – 2a 	 if' 	4,3 = 	–2 	 ,,2 

	

05 	 05  

	

+ 	= _ + 
B 	x3  + 
	 1 	k 4) / 	x4 x4 

Using (6) we calculate -4i=: 
41, ' – a 1 	-y2  – a 2  + 213 – Alq 1 

04 + 4' = 	2 	x2 	 2 	x
3 	. 

7 

rc 

(27) 
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Equation (9) leads to 
1 

(2,3 — 	— + 41g.) 7, + 05 = Q 	 (37) 

implying 23— ia(a — 7) + 14 = 0. If we now impose 2b — iet(ef —7) = 0 as in General Relativity, we have ►lio = 0. 

So, we find (I)' = 0 and q, ' = O. We must conclude that the only solution for the theory considered that has the 

same post-Newtonian limit as General Relativity is the trivial one. 

So, this theory can be employed at cosmological level, but it is not valable to represent the local physics, as it 

is tested today.. 
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The spectrum of massless bosonic and fermionic fluids satisfying the equation of state 
p = (7. — 1)p is derived using elementary statistical methods. As a limiting case, the 
Lorentz invariant spectrum of the vacuum (y = 0,p = —p) is deduced. These results are 
in agreement with our earlier derivation for bosons using thermodynamics and semiclassical 
considerations. 

1 Introduction 

The class of 7-fluids is the simplest kind of relativistic perfect simple fluids used in the framework of general 
relativity and cosmology. Such a class is usually defined in terms of so-called "7-law" equation of state 

P = (7 - 1)P 	 ( 1 ) 

where 7 E [0,2]. Some special types of media described by the the above relation are: (0 vacuum(p = —p, 7 = 0) 
(ii) a random oriented distribution of infinitely thin straight. cosmic strings averaged over all directions(p = —§p, 
-y = 2/3)(iii) blackbody radiation (p = p, 7 = 4/3) and (iv) stiff matter (p = p, y = 2). In a series of recent 
papers (Lima and Santos, 1995; Lima and Maia, 1995a, 1995b), some general properties of this monoparainetric 
family of fluids have been discussed based on thermodynamic and semiclassical considerations. In particular, we 
have stressed the unusual thermodynamic behavior arising when the 7 parameter is smaller than unit. 

In the present article, our main goal is to show how the Planckian type distribution for a 7-fluid, which has been 
discussed there in the framework of the old quantum theory of radiation, can be reproduced in the domain of the 
statistical mechanics. This allow us to extend the theory for fermions as well. Of course, the third and last step 
would be to derive the spectrum from a more basic theory as quantum field theory. 

2 The Spectrum of 7-Fluids 

Now consider the canonical procedure to compute the pressure p and the energy density p in elementary 
statistical mechanics. These quantities are defined by 

,„, 8tnQ 	kT 2  (01nQ p= (-- all  ) = - 
7 . 	V 	OT v  

(2) 

where tnQ is the grand-canonical thermodynamic potential, which corresponds to a quantum fluid in contact with 
a thermal reservoir at temperature T. Let us now assume that the 7-fluid behaves like a kind of radiation, which 
differs from blackbody radiation only due to the equation of state. It thus follows that the chemical potential of 

• e- 	itespichencei fi .unicamp.br 
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any 7-fluid must also be taken identically zero. In this case, by considering a continuous spectrum, we have the 

well known formula (ltzykson and Zuber. 1980) 

 enQ = 	en (I exp(—  
kT

)) f (w)clu, 	 ( 3 ) 

where the upper and lower sign inside the big parenthesis corresponds to bosons and fermions respectively. 

Our aim now is to find the unknown function f (ca), which is the density of states per energy unit. From equations 

(I)-(3) we get easily 

— 	en (1 exp(--
kT

)) f (w)dc.1 = (7 — 1)1i j 
exp(

f )

1 
dw 
	

(4) 

The above equation points to a singularity at 7 = 1. This rather pathological case("dust"), describing a zero 

pressure fluid will not be considered here. A partial integration on the left hand side of (4) furnishes 

1 00 
u.a 

kT en (I exp(— r 
kT )) FP)i o h 	

F(w) 
 dw 	 ( 5 ) 

exp(L-V)T 1 

where F(w) is a primitive of f(w) 
F" (G.') = f(w) 
	

(6) 

Let us now suppose, for a moment, that the first term in (5), which corresponds to a boundary term, vanishes. 

In what follows, it will become clear under which conditions the function f (a,) will fullfil such a constraint. Hearing 

this in mind, we may Write from (5) and (6) 

Joy 	

F(w)
dw 	 wf(w)  dw = (7  I) 	 (7) 

exp( Arti, ) 	 exp(klr'' ) 	I 

'['he correctness of the above equation will be guaranteed if the functions f(w) and F (w) obeying (7), satisfy 

the following relation 

	

P(w) = — 1)4(w) • 	 ( 8 ) 

In principle, we can not guarantee that equation (8) will furnish all physically meaningful solutions of equations 

(6) and (7). Our confidence that it is the physical solution is supported by our equivalent earlier result using only 

thermodynamics and semiclassical considerations(Lima and Maia, 1995b). In addition it is easy to see that Eq. (8) 

is independent of the statistics of the 7-fluids particles. 

From equations (6) and (8) one obtains the differential equation for f (w) 

I' (w)  
f(w) 

= 	1 ./ 6.„ 

	

, 2 — 7, 1 	

( 9 ) 

where the prime denotes derivation with respect to w. The solution of above equation is straightforward 

	

f(w) = Awl 	 (10) 

where A is a 7-dependent integration constant. Now, inserting the above equation into (3) and using (2) we obtain 

	

P( 7) = 10 exp(11,0 	I dw 

Therefore, the spectrum of a 7-fluid reads: 

Aw + 

	

p(co , T) = 	  

	

ru....% 	 (12) 
expi,FT ) 

For the case of bosons, equations (I I) and (12) above are, respectively, (39) and (53) presented by Lima and 

Maia(1995b). As expected, by introducing a new variable x = Pi, one obtains from (11), the generalized Stefan—

Boltzmann law (Lima and Santos, 1995) 

	

P(T) = qT54.1- 	 (13) 

where the constant ri depends on the 7- parameter as well as of the bosonic(or fcrrnionic) spin degrees of freedom of 

each field. Note also that the above expression for p(T) does not means that the energy density is always finite for 

any value of 7. In particular, for the vacuum case(7 = 0), p effectively does not depends on the temperature, but 

the constant is infinite, as it should he from quantum field theory. 
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3 The Vacuum Infrared Divergence 

The validity of equations (12)-(14), is crucially dependent on our earlier hypotheses concerning the boundary 
term in equation (6). From (8) and (10) it follows that 

F(w)= A(7 — 1)c,,; 4-7  . 	 (14) 

Now, inserting the function F(w) into (5), we find a divergence in the limit w 	0, when 0 < 7 < 1. In the vacuum 
case, for instance, equation (12) reduces to 

Ahw -I  
N.:K( 4' ,T) = 	 (15) 

exp(t4i) 1 

As it appears, the spectrum for negative pressures (0 < 7 < 1), demands a closer attention due to the inevitable 
existence of an infrared divergence. 

To avoid the infrared catastrophe we proceed in analogy with the Casimir effect, in which the divergent energy 
density has been regularized by a ultraviolet exponential cut-off e - aw, with a > 0 (Plunien et al, 1986; Ruggiero and 
Zimmerman, 1977); Accordingly, the infrared exponential cut-off a -  a, a > 0 will be considered. By introducing 
the regularized function Fo (w) = F(w)e -  5, it is straighforward to check that F c,(w) makes the boundary term in 
(5) vanishes. Now, returning to equation (6), we may define its regularized counterpart, f,(w) = F,„1 (w). In this 
way, as a consequence of (14), the regularized density of states function is given by 

— 

	

 fcr (w ) = A(1 + 	
1)a 	

exP(--
a 

) 

which, as should be expected, reduces to f (w) in the limit a 	O. Lastly, using (5)-(7) the regularized equation . of 
state reads P. = (7 — Op ° , where the the regularized pressure and energy density are 

co  Fa(w) 
 rica , Pa = 1: expw/h

rr"(w))T 1 dw  
P`r  = 	exp( IPIC) 1 

Note that the regularized quantities Pa  and p a  are finite, however, they are cut-off dependent. To eliminate this 
dependence a renormalization scheme is required. This issue is presently under investigation. 
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In this .  work we show a procedure to obtain a canonical description of standard cosmology. 
It is based on the fact that, within the framework of Einstein's General Relativity, the 
dynamics of spatially homogeneous and isotropic perfect fluid is governed by two equations 
for a pair of variables (roughly the radius of the Universe and its rate of change). We show 
that this system admits a Hamiltonian formulation, and we provide its quantum version. 

I Introduction 

Quantum cosmology has proven itself to constitute a source of arguments about the possibility to present the most 
favourable states of the universe. Indeed, the most direct and simplest way to analyse the quantum properties of the 
universe is to consider the "Minisuperspace" [I] approach. This idea was developed to deal with the whole system 
of Einstein equations of GR. in a narrow constrained context, where the majority of degrees of freedom is "frozen". 
Such a framework has been widely used, although there has been some criticism on this issue [2, 3, 4]. One of the 
points that have been raised is the necessity to choose a gauge; furthermore, depending on the order that this gauge 
is chosen — before or after solving Schrodinger equation — a different result is obtained. The procedure basically 
involves dealing with Wheeler-DeWitt equation, that reduces to the Hamiltonian constraint 7d = O. However there 
is another scheme which, as far as we know, does not seem to have been noticed before as a possible way of dealing 
with the quantum properties of the universe, which will therefore be presented here. 

The basic assumptions of our method are the validity of classical equations of Einstein General Relativity. The 
method goes back to their reduction to a set of equations that constitute a planar dynamical system'. Indeed, 
Einstein equations for Friedmann universes reduce to a set of equations for p (the energy density) and 0 (the rate 

• 

of expansion of the universe) — defined as 0 
der  
= 3A/A. 

II Friedmann Solution 

The Standard Cosmology deals with a spatially homogeneous and isotropic geometry characterized by a single 
function A(t) — the radius of the universe 2  — and a constant parameter e — the 3-dimensional (topological) 
curvature. 

Einstein equations for the FRW geometry reduce to the following seta of coupled differential equations: 

Goo  = —3 (4) 2  —A = —p + A 

Gli = 24 + (4) 2 
+ 	= —p — A 

2 

G 2 2 = 2 4 	 —p — A, 

'Submitted to Physical Review D. 
Recently 151 we have shown that the dynamics of gauge-independent perturbations of FRW universes reduces to a planar autonomous 

system as well. We have then developed the method of the auxiliary Hamiltonian to analyse it. 
'We take the geometry of Friedmann-Robertson-Walker (FRW) universes in the form 

= den A2(t) [dx2 c2(x) (d ip sin2 ( r9) do )1 

3 Other components of Einstein equations for this model do not provide any additional information, and will be omitted. Besides, we 
choose the natural unit system h=c.87r0=1 in order to simplify writings. 
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where A is the cosmological constant, which will be dropped front now on, and a dot means derivative with respect 

to the parameter in each expression (that is A E`14 	 ) . Perfect fluid condition implies Gil = Gzz, which 

in turn gives ic! = -e, where c classifies the constant topology of the spatial section (E = -1, 0, +1 for open, plane 
and closed sections, respectively). Therefore we have 

sinh 

	

6(X) = 	 • 

III Basic settings 

The first dynamical equation is obtained from the conservation law of the energy momentum tensor of a perfect 
fluid, as seen from a given comoving observer with normalized 4-velocity VP = bo and the other one is nothing but 
Raychaudhuri equation 

-(1+ A)p0 
(1) 

= 3,  62 

where use.  has been made of the state equation p = A p. The constant parameter A measures the dominant sound 
velocity in each particular phase of the evolution of the universe, and must be chosen in the interval A E [0, 1]. The 
value A = 1/3 represents the radiation dominant era, which has, as we shall see, a peculiar role in our description 
of spacetime. 

The dynamical system for (p, 0), Eqs. (I), has as a first integral the constraint given by G00 = 0, now written 

1 der 3E p+ 02 = 09  

	

A2 	3 
where the basic variables will be the pair (p, 9), and A stands for the time dependent solution for A(p(t)) of the 
equation p(t) = p o  A(t) -3(' ), — for A 0 -1, — which is a implicit solution for the first of Eqs. (1) when 0 is 
replaced by the above definition. 

IV Canonical Formulation 

The recognition of the fact that the above system could have its properties analysed qualitatively seems to have been 
pointed out at first by [6] (see also [7]). One can thus picture the behaviour of the complete class of the integrals 
of the dynamical system (1), by depicting the plane (p, 0). Such analysis has proved to be extremely worthwhile, 
yielding some insights concerning the stability of special solutions. However, this formalism does not provide the 
means for a complete analysis of the system (p, 9). The main reason for this is that the dynamical system in this 
form does not admit a Hamiltonian description. As we shall see shortly, this is just a consequence of an inadequate 
choice of variables. Indeed, if we choose a new set (q, p) of related variables defined by 

d_sf 3132 \ 371;TF 
IT) 

°` 
del „ 3 b2 ,` I4-1 

P = 3 	
7 	qp  

with b an arbitrary adimensional positive constant'', then it immediately follows that the corresponding system 
admits a Hamiltonian description. We note that these new variables are essentially the usual ones: 

3b2 4-7  
(q, p) E 	 (A, A). 

	

37 	• 

Employing these new variables on Eqs. (1), (2) we then get the following constrained canonical Hamiltonian 
system 

if (q p) = 
2 	92 

 _•-(1 +3A ), 
)  

and for convenience we perform a linear transformation on the constraint to get 

1(q, p) dg - 	c)(p(q, p), 0(q, p)) = H (q, p) - Ho 	0, 

4  Let us remark that we are using geometrical "natural" units h= c = IS = 1. 

as: 
(2) 

(3) 

(4) 

(5) 
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where 

ry del C ( 362 ) '76+7" 
110 = — —  

2 2p, 

is a constant in each stage of the evolution of the FRW universe, and 'Ay,' means weakly equal'. This shows 
therefore that the dynamics of such a universe is equivalent to the evolution of a particle acted upon by a potential 
V(q) = q - ( 11-3A) and subjected to a non holonomic constraint H(q, p) = Ho . 

The above formal mapping between the FRW dynamical system and a single particle acted upon by a potential 
may be clarified by means of the usual procedure of Newtonian Cosmology: let us supose a massive sphere of radius 
A and density p, and a unit mass test particle on its surface. The total (kinetic 2A2  and potential --67-1:1 ) energy 
of this test particle may be written as' 

• 

A2  
6 [

3  ( A) 2  

A 

which coincides with our former Hamiltonian expression (9). for A = 1/3. 
The last (strong) equality of Eq. (5) enables us to conclude that the constraint •(q, p) 	0 is dynamically 

preserved as its Poisson bracket with the Hamiltonian obviously vanishes identically (remember H o  does not depend 
on canonical variables). This result ensures that no second class constraints arises in this problem. Therefore 
classical Dirac brackets coincide with the usual Poisson brackets, and the quantization of such a system turns out 
to be rather simple. We will perform this job in the next section. 

The presence of a primary first class constraint means that such constraint is a generator of symmetries of 
the model, and may in fact be regarded as a Hamiltonian as well. The complete dynamics of the model may be 
described by the Total Hamiltonian 

Hr(q, p) cig H(q, p) - /4 4)(q, p) (1 - p) H(q, p) + p H o 	 (7) 

where I., plays the role of an arbitrary Lagrange multiplier. The last equality of Eq. (7) shows that the dynamics is 
formally invariant by such modification, as 

	

dt f(q, p) = {f(q, p), 11T( 11. P))Pn = (1 - 	{f(q, p), 	p))PB, 

where f(q, p) is an arbitrary function of the canonical variables, provided p is an arbitrary function of (cosmological) 
time t. We stress at this point that the canonical Hamiltonian H(q, p) yields all physical information we need and, 
as p  may be chosen arbitrarily, the model turns out to be explicitly invariant under reparametrization of time. For 
p = coast. 0 1, which will be assumed from now on, it follows that -the total Hamiltonian is constant as well. 
Renormalizing time by dr dg 	p)dt generates a spurious dynamical cosmological constant by 

HT(q, p; 
def
= 	HT(q,p)= H(q, p) + 1 	Ho, 

with all other physical characteristics remaining unchanged. In the above relation the entry r does not mean explicit 
dependence, but is merely a label to remember that such Hamiltonian generates translations in time r. Hamiltonian 
HT(q, p; r) will be the main one in order to construct the quantized version of this model, because in its spectrum 
all references to the arbitrary multiplier 1.1 are left to the specification of the constant shift 

t r, ^, Ho .  

	

TheHamiltonian Eq. (4) reduces on-shell to a constant H(q, p) 	HO , yielding the natural result that the energy 
of a closed system (the whole Universe) is a conserved quantity. Similarly HT is a constant too. 

At this point we would like to stress that one of the most striking characteristics of this potential comes from 
the use of the classical version of Virial Theorem'. Indeed this theorem states that, for a potential of the form 
V(q) = a qn (with finite p, q and constants a, n), the mean values of kinetic and potential energy are related by 
(7') = (V). In our case n = -(1 + 3A), which yields, together with Eq. (4), a mean Hamiltonian 

- 3A)  

	

(H) = (T) + (V) = 
(1 

2 	
(V), 

which vanishes when A = 1/3. This result, together with the on-shell Hamiltonian Eq. (6), suggests the spatial 
flatness of FRW solutions at the radiation era. 

5 Frotrt Dirac's terminology on constrained systems, meaning 
6  Remember that we have set G = 1. 
?This is the usual procedure when analyzing the problem by 
5  In fact the canonical variables above fulfill the conditions of 

the following paragraph. 

equality under consirainir. 

means of the Wheeler-De Witt [I) formalism. 
this theorem only for e = 0, which tnay be an alternative argument for 

( 6 ) 



igure 	 nts a single sharp peek, which should ID( 

We lustrate in Fig.l the 	dependent solution • 0 (4), 
inr erpre ation of the wave function: a single peek means that 
in this case) of that peek. This defines the quantum origin of 
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V Quantization 

As far as we are able to write a classical Hamiltonian Eq. (4) to describe the standard model, one can consider 
the canonical quantization of such system. We will limit ourselves here to the particular value A = 1/3, because 
this stage lies in a sufficiently condensed regime in order to justify a quantum description. On the other hand it is 
appart enough from Planck scales for equilibrium to be achived. Therefore that choice seems to be the best example 
for the method presented here. 

To do that one can then employ the standard quantization procedure to make (q, p) into the operators 

(4, P = -ice). Denoting the time dependent wave function '(q, r) = e- ' E T (P(q) we get. the stationary Schriidinger 

equation 

where 

-1/2 N 
dg [ him c [fi.„(z) .1 2  - K,_ 1 (x)K„. 1. 1 (x)}1 	, 	 (10) 

lim f [Ky+1 (z) - K„(z)] - vz K„(z)K, 44 (z))) 

and K„ are the well known v-order modified Bessel functions of second type. Ny  is finite due to the strong con- 
vergence of co(x) for large x, as one remembers that lira K n (x) = (27r x) -1 / 2e - r. Negativeness of the energy E 

rim 

means, from Eq. (6), that the spatial 3-sections should be closed (E = +I). 

bz 
+ (E += 0, 

	

4 (12 	
(8) 

where E = (411117.141) denotes the shifted energy eigenvaluc (of HT) of the state 40(q, r). 
The normalized — squared integrable (to unity) — solutions which represent the physical bounded states of 

such a system, that is, those with negative energy E, are given by 

	

9„(q) = N,--F.; q 	q), 	 ( 9 ) 

-1/2 

interpreted as the classical radius of the Universe. 

vhich is in agreement with the quantum cosmologic 
he system presents a definite value (of coordinate q 
he classical radius of the Universe. 

VI Conclusions 

It can easily be verified that the above solution presents a continuum energy spectrum, as v is independent from E. 
On the other hand, the solution given by Eq. (9) above presents a critical dependence on the arbitrary parameter 
b, which seems to restrict it to the range b E (0, 11, in order to preserve v real. This condition turns out to be the 
main difference between the quantum and classical descriptions of this system: boundedness quantum condition 
— that is, the negativeness of the total energy E, which in turn implies e = +I from Eq. (6) — translates itself 
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into a maximum strenght of the potential in Eq. (4). Therefore canonical formalism provides ways to select the 
topological parameter • for the radiation era in each context, classical (flatness) or quantum (closed topology). We 
hope similarly conclusions may help the analysis for other stages of the evolution of the Universe. 
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Estudamos o comportamento de urn sistema radiante (composto por urn oscilador harmonic° 
acoplado' a urn campo escalar relativista) em dois espartos-tempo curvos corn triespacos 
compactos (a triesfera S3  e o tritoro T3) tante* em condicao estatica como em expansio 
monotonica. As equagoes da evolucio temporal do sistema radiante silo reduzidas a uma 
tinica equacio para o oscilador harmonic° que contem Coda a informacio sobre a radiacio 
que ele emitiu e que retorna algum tempo depois - devido a que os triespacos sac, compactos 
- entregando-lhe energia. Unia analise numerica dessa equacao para cada caso mostra que 
o fenomeno conhecido comb perda de radiacio (tipico no espaco-tempo de Minkowski) 
se apresenta em todos os casos exceto no espaco-tempo estatico onde a parte espacial e a 
triesfera. 

Introduction 

A gravitational theory - e.g. General Relativity - does not settle the topology of the spacetime manifold 

which actually is given by hand - coherently with the geometry (i.e. with the metric) and probably motivated by 

observational data - or is infered from sufficient assumptions regarding global properties of the spacetime [1,2]. For 

instance the commonly accepted - but false - belief that our universe is globally spatial homogeneous fixes almost 

uniquely the topology of the spacetime. However, present astronomical observations show that the large-scale galaxy 

distribution is not homogeneous but tends to be clustered in sharp walls separated by vast regions devoid of galaxies 

[3]. Moreover, recent data show a possible periodic arrangement in the redshift distribution of quasars and cluster 

of galaxies (as recent deep surveys within small angular regions of the sky has revealed [4]) which favors the idea of 

universes with closed - i.e. compact and without boundary - spatial sections where periodic distributions can 

naturally arise [5]. Therefore it results interesting to investigate what could be a plausible (and not only possible) 

closed topology for our universe. 

This work concerns itself with the time-evolution of a radiating system in static and monotonously expanding 

Friedman-Robertson-Walker (FRW) spacetimes with - topological and geometrically distinct - compact three-

spaces. The metric of these spacetimes is [6] 

ds 2  = d1 2  — R2(t)[ 
dr2 

1 — kr2 
+ r2 (d9 2  + sin 2  042 )]. (1) 

The scale factor R(1) gives the dynamic behaviour of the universe and the constant spatial curvature k(= 0, - 1,+1) 

specifies the type of local - geometry of the three-space (flat, hyperbolic or elliptic, respectively). The compact 

three-spaces we shall consider are: the three -sphere 53  (simply-connected with elliptic geometry k +1) and the 

'work supported by a CLAP- CNN fellowship 
on leave from: Facultad de Ciencias, Universidad Nacional de lngenieria, Limn, PERU 
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three-torus T3  (multi-connected with flat geometry k = 0) [1]. 

The Physical Model and the Evolution Equations 

The radiating system is given by an illustrative coupled model [7] composed of a classical harmonic oscillator - 

representing an oscillating energy source - in linear interaction with a relativistic massless scalar field - which 

will be responsible for the waves radiation -. In this model the gravitational field is treated as external, although 

the conformal coupling with the scalar field is considered. The dynamics of the model is fully described by the 

action of the system which, in units where c = 1, is 

S = 	d4 	[ 9" 014500;5  - 
i f 2  + 71 dt [Q 2  - 4Q 2 ] 

1 

2 

+ 
 A I

cezi----Ti PO, x)Q(i)0(itr), 
.A4 

where M=IxA f, I E [to, oo) and :1/ is the compact three-space; it is the scalar curvature of M, Q a dQldi, A is 

the coupling constant. Here we consider a point-like coupling between the harmonic oscillator and the scalar field, 

i.e. P(t,z) = 45(3) (z)1 V -9(t, 	The uncoupled frequency u.), is necessary for a renormalization procedure. From 

the action (2), variations with respect to Q and cb give the coupled evolution equations of the system, namely 

1 
[0+ 

6
-10(i, x) 	= 	AP( 1 , 0 )(2( , ), 

(1)+4(t)Q(i) 	= 	A Id3x J p(t, 2)0(1, x), 
/4/' 

(3)  

(4)  

(2) 

where 00 We first solve equation (3) as an initial value problem c5 

42!  + O H , where OH(t, x) satisfies the homogeneous equation of (3) and cbi is given by 0/(t,x) 

f 	 , x'; t, xpip(e , xl)C2(e), where the retarded Green function G is a fundamental solution of ❑ + 6  R [8]. 

Our initial condition (i(t ° , x), a,o(to, x)) = (0,0) (the scalar field has no initial energy) implies that Off(i.,x) = 0, 

therefore 0(t, x) 	0/(1, x). 

Profiting the fact that all FRW metrics are local-conformally flat [6], and remembering that the source is point-like 

and is located at the origin (x' = 0), we find [8] 

6apt) - f( 1 ')P lx1 2)  GU(1 1 ),0; f(t),x)= 	mimti) 	' 
(5 ) 

piecemeal in conformally Minkowskian regions. The global Green function is found by appropriately matching the 

local C's. Finally the radiation-reaction equation of the oscillator is found using the relation q5 = 0[Q] in equation 

(4). 

Radiation-Reaction Eq. in FRW with Compact Three-Spaces 

The S3  case 

S3  is a simply-connected compact three-dimensional manifold with elliptic geometry (k = +1). The spacetime 

metric is obtained from the metric (1) making k = +1 and r = sin x where (x, 0,1,o) E S3 , for x, 0 E [0, 7rj, so E [0, 27r]. 



160 	 XVI Encontro Nacional de Fisica Particulas e Campos 

The spherical symmetry of S3  implies that C(f(e),0; f(t), x) = G(f(t 1 ),0; f(t),x) [9]. Thus, the Green function 

for the FRW spacetime with three-space S 3  is 

G(f (I)  - f(t'), x) - 47rR(t)R(t')sin x {6(f(t) f (i')  - x) 
00 

	

+Ele_6(f(t) - 27rn f (L I ) - x) - e + 6(f(t) - 2rn - f(t') X)i} 
	

(6) 
n=1 

where 0± a. e(f(t)- 27rn f x) and 9(s) = 0 for s < 0, e(s) = 1 for s > O. Then we find the renormalized (see [9]) 

radiation-reaction equation of the harmonic oscillator 

N -1 
QN(t) 21' N (t) + ego) = -4F E e(t - t n )Qp,r_ n (g„(t)), 

n=1 

for arbitrary (Q 0 ,( 0) E (Q(1 0 ),(t 0)), with t E [t n _ 1 ,1„], I n 	f-1 (27rn), 2 < n + 1 < N a (f(t)/27r] (the symbol 

[h] means the greatest integer less than h + 1), and 2r 	A 2 /4r. Given t, N 	if(t)/2ri defines the interval of 

solution, afterthat the equation can be solved interval-by-interval [tn_i, in ), starting with 'n = 1. 

gn(i) 	f-1 ( f(i) —  2irn), n > 1, 	[ffy, tP,r-Fi] 	UN-n,t/4_,,.,.1], for N > n > 1, and with go (t) a t. It has the fol- 

lowing properties: (i) g n+1 (t) < gn (i) < t, (ii) g n (t m ) = t m -n,Vm > n > 1; r I  (0) = to, (iii) jn(t) = R(g n (t))/ R(I). 

Thus, given t, g n (l) represents a preceding value of t and ((gn (t)) represents the radiation emitted at time g„(t) 

that returns - after travel around S 3  - to interact with the source at present time t. 

The T3  case 

T3  is a multi-connected compact flat (k = 0) three-dimensional manifold obtained identifying the opposite faces 

of a parallelepiped (here we consider a cube of side a). Its metric tensor is that of the FRW (k = 0) spacetime. We 

can express it in cartesian coordinates, (x, y, z) E T3  and take in mind the topological identification of the point 

(x, y, z) with (x + ja, y + /a, z + mu), Vj, /, m integers. 

A wave emitted from the source (located at = 6) travels towards the cube faces and - due to the identifications 

- returns divided in infinite small parts, each one having followed a different path and therefore arriving at a 

distinct time. The Green function has the same form as (6) with the replacements x r IiI, 2rn an 

avri2 + /2 + ma , Vj , 1 , m integers and with normalized coefficients cn /M in the sum terms. It is important to note 

that due to the discrete analysis we shall perform - where irrational numbers are not considered - M is calculated 

considering only the returning light-rays (that is, those directed towards (j, /, m) all integers); in rigor cn /M 0 

if we consider "rational" and "irrational" light-rays. 

Then, the radiation-reaction equation of the harmonic oscillator is 

N -1 
Q N(t)+2PQNG)+c12QN(t) = 	E e(t — in)ene2N_.(1 — 

n=1 
(8) 

for arbitrary initial data, with t e [in _ i , Gib I n  E 	(a n ), 2 < n+ 1 < N 	If (t)/21r]. These retarded contributions 

correspond to the light-rays that travel along different paths until they encounter again the oscillator at later times. 

However light-rays directed toward (p, q, s) where at least one of these numbers is irrational never return to the 

( 7 ) 
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origin, therefore do not contribute to the energy of the oscillator. 

Numerical Analysis and Conclusions 

The numerical solution of the radiation-reaction equations (7) and (8) is used to construct the energy-function 

of the harmonic oscillator E(t) = i[Ot) + fl2 Q2 (t)1, which is then used for the energy vs time plots of Figures 

1-4. We assumed r = ft = 1 and the initial-data (Q(to),Q(t o )) = ( 0), which implies that E(to) = 1. In Fig. 

1 we have considered the static sJ? x S 3  spacetirne (best known as the Einstein universe), with 21rll = const. = 1 

and Mt) = t — t r„ t„ = n, ri > O. In Fig. 2 the same spacetime with monotonic expansion R(I) = c(t — I), with 

c = tri2/27r is analized, where 4,,(t) = (0.5)", = 2", n > O. Fig. 3 corresponds to the static 3? x T3 spacetime 

where a = const. = 1 is the side of the cube. In Fig. 4 we consider this spacetime but in monotonic expansion 

a a(t) = I . 

The results show radiation damping in all cases except in the Einstein universe where the time-average of the energy 

is constant..We can analize these results observing that the absence of radiation damping is due essentially to [9]: 

a) that every emitted light-ray returns, and b) that they return at a finite time. In fact looking at geodesics in the 

Einstein universe we observe that conditions a) and b) are satisfied (regarding b) every light-ray emitted at time t 

returns at 27r11). In the expanding case however — assuming that there is no Future Event Horizon — condition -

a) is satisfied but b) is not since as the expansion proceeds the time-travel of light-rays is always increasing. In the 

T3  static and dynamic cases condition b) is not satisfied since there is no upper limit for the light-rays time-travel. 
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Discutimos a abordagern de Schrodinger para intera.coes gravitacionais e a eletrodinamica de 
Weber. Entail fazemos use dente mode10 para calcularmos a energia de unia carga movendo 
- se no interior e exterior de urn capacitor ideal. isto resulta em uma velocidade limite, c, e 
na variacao da massa da particula corn o potential eletrostatico e sua velocidade. 

I - Interacao Gravitational 

Em 1925 Erwin SchOrdinger propos uma energia de interacao gravitacional entre dual massas pontuais rn e rn' 

que a uma funcao de sua distancia r, )  e da velocidade radial r, j  = 	1). Esta energia Wu  é dada por 

2 
WQ  = 

Grnm' [ 
r1) 	

3
(1 - Vc 2 ) 3/ 2  

Ginra' [3 
- 2 (1 	I VI; • ilir) 2 ) -3/2 	 (1) 

rij 	 c2 	r 
= -  

2  i j  

Nesta expressao c = 2.99 x 108  m/s e G é a constante gravitacional (G = 6.67 x 10' 11  ma /s2 kg) Corn ii., = 0 

recuperamos a energia potential Newtoniana. 

Expandindo a eq. (1) ate segunda ordern em i', 1 /c obtemos a parte usualmente nao explicada do perielio dos 

planetas e a implementacao do principio de Mach [1, 3). 

SchrOdinger mostrou quo integrando a eq. (1) para lima massa taste m interagindo corn urn universo homogeneo 

e isotropico corn uma densidade P o  obtemos 

W=A 
171C 2 

— v7/c2 

3 mc2 1 
c2  

(2) 

Nesta equacio v=11.71 é a velocidade de m relativo a urn sisterna de referencia no qual o universo como urn todo é 
estacionario. A constante A e dada por 4rrpoGRII/c2 , onde H0 e o raio caracteristico do universo. Se Ro a estimado 
corm c/Ho , onde Ho é constante de Bubble, entao A pode ser tornado como aproximadamente a unidade, A = 1. 
A partir daqui assumimos A = 1. Deve ser resaltado que a eq.(2) e a energia cinetica mais a "energia de repouso" 
da particula. Assim temos Ks = W — ER, onde Ks é a energia cinetica de Schrodinger e ER a energia de repouso. 
Fazendo v/c = 0 na eq. (2) obtemos ER = - rnc2 /2. Com  isto Ks d dado por: 

rnc 2 
Mc2 . 

'Lnternet: CA LUZIOCCE.UFES.BR  
Plambem Professor Colaborador no ❑epartamento de Matematica Aplieada, IMECC,UNICAMP,I3081-970, Carnpinas, SP 
:Internet: ASSISCIFTLINICAMP.BR 

K5 = 
✓1 - v 2 /c2  (3) 
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Vernos que SchrOdinger obteve urn analog° a energia cinetica relativistica. Apesar desta sirnilaridade de forma, as 

duas sac) conceitualmente bem distintas. A massa que aparece na expressao de Schrodinger e gravitational, enquanto 

que na express -do relativistica e a massa inertial de repouso. Alem disto a expressao de Schr&linger implementa 

perfeitamentc o principio e Mach por partir de uma expressio completamente relational que e uma generealizacio 

da energia potencial de Weber, como veremos abaixo. 

II - Interacao Eletromagnkica 

Estudaremos ulna particula carregada inovendo — se ortogonalmente as placas de urn capacitor ideal corn uma 

densidade de carga ±a em suas placas situadas em ±x0. Para isto vamos utilizar a energia potencial proposta por 

Weber, [2]. Dada por 

(• 2 

	

= gig) I 	I — 1  rij  U,)    

	

47re0 ru 	2 c 2  

Note que expandindo a eq. (1) ate segunda ordern em ride e substituindo Gnzne por q 1 q1 /47reo obtemos a eq. (4), 

como foi dito acima. Observe tambem que ao fazermos 	= 0 recuperamos o potencial Coulombiano. Ao fazermos 

isto na eq. (1) obtemos o potencial Newtoniano. lntegrando a eq. (4) sobre as duas placas obtemos 

tt2 

Uw(±x — x o  > 0) = ±q 5--xo (I + 
2c2 Co 

v
2 

brw (— X0 < X < X0 ) = q—x (I + 	. 
Co 	2C2  

III - Energia Total 

A energia total da particula quando consideramos o potencial Weberiano e a energia cinetica de Schrodinger e 

E = Uw + Ks onde E e a energia total, Uw e a energia potencial Weberiana e Ks e a energia cinetica de Schrodinger 

dada pela eq.(3).. Utilizando o principio de conservacao vem: E(..r < —r o ) T E(—x o  < x < x0). Tambem utilizando 

a relacio o = coaw/2x 0 , onde Ari) e a diferenca de potencial entre as placas (Aso > 0), considerando x = xo, ou 

seja, a particula teste saindo pela placa positiva e q = —e (inn eletron), reremos 

 

MC2 
 

  

(7) 
+ 	 - v2/0 • 

(4)  

(5)  

(6) 

Uma analise numerica da eq. (7) e dada na Figura 1 (curva identificada por Uw + Ks). 
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Figura 1. Comparacio entre as curves teoricas para as modelos Weber - Schrodinger e relativistico corn os dados experimentais 

de Bertozzi, corn os respectivos erros. 

0 principal resultado e que a velocidade da particula acelerada c sempre menor que c e assintOtica a c quando 

9:7 •—• 00 . 

IV — Discussiies e Conclusio 

Corn a finalidade de compararmos os resultados tambem vamos considerar o tratamento relativistico (energia 

potencial Coulombiana + energia cinetica relativistica) e utilizarmos os resultados obtidos na Seca° 3. Nos dois 

modelos utilizamos a conservacao de energia na forma E = K + U. A energia cinetica relativistica e dada por 

me/ V 1  - v 2  /c2 - nic2 . Este. expressao a analoga a energia obtida anteriormente. Deve ser novamente resaltado 

que a massa presente na expressao obtida por Schrodinger tern sua origem na interacao gravitational c a massa 

presente na energia cinetica relativistica e a massa inertial da particula. A energia potencial Coulombiana e obtida 

das eqs.(5) e (6) fazendo-se v 2 /c2  = O. 

No modelo relativistico, Uc + KR, a diferenca de potencial em fungi° da velocidade e dada por 

AS° =e 	Vi 172 /c2 I  

me  

A velocidade da particula, tende a c quando Aco — oo, Figura 1 (curva Uc + KR). 0 modelo Weber-Schrodinger 

levy ao mesmo resultado, ou seja, a velocidade da particula tende a c quando Aco . co. 

Existe urn experimento importante realizado por Bertozzi, [4], onde ele mede o tempo de voo de um eletron sendo 

acclerado em urn acelerador elel rostatico van der Graff e em urn acelerador linear, L1NAC. Ha cinco medidadas em 

seu experiment° nas quaie a energia cinetica dos eletrons, em MeV, sio: 0,5; 1,0; 1,5; 4,5 e 15. A partir da medida 

1 
( 8 ) 
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de tempo de vOo dos eletrons em cada medida e da distancia viajada pelos eletrons, 8,4 metros, Bertozzi obteve os 

seguintes valores para  v2 /c2. respectivamente: 0,752; 0,828; 0,922; 0974 e 1,0. Na Figura 1 comparamos os modelos 

aqui discutidos corn os resultados experimentais de Bertozzi. Graficamos v 2 /c 2  contra a diferenca de potential 

que acelera os eletrons. Como podemos ver da Figura 1 o modelo relativistico e o modelo Weber —Sehrondiger sio 

compativeis corn os dados experirnentais. 

Em seu artigo, [4], Bertozzi diz que o erro experimental para Codas as medidas e de dez por cento, 10%. 

Assim tambdm graficarnos os dados experimentais de Bertozzi corn os respectivos erros. Vemos que as duas curvas 

teoricas sio compativeis corn os dados experimentais dentro da faixa de erro. Como temos somente cinco pontos 

experimentais e .os efeitos de borda devido ao tamanho finito de capacitores reais e a indissio de correntes nas 

placas nao foram levados em considercao nao podemos decidir entre estas duas ultinras curvas Leafier's para este 

experimento. 

Maiores estudos sax) necessarios para urn melhor entendimento desta situacio. 
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Introducao 

Desenvolveremos uma anilise qualitativa das solucoes de UM modelo cosmologico multidimensional ho-

mogeneo e•isotropico onde se considera a presenca de um fluido dotado de viscosidade volumetrica. 0 coeficiente 

de viscosidade 6 admitido ser proportional a urns. potencia da densidade de energia, como sugerido por Belinskii 

et al (1977) [1]. As equacoes de campo sao escritas na forma de urn sistema dinamico, e o estudo a desenvolvido 

usando-se as tecnicas conhecidas para esse tip° de problema. 

Equagoes de Campo e Sistema Dinamico 

0 element° de linha pars o espaco-tempo (n + 1)-dimensional I 6 

ds 2  = dt 2  — a 2 (t)-y i,,,,dxPdxu — b 2 (t)7,,,bdxadx 6 
	

(1 ) 

onde p,v = 0,1,2,3, a, b = 4,5, ..., D + 3, a(t) e 6(0 sac) os fatores de escala dos espagos externo e interno 

repectivamente, e onde para simplificar, tomamos as curvaturas do espaco interno e externo nulas. 

A expressa° para o tensor momento-energia para urn fluido dotado de viscosidade foi obtida de [2] e e dada por 

JAB = (P + rfr)vAvb — PYAB, 
	A, B =0,1,2,...,0+3, 	 (2) 

corn 

= 11  e 	= P — (0 	= V A  ;A 	 (3) 

onde p e a densidade do fluido, p 6 a pressio do espaco externo, p' 6 a pressio do espaco interno, > 0 6 a viscosidade 

volumetrica do espaco externo e de acordo coin [1] = 	. 

As equacoes de campo sac) escritas na forma 

§A8   
AAR TAB (D + 2) T 	

(4) 
 

onde adotamos urn sistema de unidades onde 8irO = 1. Usando a metrica de Robertson-Walker, e definindo H = 
e h = t obtemos 

H = —[H 
(D — 
(D + 2)

pu )(3H Dh)+ I34P 

3 
h =[—h + (Ii_ 2) pv](3H + Dh)+ ,e7P • 

p = 3H 2  + 3DHh + 
D(D — 1) 

 h 2  . 

iSendo o espaco interno corn dimensio arbitriria D 

(5) 

(6)  

(7) 
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(M, i.  onde lizem 	 14-a(D-1 -Da' 	I3a os c i  = 1, sendo A 	(D+2) 	e 	= _ +2  r- 	Desta forma obtemos urn sistema bidimensional 

autonomo. 

Pontos Singulares no Infinito 

De acordo corn [3], as direcoes dos pontos singulares no infinito sat) determinadas pela condic5o 

— Q(H, h)dH P(H, h)dh = 0 , (8) 

onde P(H , h) = H e Q(H, h) = h sao dados pelasequacoes (5) e (6)respectivarnente. Escrevendo as equacaes de H 
e h em termos de coordenadas projetivas, H = e h = Z , substituindo na eq.(8) e usando a condicao de ponto 
singular no infinito, (X, Y, 0), obtemos para analise a expressio: 

(

3X +(D — 

2 
1)Y )(p2 2

) (3X + DY)Z 1-2"+ (pZ, 2 )(X 137 — Y 130 = 0 0+ 

onde para qualquer valor de p temos as direcOes dos pontos dadas pela exprssio 

X
=  ( 
	/D+2 	

D
) 

77 
Y 	2 	12D 

Podemos ainda obter 

	

1 	X _ 134 _ 1 + oi(D — 1.) — Da' 
• IV < 

2' ri"  137 	- 3a + 2a" 

	

1 	3X + (D — l)Y 	 D(D —  1) 
)013 / 	 ( 	 (3X+ DI') + (3X 2  + 3DY + 	

2 
 (X 137 Y P4) = 0 , 	(12) 

	

2' 	D ± 2 	 2 

• P/ v>1 	
X_ D 	X_ (D— 1)  

	

2 	V 	3 	Y 	3 	' 
(13) 

onde no piano X, Y a razio 4-= cotg0 fornece a direcio dos pontos singulares localizados no infinito. Os pontos 

cujas direcoes sac) determinadas pela eq.(10) estio no limite da regiao fisica. Os pontos localizados na direcio dada 

pcla eq.(13) estiio dentro da regiao proibida. 

Pontos Singulares Finitos 

Os pontos singulares finitos s5.o determinados pelas condicOes H = h = O. A Labela 1 fornece a localizacao e 

a natureza dos pontos singulares, corn relacao aos valores de v,a e a'. Devernos ressaltar que quando v = Z , para 

qualquer valor de a e a', temos sempre urn ponto singular flint° localizado na origem (H = 0, h = 0). 

( ) 
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Table I: Classificacio dos Pontos singulares finitos 

v <, 0 v = 0 0<ii < 4-<v<1 to > 1 
a' t -1 - pt de eels 

(H=0,h=0) 
- - pt degenerado 

(H=0,h=0) 
atrator 

(H=O,h) 
pt degenerado 

(H=O,h=o) 
pt degenerado 

(H=0,h=0) 
(atrator 
(11=0,h) 

pt de seta 
(H>0,h>0) 

a = a' = -I pt de seta 
(H=0,h) 

pts de eels 
(H=0,h=0) 

(H=0,11) 

pl. de Bela 
(I1=0,h) 

atrator 
(H=0,h) 

a = 0,1, rir  
a t  = -1 

pt de sela 
(If =0,h) 
atrator 

(H>0,h>0) 

pt de oda 
(H=O,h=O) 

atrator 
(H>0,h>0) 

pt. de Bela 
(H=0,h) 
atrator 

(H>O,h>0) 

atrator 
(H=O,h) 

pt de sela 
(H>O,h>0) 

Figura 1. Diagrama de fase evidenciando o comportarnento das solucoes Ionge da origem do piano XY. 

h 

Figura 2. Diagrama de fase Para o caso u = z ou v > I e a' — I. 



h 
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Amilise dos Diagramas de Fase 

Notamos que a influencia da viscosidade sobre a estrutura dos diagramas depende do valor de v. Assim, como 

podemos observar na eq.(11), para v < i a estrutura dos diagranias de rase a sensivel aos valores de a e a'. Pela 

eq.(12), para v = 2 , vemos que a influencia dos parametros a e a', já c menor. Para o caso v > 2 , vemos pela 

eq.(13) que a estrutura do diagrama de lase, nao a influenciada pelas mudanias que ocorrem na equacao de estado 

durante a evolucao do Universo. 

Na fig.la, no setor BOA' as curvas indicam que o espaco externo se expande, enquanto o espaco interno se 

contrai. Neste caso o modelo comeca a evoiuir de urn ponto sobre a curva p = 0. No setor /WA esti° as 

curvas que termiriam sua evolucao corn o espaco externo expandindo e o espaco interno contraindo tendendo a 

uma singularidade localizada sobre a curva p = 0. Na fig.1b ha o aparecimento de uma solucao do tip o Big-Bang 

comecando no ponto C, onde o espaco interno e externo tern o mesmo comportamento inicial(expansio), c uma 

solucito comecando no ponto A', onde o espaco externo inicia sua evolucao contraindo, corn o espaco interno ex 

pandindo inicialmente. A solucao que termina sua evolucao no ponto C' 6 ulna solucao do tipo Big-Crunch. 

Na fig.lc aparece uma solucao iniciando em C' que representa o Universo corn expansao no espaco interno e 

contracao no espaco externo. 

Na fig.ld o diagrama contern uma solucao do tipo Big Bang para o espaco externo enquanto o espaco interno se 

contrai. 

As curvas proximo a origem do piano (H,h), para v < 0, ultrapassam a regiao proibida (p < 0). A fig.2 

representa o caso v = zpara qualquer valor de a e a' onde o diagrama apresenta urn ponto singular na origem. 

Para o caso a' t —1 e 0 <'v < 2 on 2< v < 1 nao ha ponto singular na origem. As solusoes assintaticas, proximo 
a origem, no setor AOB', sac) as mesmas que no caso sera viscosidade: descrevem urna expansio do espaco externo 

tendendo ao espaco-tempo de Minkowski. 

Na fig.3a apresentamos o caso v > 1. Na fig. 3b representamos o caso v > 1 e (a = a' = —I), onde temos dois 

ponto singulares, sendo que para os demais valores de v, so urn ponto singular aparece. 

Figura 3. Diagrama de lase para o caso: 	v > 1 e (a, a') = (0, —1); (1. — 1); ( 241.D , —1), b) v> lea= a' = —1. 

Conelusrio 

Assim como foi encontrado para os modelos corn materia [6), a malaria das solucoes apresentam urn estagio initial 

onde a influencia da materia pode ser negiigenciada e as condicoes iniciais sao determinadada.s pelas e quacoes de 

Einstein para o vacuo. 0 modelo apresenta uma propriedade intercssante: ha soluc5es onde no Mick) da evolucao 

a dcnsidade de materia a nula. A seguir aumenta, ao longo da expansao do espaco externo, ate urn valor ma.ximo, 
apps o qual cai novarnente a zero para t oo, de acordo corn o modelo padrao, no seu estagio final. 
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The rotation curve of the Galaxy is obtained from a sample of planetary nebulae and as-
syntotic giant branch (AG B) stars. The rotation curve exhibits a steep decrease in the solar 
neighbourhood, and a minimum at about R = 8.5 kiloparsecs (adopting Ro  = 7.9 kpc). 
The curve is fitted with a mass distribution model of the Galaxy, based on the model for 
star counts in the infrared of Ortiz & Lepine [1] ; the main components are: a spheroid, 
representing both the bulge and the halo, and two exponential disk components. The surface 
density of the disk in the solar neighbourhood is 77Mo parsec -2 , not very different from the 
value predicted by star counts. This result implies that there is not need for a dark matter 
component, at least up to a radius of about 12 kpc. 

1 Introduction 

The internal constitution and dynamics of galaxies are usually studied by means of their rotation curve. Most 
determinations of the rotation curve are based on observations of young objets, such as young stars, HII regions, and 
molecular gas data, which are expected to obey the rotation curve more closely. Stellar objects for which individual 
distances can be obtained, such as open clusters [2], and classical cepheids [3], can be also to be considered as 
kinematic tracers. 

Maciel & Dutra [4] show that more massive, type 1 planetary nebulae (PNe) follow the galactic rotation curve 
more closely than type 11 and 111 PNe; that means they are young objects and may, in principle, be used as 
kinematic tracers. A similar behaviour is found among more massive, AGB stars: according to Ortiz & Maciel [5], 
class I OH/1R stars (oxygen-rich AGB stars, that represent the precursors of type I PNe), may be considered also, 
kinematic tracers, because of their small deviations from the galactic curve. 

In this work we derive the galactic rotation curve, using a mixed population that comprises planetary nebulae, 
oxygen-rich (OH/1R) and carbon-rich AG B stars as kinematic tracers. Adopting adequate selection criteria in 
order to select younger objects, a kinematically homogeneous sample is constituted. The curve is fitted by a mass-
distribution model that considers several galactic populations, based on a star counts model of Ortiz & Lepine [1]. 
We discuss the necessity of a dark matter component in this model. 

2 The sample 

The sample of objects used in this work contains 33 type 1 planetary nebulae, 80 class I 011/IR stars, and 69 carbon 
stars that undergo mass loss exceeding a rate of 10 -5 Moyear - I. Planetary nebulae were extracted from [4]; OH/IR 
stars were selected from [6]; and carbon stars were compiled and selected from catalogues [7], and [8]. 

The distance scales used in this work refer to the original papers: [4] for PNe; [5] and [6] for 011/IR stars; and 
[9] for carbon-rich stars. The radial velocities of the objects were extracted from the literature (see the papers above 
for a full reference list). 

An additional criterium excluded objects far from the galactic plane (z > 200 parsecs), because they may present 
large deviations of the rotation curve. 

This work was partially supported by FAPESP under grant 91/2315-8, and by CNN. 
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3 The model 

In this work we compare the results obtained by the sample with a proposed model of distribution of mass which 
is in turn, derived from the model of Ortiz & Lepine [1] designed for the infrared. The model considers distinct 
populations for the Galaxy, according to their age, metallicity, and space distribution. 

The main components are: 
1) a spheroid, represented by the Hernquist's function [10]: 

27r R (R a)3  

where Mb is the total mass of this component and a the scale length. 
2) a mixed stellar disk, with surface mass density represented by two exponential laws: 

a(R) = al e -Ri°  + cr2e-Ri° 7 	 (2) 

where a t  and a2 are the scale lengths of the disk components (thin disk, thick disk), according to the model 
of Ortiz & Lepine [1]. We use the infinitesimal thin-disk approximation developed by Freeman [11] to obtain the 
gravitational potential. 

3)gas (atomic + molecular), fitted to the CO and HI data [12]. The thin-disk approximation is considered also 
in this case. The observed gas density can be represented by the following distribution: 

a(R) croe-(PR)' 	
aiR2 	 a2 R2 	

- 	( 3) ( bi  2 + R2) 5/2 
(b2 2  + R2 ) 512  

Oa spiral-arm perturbation potential, which considers a two-plus-four component: 

Op (r, 0) = AR,e(-I2R)cos 
m In( R) 
(- m(0 - 7) + 

tan(i) 

ARe (-43R) cr cos ( 21711n(11)  2m(0 - 7) ) 	 (9) 
tan(i) 

where 0 is the galactocentric angle, A is the amplitude of the perturbation, 0 -1  the scale length of the spiral, i 
the pitch angle, m = 2, a is the relative strength of the two-to-four components, and 7 a phase angle. 

When fitting the model, we consider that the gas distribution is known as well as a l  and a2, derived by Ortiz 
Lepine [1]. The other parameters are allowed to vary, in order to match the model to the sample. 

4 Results 

In this work we consider the galactocentric distance of the Sun, Ro  = 7.9 kiloparsecs and the galactic rotation 
velocity at this point e0 = 184 km/s ([13] and [1]). 

Figure 1 summarizes the fitting of the model to the data. Open circles represent the average value for e in the 
R considered, for the whole sample. The crosses are determinations from the sample of Clemens [14], who used HI 
and CO data (corrected here for Ro  = 7.9 kpc). Gas data are useful for fitting the mass model in the inner parts 
of the Galaxy, where PNe and AGB stars were not included in this study. Systematic errors on galactic rotation 
curve do not compromise the results [15]. 

A number of interesting features can be observed. The rotation curve presents a broad maximum around R = 6 
kpc, a sharp minimum at 8.5 kpc, and an enhancement around 10 kpc. The existence of a minimum at 8.5 kpc has 
been observed by other authors, but its nature has not been fully discussed. It is expected from Oort's constants, 
which give a negative gradient of rotation velocity near the Sun, while at large distances the rotation curve seems 
to rise [16]. However, the magnitude of the gradient at the solar neighbourhood obtained in this work is greater 
than most previous works. Our results indicate also, that the Galaxy possibly presents a flat rotation curve in its 
external part, like many other spiral galaxies. However, up to R = 12 kpc, we do not need a dark matter halo to 
fit the data; that puts a constraint to the upper limit of density of dark matter. 

The local density of matter that fits better the data is 77Moparsec -2 , in a good agreement with star counts, 
since we obtain 51M0 parsec -2  from the model of Ortiz & Lepine (40Moparsec -2  for the stars and IlM0parsec -2 

 for the gas); the model of Ortiz & Lepine does not take into account white dwarfs which could amount to about 
20% of the total mass [17]. 

p(R)=A/6 
a 	1 

(1) 
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Figure 1. The rotation curve of the Galaxy. Interstellar gas data by Clemens are shown (crosses). The dashed line is the 
model of mass distribution. The components of the model are also shown: (a) thick disk with 2.6 kpc scale-length; (b) thin 
disk with 4.5 kpc scale-length; (c) bulge; (d) gas. The solid line represents the mass model plus a model for the spiral arm 
velocity field. 
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• Mostra-se que a interacio de uma onda gravitacional corn uma antena ressonante esferica 
muda a forina da antena para a de urn elipsOide. Devido a geometria esferica da antena, estas 
mudangas ocorrem para qualquer que seja a direcao e polarizaga.o da onda. Esta propriedade 

• de onidirecionalidade tambem implica que a antena esferica Rao possui zonas "cegas" para 
detecc5o. Portanto, ao contrario das antenas tipo barra ou interferOmetros laser, ela no 
"perde" nenhum evento. Mostra-se, tambern, em que condicoes ela a capaz de determinar a 
direcio e a polarizacao da onda ou fornecer informaciks sobre os seis padrOes de polarizacio 
possiveis para uma onda plana gravitacional fraca em teorias metricas de gravitasio. 

Int roducho 

Algumas das vantagens de uma antena de massa ressonante esferica sao: ela pode ter uma "visio" espacial sem 
nenhuma zona cega para deteccAo, ela pode determinar a direcao de uma onda gravitacional confirmada, e ela pode 
determinar a polarizacao da onda. 

Tanto as barras de Weber como os interferometros laser tem zonas cegas. Ao contrail° disco, esferas de Forward 
ou buckybolas de Johnson-Merkowitz nao tem zonas cegas. 

0 Elipsoide de Mare 

Qual e o forrnato instantaneo que urn conjunto de particulas teste, que formava inicialmente uma superficie 
vai assumir sob a presenca de uma onda gravitacional monocromatica? Na aproximacio de carnpo fraco: 

giw = rIpw + hpw, 	= ° I 1 1 2 / 3 1 Ihpy I < 1. 

No referencial do laborat6rio: 

0 0 0 0 
, 0 fix:  hxz 

h = [hod [0 
0 

hyx  
ha: 

hys, 
hi s/  

h siz 

hi.: 

sendo hk1 = hk/(1, 

Para uma onda gravitacional se propagando na direcao z' (referencial 	da onda) e utilizando a gauge TT 
(Milner, Thorne & Wheeler 1973), a matrix simetrica h tern componentes hrr  = — h" = h + , hxy  = hyx  = h x , 
sendo todos os outros iguais a zero. Se nos escolhermos, agora, a oripm do nosso sistema de coordenadas espacial no 
centro de uma superficie esferica formada por urn conjunto de particulas teste, a distancia prOpria deltas particulas 
da origem espacotempo 6 dada por: 

= xpe = 	 (1) 

Ern urn espacotempo Minkowskiano: 
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1 ,71 2  = 	+ 212  para urn instante fixo xo, definindo a superficie esferica acima mencionada. 

Com o objetivo de visualizar o efeito instantineo de uma onda gravitacional no espacotempo, nos vamos rodar os 

eixos x' e em relacio ao eixo z' de um angulo A tal que, para um determinado instante t to, tan A — 	,-+-h +  13 ,  
onde h+ (to) + h x (i0) sao as amplitudes de polarizacao instantfineas no instante t = to e 

h :  E Vh 2+ (to) + 14(4). 	 (2) 

NOs chamamos este referencial de referencial diagonal instantaneo x"y"z". A razao do nome diagonal e simples: 
apes esta rotacio g e diagonal porque os unicos componentes nao nulos de h sac) !true , = —hry , = h : . 

Neste referencial a equacao (1) assume a forma 

IvI 2  = —zg2  + (1 + h,) x" 2  + (1 — ) y' 12  + z" 2 . 	 ( 3) 

Pclo fato de 	< 1 constatamos que para urn xg constante a equacao acima descreve urn elipsoide no espaco 
x"y"z". Nos chamamos este elipsOide de Elipsoide de Mare, uma vez que ondas gravitacionais produzem aceieracOes 
de mare entre particulas. Note que este etipsoide nao muds a sua dimensao ao longo da direcao z", a direcao de 
propagacao da onda gravitacional• into e uma conseqiiencia da transversalidade da gauge TT. 

Determinagito da Direciio da Onda 

Assumindo que a Relatividade Geral representa adequadamente a nossa gravitacao e retornando a nossa matrix 
h no referencial do laboratorio, definindo a direcao de propagacao da onda pelo vetor 

Tr 

0 
nr 
ny 

a direcao pode ser encontrada iesolvendo uma equacao de autovalor (Dburandhar & Tinto 1988) 

h = 0 ri 	 (4) 

A solucao em coordenadas esfericas no referencial do laboratOrio -  e dada por urn par de ingulos (9,O) (pois 
sin tO) = 	correspondendo a direcoes diametralmente opostas, dadas pelas expresso-es: 

ny 	 NAnz)2  + (ny) 2 	ny 1 
tan = 	

' 
tan 0 = 	

—  
ni 	riz sin 4/ (5) 

Vejamos a seguir urn metodo, que derivamos, e que envolve urn calculo algebrico mais simplificado. 

Metoclo Geometrico 

Urn outro metodo, de facil visualizack, pode ser encontrado a partir da definindo dos vetores: 

A E (hzz , hzy , h z.,) = hz; e1  , 	E (kir  ,hyy , hyz ) = hy; e1  , d E (h z , , hiy , h z ,) = hi; 	, 

onde ei sao os vetores unitarios que descrevem o referencial do laboratOrio quando a onda ester presente, as 
equacifies (4) podem ser reescritas como 

ii.fi=e.ri= O. 	 ( 6) 

Os vetores A , B and C sao, portanto, copianares e perpendiculares a direcao de propagacao da onda gravitacional, 
que pode, entao, ser facilmente determinada se efetuando o produto vetorial entre qualquer dois dos trio vetores 
acima. 

Na pratica, A , fi and 6" es.  tao relacionados corn as diferencas entre os vetores base covariantes do espaco curvo, ei 
(os quais descrevem o referencial do laboratOrio depois da chegada da onda) e os vetores base Cartesianos unitarios 
do espaco Euclideano, ii = (que descrevem o referencial de laboratOrio antes da onda chegar): 
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/471.  = 	- z 	g = 	iy 	= 	- 1, . 

Vetor Poynting de uma Onda Gravitational 

Para uma onda gravitacional monocroinatica cm um referencial quasc inercial da teoria linearizada, a densidade 
de energia da onda e dada (veja Misner et al. 1973, sect. 35.7; c e a velocidade da luz eGea constante gravitacional) 

3 	 • .. • . 

por T0 0  = th-a  E (hu hi) ), onde <> denota uma media sobre varios comprimentos de onda, e o ponto implica 
i,1=1 

uma derivada temporal. Mas, teams que: 

	

—14 = h x,hyy  — h.4 + hrEh„ — 	+ h„h" — 	 + 6." x A . + fixd. ex . 	 ( 7) 

No referencial diagonal (A x /3)" . 

(i3."  x 	Este 

• If 	.Jr 

6) corn A.  e A no 

ez  = —h? c o vetor Poynting gravitacional fica, portanto, S s  = C Too n = 

resultado é analog° a urn encontrado na Leoria eletromagnetica (veja Misner 

lugar dos vetores de campo eletrico e magnetic°. 

r, (Ir Oil= 32r -6  .3 

et al. 1973, sect.5. 

Antena esferoidal acoplada a transdutores 

A matrix h no referencial do labaratOrio tern apenas 5 componentes independentes, pois ela a uma matrix 
puramente espacial simetrica e sem traco. Portanto, cinco ou mais transdutores (ressonantes ou nao) acoplados 
superficie de uma antena esferoidal (esfera, buckybola ou outro poliedro simetrico), e que nao sejam diametralmente 
opostos entre si (para nao ocorrer redundancia), sera° suficientes para obter a matrix h, que define o estado completo 
de uma onda gravitacional monocromatica — direcao de propagacao e polarizacao — a partir dos 5 coeficientes do 
polinornio, formado pela.s 5 funcoes harmonica esfericas de 1=2, que define o estado de oscilacao quadripolar da 
antena. 

Caso existarn seis ou mais transdutores nao ressonantes acoplados, atom dos modos quadripolares (1=2) tambem 
poderi ser observado o modo monopolar (1=0, m=0). Esta observacao adicional permite se determinar os seis 
padroes de polarizacao possiveis para uma onda plana gravitacional fraca em Leorias metricas de gravitacio. Porem, 
para o caso de transdutores ressonantes, o modo monopolar nao ressoa na inesma freqiiencia que os modos quadripo-
'arcs para um corpo esferoidal, o que inapossibilita que possamas definir aqueles padroes gerais de polarizacao coin 
apenas uma antena esferoidal. Ulna segunda antena sera necessaria. 

Agradecemos Z. Geng, W. 0. Hamilton e S. M. Merkowitz por frutiferas discussOes, e N. S. M. e C. F. agradecem 
a CAPES c ao CNPq, respectivamente, pelo suporte. 
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The more accepted cosmological models predict the existence of a hidden matter, the so called Dark Matter, 

without which the observed luminous mass density does not approximate the expected critical value. Astrophysical 

observations [1] of gas clouds in spiral galaxies lead one to conclude that the observed luminous mass is not sufficient 

to explain its orbital velocity: the dark matter should be 3 to 10 times more abundant than the amrnount observed 

for the luminous one. 

In spite of the fact they are known for a certain time [2], compact equilibrium configurations of boson fields 

(boson stars) have recently arouse great interest due to the conjecture that the dark matter may be composed 

partially by bosonic particles, under the form of compact objects. Since its formation probably occurred in the • 

early universe in the presence of fermions, one may expect that those structures also contain fermions. 

This report gives an outline of current-current type interaction between self-gravitating bosons and fermions [3]. 

Another approach for interaction in a boson-fermion star has been sugested [4] in a different way. In this model one 

introduces contact interaction for bosons and fermions via 

taint = A.1,(0)j"(0) , 	 (1) 

where 

409 	 — (ao o-) > 	 (2) 

../ P 0k) = 	 (3) 

which represent the boson and fermion currents, respectively. The current for the boson fields arises from the usual 

Lagrangian for boson stars 

	

= 
167rG 

- p cvercp — in 2 v4) , 	 (4) 

where 

4)(r, r) = 41(r)e -i'r 	 ( 5 ) 

and ta is a frequency which determines the system energy. The cosmological time r is given by the metric used, 

which is spherically symmetric chosen in the form 

ds2  = -13(r)dr 2  + A(r)dr 2  + r2 r10 2  + r 2  sin 2  Odtp 2  . 
	

(6) 

Fermions are introduced as a relativistic perfect fluid in accordance with the prescriptions for pure fermion and 

boson-fermion stars KN. The total energy-momentum tensor is given by the contribution of boson and fermion 

matter, and by the interaction term 

T„, = Tot + TF + 	 ( 7 ) 

'On leave from Departarnento de Fisica, Universidade de Brasilia, 70910-900, Brasilia-DF, Brazil and International Centre of 
Condensed Matter Physics, Universidade de Brasilia , Caixa Postal 04667, 70919-970, Brasilia - DF, Brazil 

tOn leave from Institute de Fisica Teorica-UNESP, Rua Pamplona 145, 01405-900, Sio Paulo-SP, Brazil 
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where the labels B, F and 'int' mean boson, fermion and interaction terms, respectively. Due to the metric only two 
components of the interaction energy-momentum tensor are used to determine the differential equations, namely 
T; in' and T "a. If one considers OM as a real scalar field, as usually 'done for boson stars, 77 int  vanishes. This 
fact is not desirable since this component is representative of the changes in energy corresponding to the interaction. 
Hence, one is lead to write the scalar field as a sum of real and imaginary parts OH = 4' 1 (r) + i02(r),  with which 

1$ 1 2 =10 1 2= + ^Z.  
The mixed configuration considered here takes boson field in its ground-state and the fermion fluid is allowed to 

display very slow radial velocities. This directly expresses that chemical potential for the Fermi gas is not to high 
in the kinetic energy scale, and so the Fermi surface allows only very slow velocities at zero temperature. 

The interaction introduced by (1) imposes many modifications in the configuration, one of those is a singularity 
in the evolutional equations. Another interesting feature of this kind of interaction is that the ground-state energy 
of the configuration increases with A up to a certain value, where the energy starts decreasing while A increases. At 
this point of the system energy the real and imaginary parts of ON display different behaviours, as shown in the 
figure. 

The approach presented here can give rise to other kind of stellar objects, as stars of WIMP's [6], for which 
one takes into account interacting boson-fermion stars reinterpreted in the context of minimal supersymmetric 
standard model. In some sense an enhacement of the emission rate of gravitational waves can be expected due to 
the interaction within the star body and its neighbourhood. 
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Figura 1. Plotting showing the splitting between th and 02, respectively the real and imaginary parts of the scalar field ifi(r). 
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Em urn formalismo classic° que incorpora,antecipadamente, o carater discreto e granular da 
interacao quantica, a eletrodinamica classica 6 formulada em termos de f6tons clessicos, de 
urn modo consistente e livre de singularidades. Valores medios de fluxos de fotons clissicos 
que sao singulares e correspondem aos campos do formalismo usual. Assim, as singularidades 
de campo na Eletrodinamica Classica nao tern sentido fisico, sac) consequencias deste carater 
de media dos campos. 
Aplicamos este formalismo a Teoria da Relatividade Geral. Consideramos o campo gravita-
cional como sendo descrito pela troca de gravitons classicos: interacoes discretas, descritas 
por urn campo tensorial de segunda ordem, simetrico, de massa nula e de natureza granu-
lar (localizado). As equacoes de Einstein geram, entao , solucOes de simetria esferica, nao 
singulares. 0 valor medio do fluxo destas solucoes 6 a solugao de Schwarzchild. 

e-maihmanoelitAcce.ufes.br  
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We obtain exact analytic solutions for a typical autonomous dynamical system, related to 
the problem of a vector field nonminimally coupled to gravity. 

Gravity is presently the only interaction that is not inserted in any of the unification schemes. Due to this 

fact, many toy models have appeared coupling gravity to fields that could have played significant role in the 

Early Universe, in such wise as to display desirable properties. Special interest has been put in gravity coupled 

nonminimally to other fields which could generate, among a number of new effects, a non-singular universe. 

In this context., dynamical systems techniques have been applied to solve the problem of coupling of gravity to 

a vector field, whose Lagrangian can be written as 1  

= 	
-1 

FPIP F"  i6RWij W U ) , R 	
( 1 ) 

where g = det gi,„ (g„ is the metric tensor), R is the scalar of curvature, C = k/8ir is the Newtonian gravitational 

constant in units that h = c = 1,I 13 1= 1,1Vi, is an arbitrary vector field and Fo„ = where the comma 

represents ordinary differentiation and the square brackets represent the skew-symmetric part of Wp ,,,. 

The Lagrangian (1) leads to a set, of equations of motion that can be transformed into an autonomous dynamical 

system 1 . By choosing the Robertson-Walker metric 

ds2 = dt2 52(1) [dx2 (X)(d0 2 	SiT1 2 94:10 2 )] 

with the ansatz W 2  = W 2 (t), the Lagrangian (I) leads to equations of motion which has a solution given by 

W 2 (t) = (1 - :) , 

S(t) = (t 2  + Q2 )'/ 2 , 

where k is the Einstein constant and Q is also a contant. Afterwards one sets X = 3(S/S) and Y = (t1/0), where 

= (1/k) + (j3W 2 ), to write the equations of motion as 

=-X2  XY, 
3 

(2) 
Y = -y 2  - xv 

Hence, the correct interpretation of functions X and Y is important to the knowledge of the evolution of the 

model. 

'present address: International Centre of Condensed Matter Physics, Universidade de Braiflia , Caixa Postal 04667, 70919-900, 
Brasilia - 1W, Brazil. 
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Up to now there was no exact solution for this dynamical system and the analysis was carried out by using 
qualitative procedure. Here we exhibit the explicit solution in a very simple way. 

One can rewrite eqs. (2) in polar coordinates, p = 
(x2 4.  y2) 1/2 and 0 = arctan X, as 2 ' 3  

p = —p2  (-1  cos3  0 + sin 3  0 + cos 0 sin 2  0 — cos 2  0 sin 0 , 
3 

0 = —2p cos 0 sin 0 
cos 0 

 + sin 	. 

The phase diagram related to this autonomous dynamical system can be obtained through 

dp 
dB' 

which leads to 

p = Cexp (-
1 

, 
2 

where C is an arbitrary positive constant of integration and 

(c0s3  o  +  3 sin3  0) + cos 0 sin 2  0 — cost  0 sin 0 
/ — 	 dO 

cost @sine + cos 0 sin 2  0 

After a little algebra, involving only basic trigonometric relations, one can show that the solution to integral I 

readily leads to 

'tan 01 1/2  p — C 
'cos 0 ÷ 3 sin 01 (6 ) 

We point out that the precise knowledge of the function p(0) leads to the sketch of the desired phase diagram 
associate with the autonomous dynamical system without any qualitative analysis about the dynamical system in 
regions around the origin 1 ' 4 . 

On the other hand one can choose to study the dynamical system qualitatively by means of the projection on 
the Poincare sphere 3 ' 4 . This will provide usefull informations concerning the asymptotic behaviour of the system. 
As defined in Ref. 3, the Poincare sphere with unitary radius is placed over the xy-plane, this plane being tangent 
to the south pole of the sphere. Another frame is in order and it is placed in the centre of the sphere. Projections 
onto the sphere are taken by joining points of the diagram to the centre of the sphere. This process will gives rise to 
a drawing on the sphere which is projected orthogonally on the xy-plane. The final portrait of the phase diagram 
is, then, in a circle with unitary radius where the behaviour at infinity is identified with the border of the circle. 

Applying this method 3  to (2) one can obtain the topologies around the singular points at infinity, as in Fig.'. 
The arrows show the evolution in time. Note that besides the equilibrium points ii(0, 0), MO, 0), e(0, 0) and 
0/(0, 0), there are the points 13 (-1/3,0) and /3. '(1/3, 0), the primes indicating antipodes points. The system refuses 
to give informations on the topology around the origin by the method of linearization. Dulac's test shows there are 
no limiting cycles. Note that the above mentioned equilibrium points are consistent with eq. (6). 

(3) 

(4) 

(5) 
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Figura 1. Equilibrium points at infinity and the topology imposed by them. Empty balls means unstable points, and full 
balls stable ones. 

Figura 2. Final aspect of the phase diagram showing the equilibrium points at infinity. Only one integral curve is chosen to 
each region in the diagram to avoid it to become entangled. 

The complete phase diagram which compactifies infinities is shown in Fig.2. Its shape is very close to that in 

Ref.4; the difference is due to the unusual dimension used. The phase diagram in Ref.I is obtained in a different 

way: the projection is taken on the plane which corresponds to X = 0 and crosses the poles of the sphere, the 

wy-plane being tangent to the north pole of the sphere. 

Notice that any autonomous planar dynamical system 

= P(X,Y), 
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= Q(X,17 ). 

allows a similar change of variables, and in polar form the phase diagrim arises from 

dp _ P(p cos 0, p sin 9) + tan 0Q(p cos 0 , psin 0) 

dO 	P Q(pcos 0, psin 0) — tan P(p cos 0 , p sin 9) 

For this reason, exact solutions may be achieved if it is possible to rewrite (7) as 

dp 

.7q = R(P)6(0)  

Recently some cosmological models has been investigated in the so-called multidimensional scenario 5 , and in a 

particular case a Maxwell field in higher dimensions is coupled to Einstein-Hilbert Lagrangian. This also leads to 

a qualitative dynamical system analysis, and, as in eq. (7), the search for exact solutions related to this problem is 

in progress. 

Thanks are due to Professor C. A. P. Galva° for reading the manuscript and for helpful suggestions. 
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A computer algebra package for tensor and spinor calculations in torsion theories of gravi-
tation (Riemann-Cartan space-time manifolds) is discussed. A set of modules for the clas-
sification of the irreducible parts of the curvature tensor of Riemann-Cartan space-time 
manifolds is presented. The package TCLASSI, which we have developed to decide the local 
equivalence of Riemann-Cartan space-times manifolds is briefly presented. 

The Computer Algebra Package 

A great number of relativists seems to spend a large amount of their time in carrying out routine nonnumeric 
calculations of one sort or another, most of which are algorithmic or semi-algorithmic. 

All the main general-purpose computer algebra systems have some sort of facilities for calculation in general 
relativity (GR). The most extensive set of programs useful in GR are available with REDUCE, MAPLE, MACSYMA, and 
with MATHEMATICA through the MATHTENSOR package. Nevertheless, there is room for specialized systems like 
SHEEP/CLASSI. The major reason for this is that they are more efficient for GR calculations than general-purpose 
systems. For a comparison of CPU times for a specific metric see MacCallum [1]. 

In GR the underlying manifold M where the calculations are made is that of a four-dimensional Riemannian 
manifold, i.e., a space-time manifold endowed with a Lorentzian metric and a metric-compatible symmetric con-
nection (Christoffel's symbols fe c )). However, it is well known that the metric tensor and the connection can be 
introduced as independent structures on a given space-time manifold M. In GR there is a unique torsion-free connec-
tion on M. In the framework of torsion theories of gravitation (TTG) we have space-time manifolds endowed with 
Lorentzian metrics and metric-compatible nonsymmetric connections ri.be  (Riemann-Cartan manifolds). Therefore, 
in TTG the connection has a metric-independent part given by the torsion, and for a characterization of the local 
gravitational field one has to deal with both metric and connection. 
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As far as we are aware the existing facilities in computer algebra systems for calculations in TTG are quite 
limited. Actually, we only know of some REDUCE programs for applications to Poincare gauge field theory [2]. They 
are written using the REDUCE package EXCALC and basically aim at field equations of TTG [3]. 

The arbitrariness in the choice of coordinates is a commonly made basic assumption in GR and in TTG. 
Nevertheless, in these theories it gives rise to the problem of deciding whether or not two apparently different 
space-time solutions of the field equations are locally the same — the equivalence problem. However, while in GR 
equivalence means local isometry of two Riemannian space-time manifolds, in TTG besides isometry (g c,b gab) it 

means affine collineation (ribc 	robe) of two Riemann-Cartan space-time manifolds [4]. 
The Lisp-based system SHEEP was partially devised with the equivalence problem for Riemannian manifolds in 

mind. Frick [5] designed the system and Karlhede [6] and Aman [7] developed the algorithm and the first set of 
programs required for checking the equivalence of vacuum solutions [8, 9]. Since then, algorithms and programs to 
extend the treatment to nonvacuum case have been developed by MacCallum, Joly, Aman, Skea and others. They 
are described in references [1] and [10] - [13], and references therein. 

The equivalence problem for Riemann-Cartan space-time manifolds was taken up as part of a collaboration 
between the group at the School of Mathematical Sciences, QMW, led by Prof. M. A. H. MacCallum, and Prof. M. 

J. Reboucas's group at the Brazilian Center for Physics Research (CBPF) in Rio. The problem was tackled bearing 
in mind three basic aspects. First, the mathematical problem of finding the necessary and sufficient conditions for 
equivalence. Second, the problem of finding practical algorithms for effectively carrying out the calculation. Third, 
the implementation of the algorithms in the SHEEP/CLASSI computer algebra system. 

With the equivalence problem in TTG in view, we have developed working version of the basic modules, which 
form the package called TCLASSI, extending the facilities of SHEEP/CLASSI to the Riemann-Cartan space-time 

manifolds of TTG . 

Before actually tackling the equivalence problem, we had to implement several mathematical techniques which 
are used in the algorithm for the resolution of the equivalence problem. First, we have extended the tensor formalism 
to deal with calculations in coordinates, and noncoordinate frames in which the metric has constant components.. 
Second, we have implemented the spinor formalism for Riemann-Cartan space-time manifolds. Finally, we have 
considered the Petrov and Segre classifications, and the algebraic classifications of vectors and bivectors. 

To close this brief report we mention that a more detailed account of this work can be found, for example, in 
the references [14, 15] and in the forthcoming article [16]. 
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A new approach to the algebraic classification of second order symmetric tensors in 5-
dimensional space-times is presented. All possible Segre types for a symmetric two-tensor 
are found and canonical forms for each type are derived. 

1 Introduction 

In a recent article Santos el al. [1] have studied the algebraic classification of second order symmetric tensors defined 
on 5-dimensional (5-D for short) Lorentzian manifolds M, extending previous results [2, 3, 4]. Their analysis is made 
without using the previous classifications on lower dimensional space-times. However, as concerns the classification 
itself, their approach is not straightforward. 

In this work we examine the algebraic structure of second order symmetric tensors defined on 5-D space-times 
under different bases. We shall assume the algebraic classification of the Ricci tensor for 4-D space-times, and then 
show that the classification recently discussed [1] can be achieved in a considerably simpler way. 

2 Basic Theorem 

The algebraic classification of the Ricci tensor at a point p E M can be cast in terms of the eigenvalue problem 

(R°b —.X )V °  =0, 	 (1) 

where a is a scalar, Vb is a vector and the mixed Ricci tensor Rab  may be thought of as a linear operator R 
T(M) 	7(M). M is a real 5-dimensional space-time manifold locally endowed with a Lorentzian metric of 
signature (— +++ +), 7p(M) denotes the tangent space to M at a point p E M and latin indices range from 0 to 
4. 

Our approach to an algebraic classification of Ra b  is based upon the following 

Theorem: Rab  has at least one real non-null eigenvector with real eigenvalue. 

Proof. We initially consider the cases when all eigenvalues of R are real, and make use of a basic result of 
the theory of Jordan canonical forms [5] for n-square matrices R, which states that there always exist nonsingular 
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matrices X such that 

X -I RX = J 	 (2) 

where J, the Jordan canonical form of R, is a block diagonal matrix. Suppose first. that Rab  has a single eigenvector. 

In this case it can be brought to a Jordan canonical form Ja b  with only one Jordan block, namely 

A1000 

0A100 

l ab = 	00A10 	, 	 (3) 
000A1 

0000A 

where A E IL The matricial equation (2) implies that R X = J X. By using this equation and a procedure similar 

to that of ref. [11, one can rule out this Jordan canonical form (see also ref. [6]). So, at a point p E M the Ricci 

tensor R cannot have a single eigenvector. 

Suppose now that Rab has two linearly independent eigenvectors (k, n) and that they are both null vectors. Let 

p and v be the associated eigenvalues. Then 

Raz, k b  = p 	, 	 (4) 

Rb ri b  = v re , 	 ( 5 ) 

where p, v E R. Since Ra b is symmetric and (k, n) are linearly independent, eqs. (4) and (5) imply that p = v. 

Thus, from eqs. (4) and (5) the vector v = k + n is also an eigenvector of R with real eigenvalue p. Since k and 

n are linearly independent null vectors it follows that vat,„ = 2 k" na  # 0, so v is a non-null eigenvector with real 

eigenvalue. 

In the cases where Rai, has more than two linearly independent null eigenvectors one can always use two of them 

to similarly construct one non-null eigenvector with real eigenvalue. Thus, when all eigenvalues of R are real flab 

has at least one non-null eigenvector with real eigenvalue. 

The case when the Ricci tensor has complex eigenvalues can be dealt with as follows [7]. Suppose that a ± 

are complex- eigenvalues of R% corresponding to the eigenvectors V± = Y f iZ, where a and /3 # 0 are real and 

Y, Z are independent vectors defined on T,,(M). Since Rab is symmetric and the eigenvalues are different, the 

eigenvectors must be orthogonal and hence equation Y.Y + Z.Z = 0 holds. It follows that either one of the vectors 

Y or Z is timelike and the other spacelike or both are null and, since # 0, not collinear. Regardless of whether 

Y and Z are both null vectors or one timelike and the other spacelike, the real and the imaginary part of (1) give 

Ral, Y b 	 - pza , 	 ( 6) 

Rat, zb = flYa+ Z° . 	 ( 7 ) 

Thus, the vectors Y and Z span a timelike 2-dimensional subspace of 7 p' (M) invariant under Rab  . Besides, one can 

show [1] that the 3-dimensional space orthogonal to this timelike 2-space is spacelike, also invariant under !tab, and 

contains three orthogonal eigenvectors of Rab  with real eigenvalues. Thus, when Rab has complex eigenvalues we 

again have at least one non-null eigenvector with real eigenvalue. This completes the proof of our theorem. 

3 Classification 

We shall deal with two types of pentad of vectors, namely the semi-null pentad basis {1, m, x, y , z}, whose 

non-vanishing inner products are 

1"rn„ = era  = YaYa = zaz„ = 1, 	 ( 1 ) 

and the Lorentz pentad basis {t, w, x, y, z}, whose only non-zero inner products are 

- ibt„, = w"tv,, = ex„ = 	= ex. = 1 . 	 (2) 

At a point p E M the most general decomposition of Rab in terms of a Lorentz basis for symmetric tensors at 

p E M is given by 

Rat. = 	latb 0- 2 tvawb 0'3 XaX b Cr4 Yahrb Cr5 Za Zb + 2 cr6 t(a 

+ 2 .77  t (c,x 1, )  2 era t( a yb) + 2 ag t( a Zb) + 2 cr i  0 tuoxo + 2 	w(aY6) 

+2 cr i2  WOZO ± 2 cris X(nYb) 2cr i .i x( a zo +2 Cr 1 5 YOZO 
	

(3) 
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where the coefficients cr i , 	als E R. 
We shall now discuss the algebraic classification of the Ricci tensor. Let v be the real non-null eigenvector 

referred to in the theorem and let q E R be the corresponding eigenvalUe. Obviously the normalized vector u 
defined by 

v° 
na = 	 with 	e 	sign (va v. ) = ti u a 	 (4) 

reT 	)ava  

is also an eigenvector of flab  associated to v. 
If the vector u is timelike (e = —1), one can choose it as the timelike vector t of a Lorentz pentad {t, *, ar, 5, 

The fact that u t is an eigenvector of R at, can then be used to reduce the general decomposition (3) to 

	

R a t, = — 1)414 + az lbat4 + cra 	± 0.4 Era fib + 0'5 44 ± 2 ale tb(aib) 

+ 2 crii li(jb) + 2 cr i pita ib ) + 2 aia i(jb)+ 21714 i(a 

+ 2 cris f/(aib) 	 ( 5 ) 

where q = —a l . Using (2) and (5) one finds that the mixed matrix Nab takes the block diagonal form 

Rat, = S ao ^ 0° 4 . (6 ) 

The first block is a (4 x 4) symmetric matrix acting on the 4-D spacelike vector space orthogonal to the subspace 
LI of Tp (M) defined by u. Hence it can be diagonalized by spatial rotation of the basis vectors (*, ir, 5r, i). The 
second block is 1-dimensional and acts on the subspace U. Thus, there exists a Lorentz pentad relative to which 
R at, takes a diagonal form with real coefficients. 

If u is spacelike (e = 1) one can choose it as the spacelike vector z of a Lorentz pentad and using eqs. (2) one 
similarly finds that R at, takes the block diagonal form 

Rab  = sob  + za zb 	 (7) •  

where q = cr5. But now the 4-D vector space orthogonal to the spacelike subspace of Tp(M) defined by ti is 
Lorentzian. Then the mixed matrix Sal, effectively acts on a 4-D Lorentzian vector space and is not necessarily 
symmetric, it is not diagonabie in general. As Sa b is obviously symmetric, from equation (7) it follows that the 
algebraic classification of R ao and a set of canonical forms for Rob can be achieved from the classification of a 
symmetric two-tensor S on a 4-D space-time. 

Thus, using the known classification [7] for 4-D space-times it follows that semi-null pentad bases like (1) can be 
introduced at p E M such that the possible Segre types [8] and the corresponding canonical forms for R are given 
by 

Segre type 

[1,1111] Rab = 
Canonical form 

2 pi 4a rnb) + (falb + ma  rnb) + pa xaxb + pa yaw 

ZG Zb , 

2 pi /(a  mb) ± la lb + p3 x„xb + P4 Ya Yb + P5 zazb 

2 pi /(arno) + 2/(a Xo) + p i  z a z,b 	ya yb +p5Za Zb , 

2  PI i(arnb) 1 -  P2 (Ialb — maTiza) -E Thraxb P4 ya yb 

-Fps  Za zb , 

R a b = 

Rab = 

Rab = 

and the twenty-two degeneracies thereof, in agreement with Santos el al. [I]. Here pi, • • Ps E IR and p2 	0 in 
(11). 

Although the Ricci tensor has been constantly referred to, these results apply to any second order real symmetric 
tensor defined on 5-0 Lorentzian manifolds. 
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Two spatially homogeneous solutions of Maxwell's equations in the elliptic Robertson-Walker 
(RW) space-time geometry are found. It is shown that although both solutions can be 
accommodated in the RW space-time manifolds whose 1 = cons! sections are three-spheres 
S3 , only one of them is admissible when the sections are quaternionic manifolds Q3 , making 
explicit the existence of topological constraints on Maxwell fields in Robertson-Walker space-
times. 

1 Introduction 

As general relativity is a purely metrical theory (local) it clearly leaves unsettled the global structure of space-
time. The standard local metric approach to space-times has led a number of relativists to implicitly (or explicitly) 
restrict themselves to purely local geometric features, ignoring the role of topology. However, in cosmology the 
most important problems are related to the global structure of space-time. The global topology features comes out, 
for example, in dealing with electric fields produced by bounded sources, when quite often it is chosen as boundary 
condition that the fields vanish at spatial infinity. This is reasonable if the three-space has the topology of 118 3, but 
it is not that simple if one is concerned with these fields in compact and (or) multiply connected spaces. Although it 
is sometimes difficult in practice to take into account the global topological features of a manifold, it is important to 
study this sort of constraints. Moreover, it is significant to underline which (and when) physical results concerning 
a space-time geometry depend upon the global topology. 

In this work we bring forward these matters by discussing two solutions of Maxwell's equations in the elliptic 
= 1) Robertson-Walker space-time geometry 

( 
 2  

t 
ds2 	+ A() 

 r2 	[ dr2  + r2  ( d02  + sin 2  04, 2  )] , 
4 

with the t = const section endowed with two different compact topologies, namely the three-sphere S 3  and the 
clockwise quaternionic topology Q 3  [1] — [3]. We show that the elliptic geometry (1.1) can accommodate both 
solutions of Maxwell's equations if its t = const section is the simply connected compact manifold V. However, 
if its three-space is endowed with the multiply connected compact quaternionic topology Q 3 , it can accommodate 
only one of the two solutions of Maxwell's equations. In other words, this latter topology excludes a solution of 
Maxwell's differential equations. For a more detailed account of the results we report in this work we refer the 
reader to ref. K. 
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2 Maxwell's Equations and Topological Constraints 

The 4-dimensional space-time manifolds, arenas for the Maxwell fields we are concerned with, are 
the same elliptic (tc = 1) Robertson-Walker space-time metric (1.1). They are different in that the t = 
are two distinct compact, globally homogeneous and locally isotropic manifolds, namely S 3  and Q3 . 

The elliptic Robertson-Walker geometry is usually given in the form (1.1). However, we have used 
coordinates relative to which the line element (1.1) takes in the form 

ds 2  = dt 2  

A set of one-forms W A  particularly 

= 	dt 

(d i 	= 	A(t) 

A(t)[- 

W3 	= A(t) 

In a local frame {WA ) Maxwell's equations 

FAB ;D  

- 	 sin2 p 	Cos2 p ci( 2 ) A 2(0 ( dp2 

adequate for our purpose is given by [4] 

1 
[cos (( - (11)dp+ 	sin 2p sin (( 	0)(45 + A. )] 

1 	. 
sin (( - 	dp + 	sin 2p cos (( - 0)(dcli + d()] 

[cos2  pd( 	sin 2  p 	. 

take the form 

= 	JA and 	F [AB ; c] = 0, 

, 

(2.1) 

(2.2) 

(2.3) 

, 	 (2.4) 

(2.5) 

(2.6) 

where FAB is the Maxwell tensor, .1 4  is the current four-vector and the bracket denotes antisymmetrization. 
To reveal our major goal we study two spatially homogeneous magnetic fields FAB and FA B in the elliptic RW 

background (2.1). In the frame (2.2)-(2.5) they are given by 

F12 = — Z(l) 	F13 = Y . 	F23 = —X (i) , 	 (2.7) 

and 
F12 = — H(t) cos 2p , 	= Hot) sin 2p  cos(( - 49) , F23 = -H(t) sin 2p sin (( - , 	(2.8) 

where H, X ,Y and Z are arbitrary functions of the time coordinate I. We mention that another pseudo-orthonormal 
frame exists relative to which the field FAB has only one nonvanishing component, i.e. F1 = -H(t). 

Using now the package ELDYNF of the suite of algebraic computing programs CLASS! [5], one can easily show 
that for the electromagnetic field FAB given by (2.7) the Maxwell equations (2.6) for J c  = -2 A -1 (0, X, Y,Z) are 
satisfied as long as 

X (t) = c tl A 2  , 	Y(t) = / A2 , 	z(i ) 	7/ A 2 , 	 (2.9) 

where cg, ,0 and 7 are arbitrary real constants. 
Similarly, for the electromagnetic field FAB given by (2.8) one can show using ELDYNF that for 

ic  = 2 II A -  tO, sin 2p sin(( - 	sin 2p cos(( - 4,), cos 2p] 

Maxwell's equations (2.6) reduce to a single ordinary differential equation, namely 

+ 2 H 
A 
— = 0, 
A 

which can be easily integrated to give H = Ho  A -2  , where Ho is an arbitrary real constant. 
The unit three-sphere S3  is relatively well known to physicists. One can obtain Q 3  by separating from a unit 

three-sphere S3  a solid curved cube of height ir/2, and identifying each face with the opposite after a one-quarter 
clockwise turn [1] - [3]. 

When the t = const section of the space-time manifold with (1.1) is S3 , and since the three-sphere is the 
universal covering manifold of the elliptic geometry, there are no topological identifications. Thus, both solutions 
of Maxwell's equations we have studied in the previous Section can be accommodated in the apace - time manifold 
whose three-space is S 3 . 

When the t = const section of the space-time manifold is Q 3 , however, one - has to consider the constraints 
imposed by the topological identifications. Here, although the congruence of curves defined by the electromagnetic 

endowed with 
const sections 

cylindrical 

(2.10) 
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field (2.7) and (2.9) is compatible with the identifications imposed by the topology of Q 3 , the Maxwell field (2.8) (with 
II = Ho  )1 -2 ) defines a congruence of curves, which does not couple with the topological identifications imposed 
by the clockwise quaternionic topology Q 3 . Thus, for example, in cylindrical coordinates the events defined by 
P = (t, Tr/4,0,0) and Q = (t, 7r/4,7r, 0) are the same; however, a straightforward calculation shows that the only 
nonvanishing component. of FAB at P and Q, namely F13, is H(t) at P, whereas at Q it is —H(t), making clear 
that this solution of Maxwell's equations is excluded by the topological constraints imposed by the quaternionic 
topology Q 3 . 

Finally we mention that according to King [6] there are two types of spatial homogeneity for tensor fields in 
the three-sphere S 3 , namely left and right homogeneity. This is so because in S 3  one can globally define both left 
and right invariant vector fields. Using King's definitions of homogeneity the above Maxwell field FA B is right 
homogeneous, whereas FAB is left homogeneous. We notice that as far as the clockwise quaternionic manifold Q 3 

 is concerned we can define only one type of homogeneity for tensor fields, namely right homogeneity, since in this 
manifold only the right invariant vector fields can be globally defined. This fact is in agreement with the exclusion 
of the left homogeneous Maxwell field FA B by the topology of Q3 . 
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We consider two exact solutions of Einstein's field equations corresponding to a cylinder 
of dust with net zero angular momentum. In one of the cases, the dust distribution is 
homogeneous, whereas in the other, the angular velocity of dust particles is constant [1]. 
For both solutions we studied the junction conditions to the exterior static vacuum Levi-
Civita spacetime. From this study we find an upper limit for the energy density per unit 
length a of the source equal a  for both !T  cases. Thus the homogeneous cluster provides 
another example [3,4] where the value of a- is less than I. Using the Cartan Scalars technics 
we show that the Levi-Civita spacetime gets an extra symmetry for a = a or 7,-11 . We also 
find that the cluster of homogeneous dust has a superior limit for its radius, depending on 
the constant volumetric energy density pa. 

1. Introduction 

The Levi-Civita metric (5] is the most general cylindrical static vacuum metric. It will be used as the exterior 

spacetime of static cylindrical sources. 

Some non-vacuum exact solutions with cylindrical symmetry may be found in the literature. One very simple 

solution is the cluster of particles. This source is constituted by a great number of small gravitational particles 

which move freely under the influence of the field produced by all of them together. A cluster solution was obtained 

by Teixeira and Som [1], where they suposed a constant angular velocity for the dust particles with an equal number 

of particles moving in clockwise and anticlockwise directions and found some special cylindrical solutions. From the 

Teixeira and Som solution, Lathrop and Orsene [4] found an upper limit for the linear mass density of the source. 
They used a definition for this quantity given by Vishveshwara and Winicour [7]. 

In 1969 Gatitreau and Hoffman [8] demonstrated that there is no timelike circular geodesic in the Levi-Civita 

metric if a > 1. Based on this, Bonnor and Martins [3] conjectured that the Levi-Civita metric does not represent 

an infinite line mass if a > 4. Later, Bonnor and Davidson [2] presented a cylindrical source, filled with perfect 

fluid, and showed that the matching of this source with the Levi-Civita metric permits values of o- > 4, but < 

In another work, Stela and Kramer [9] found a source with a 4 0.35 using a numerical interior solution. 

Inspired by the Teixeira and Som solution, and imposing the constance of the energy density of the source, 

instead of the constance of the angular velocity, we found an exact solution for an homogeneous cylindrical cluster. 

For both these clusters we studied the junction conditions to the exterior static vacuum Levi-Civita spacetime. We 

found a superior limit for the linear energy density cr of the source equal 4for the first case and zfor the second 

one. The limit obtained for the Teixeira and Som cluster is in accordance with the limit found by Lathrop and 

Orsene [4]. The range of a-  for the homogeneous cluster solution, extends the range found by Bonnor and Davidson 

[2], for a perfect fluid. Our solution allows a = z. 
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2. The Levi-Civita metric 

The general static metric cylindrically symmetric which describes the spacetime (ST) is given by 

ds2  = -fd12  e(dr2  + dz 2 ) + /42 , 	 ( 1 ) 

The exterior vacuum spacetime is described by the Levi-Civita solution 

f = ar4u, e", r 40(20-1) ,  

The non-null Cartan scalars for this metric are 

= 17.2(1-2o) 
a 

41 2 = -(2a - 1)ar 4°-8°2-2  

41 4 = Ike = 	- 1)4'2 

Vq/ 01 1  = V 4I 50 ,  = V:2-(8a 2  - 4a + 1)(4a - 1)(2a - Ocrr6a-1262-3  

V tP10' V 4I 41• = 44a - 1)(2a - 1)ar• 6°-12 '73-3  

74121  =AIL = N5.(4a 2  - 2a.  + 1)(2a.  - oarso- 1247 2 -3 .  
' ' ( 3 ) 

These equations show us that it is a Petrov Type I metric and: 

• for a = 0 or the metric becomes flat, 

• for cr 	0 = 4► 4 = 0 e 11► 2 # 0)-,  Petrov type I), 

• for a = - z  or 1 	Petrov type D, 

• a = 

	

	0, 4, and 1 = ST acquires isotropies. 

The circular geodesics for this metric are 

	

(ds/dt) 2  = 	ar4o ,  
1 - 2a 

we have that if a < 	cr = !T  or a > q, the geodesic is timelike, or spacelike, respectively. 

A test particle moving in a circular trajectory in this spacetime has angular velocity given by 

2a 
= 	a2 r2(40-1) 

I - 2cr 

and three-velocity 
w2 =  2a 

1 - 2a .  

So, if a = zW = co and a > 2 	W 2  < 0 (impossible). 

3. Interior spacetime 

The interior spacetime is constituted by a dust cluster with rotation around the symmetry axis and null net 

angular momentum. The energy momentum tensor is 

= 	 v"v, ) , 
2 

with u° = (u ° , 0, 0, w), 	= (u° , 0, 0, -w) and u"' u, = 	= -1. 

3.1. Homogeneous dust cluster (p = Po) 

The solution of the Einstein's equations which matches with the Levi-Civita metric in the discontinuity surface 

is given by 
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f 

def with b = kpo/8 For this cluster 

= 	—
1 

(1 - 3br 2  + 01 
rfi 

, 	 (4) 

(6) 

(7)  

+ br2 )(1 	7br 2)) 	x 

(3  ± 7br2) ] 	[-!
4 

arc.sin [ 	
4  exp 

 [
27, (arcsin 

A/7 

= 

the three-velocity becomes 

w2 1 -NMI-- 

(1 +br2 ) -2 , 

br 	- .s/1 - 7br 2  

1 	br 2  + 	91:2  

The junction conditions between the interior spacetime (homogeneous cluster) and exterior spacetime (Levi-

Civita) provide 

= 
 1 (

1  /1 - 7bR2  
V 1 + bR 2  

b2R4(20 2 —a+1) 
a = 	 = (1 + bR 2 ) 2 R 

a2 (2a - 1) 2  

We can conclude that r 2  < 7kpo, 0 < a < 4, 0 < W < 1 and 1 G b < 

3.2. Dust cluster with constant rotation (w = wo) 

This solution, obtained by Teixeira and Som solution in 1974, is given by 

f = [1+ (1 + 44r2 )i] 

efia = (1 + 	r2 ) —  

2 
WO  27rp = 

(1 + 44r2)i 

with the three-velocity of the dust particles being given by 

440-2  
(1 + vil 4udgr2)2 

The junction conditions provide 
1  

a = 	+ 44112 ) 

a  = R40(20-1)(1 4 cog R2)1 

Thus, iimR_,, a = ,1 and 	W = 1. So a < -1 in order to generate a Levi-Civita exterior spacetime. There 

is not any restriction on the radial coordinate of this cluster. 

4. Conclusion 

We found the exact solutions of Einstein's field equations for an homogeneous cylinder constituted by an equal 
number of particles of dust moving in clockwise and anticlockwise directions. The matching of this source with 
the static vacuum of Levi-Civita is allowed only for a specific range of the linear energy density parameter, that is 
0 < a < 1. We also found that, for a given volumetric energy density, this source presents an upper limit for its 
radius. In the literature there is, at least, the van Stockum solution as another cylindrical example in which there 

w2 = 

(8) 

(9) 

(10) 
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is a limit for the radius of the source depending on its volumetric density [14,15]. In this case, the limitation on the 

radius comes out in order to avoid a change in the signature of the metric. 

Using the solution for a cluster constituted by dust particles with constant angular velocity and zero net angular 

momentum, obtained firstly by Teixeira and Som [1], and matching it with the Levi-Civita metric, we found that 

the parameter a in this case should be smaller or equal than 4. Considering a as the gravitational mass per unit 

length this limit is in agreement with the result of Lathrop and Orsene [4]. While for the Teixeira and Som solution 

the matching does not present a limitation to the radius of the source, for our homogeneous cluster solution the 

matching imposes a superior limit for its radius, depending on the volumetric energy density po. 

We note from equation (3.4) that circular geodesics in the Levi-Civita spacetime become null when a is equal 

1 . Some authors [Gautreau & Hoffmann [3,8] use this fact as a restriction for the linear density of the source. 

Nevertheless, as pointed out by [6], this result is similar to the Newtonian cylindrical analog case, i. e., for a higher 

density cylinder, all particles (with speed less than the light) should fall. However this argument is not without 

problems, since, as showed by Bonnor and Martins [3], in the interval 1 < a < z the gravitational field seems to 

get weaker as a increases [16]. Note that a = z means that there is no any matter inside the cylinder (p o  = 0 and 

the spacetime is locally flat., in accordance to the Cartan scalars). 

The analysis of the Cartan scalars, summarizes the symmetry properties of the Levi-Civita metric. It is in 

general a Petrov type I metric and becomes a Petrov type D metric when a = 0,1, and 1. For a = 0 or 1-the 

metric becomes flat, which is in accordance with our cluster solution since when a = 0 or z  the volumetric energy 

density po of the cluster vanishes. For a = — I the metric gets one extra symmetry. 
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We study the effect of intense magnetic fields possible present during cosmological phase 
transitions. We obtain the phase diagram of an arbitrary phase transition following gauge 
symmetry breaking as a function of both temperature and magnetic fields. We show that 
intense magnetic fields during a first order phase transition tend to make the order of the 
phase transition stronger. We also discuss the relevance of these results for baryogenesis 
during the electroweak phase transition. 

In the hot primordial Universe we expect that a series of cosmological phase transitions may have happened 
since the Universe started expanding and cooling down. We believe that these cosmological phase transitions (GUT 
phase transitions and the electroweak phase transitions are typical examples) could possibly be important to answer 
most of the current questions in cosmology, from the origin of the large-scale structure of the Universe to the excess 
of baryonic matter [I]. 

From the quantum field theoretical point of view, phase transitions in gauge theories (or symmetry restoring 
phase transitions) may be induced not only by high temperatures but also by high densities or by intense magnetic 
fields [2] (or a combination of these effectsl. Here, we will be particularly interested in the effect of intense magnetic 
fields during cosmological phase transitions. 

In astrophysics and in cosmology we expect to find sources of intense magnetic fields. For example, magnetic 
fields of the order of B 1012 G may be associated with neutron stars (4], B „ 10 14G with supernovae [5], 
extragalactic gamma bursts in terms of mergers of massive binary stars may lead to B 10 17G [6]. In cosmology 
we can expect even more intense sources of magnetic fields, like the one associated with superconducting cosmic 
strings (B>10 18G). More recently, it has also been suggested by Vachaspati (7j that gradients in the Higgs field 
during the electroweak phase transition may lead to magnetic fields as strong as B 1023G. Vachaspati has shown 
that these gradients in the Higgs field cannot be compensated by a gauge field transformation, due to the existence 
of the cosmological boundary condition, where all physical quantities should be uncorrelated over distances larger 
than the horizon distance (in this case, the horizon distance at the epoch of the electroweak phase transition). 

A further indication of the existence of strong magnetic fields in the early Universe may be the existence of the 
Galactic magnetic field. There are suggestions that the Galactic magnetic field, of order I0 -6G, could come from 
the amplification, by a dynamo effect, of a weak seed field of order I 0 -18G, on a co-moving scale of 100kpc [8]. A 
possible origin of this seed field could be a cosmological one and therefore, it could be a primordial field. Tracing 
it back to early times, its magnitude is consistent with the existence of a very intense magnetic field in the early 
Universe2 . 

We are therefore, lead to ask what could be the consequences of very intense magnetic fields in cosmology and, 
in particular, during cosmological phase transitions in general. For such study, we take an arbitrary gauge field 
model, described by a Lagrangian C(0, IP, A n ), composed of (complex) scalar fields q, fermion fields' and gauge 
fields Coupling this model with an external magnetic field 8 (which we are going to take as a constant, in 

rudnei vmesa.uerj.br  
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a plane, for computational simplicity), we evaluate the effective potential, at 1-loop order, for the model in the 
presence of temperature 'I' and the magnetic field B, Veff(cp,B,T), where so E (0), is the background scalar (higgs) 
field. 

At 1-loop order, we can write Veff(cp, B,T) as 

Veff(co, B,T) = V o(so)+ E -1- Tr In 14 (co, B, T)1 , 	 ( 1 ) 

where Vo (co) is the tree-level potential, n i  denote the field degrees of freedom and wi are the field frequencies. 
For a constant B field, the wi of charged particles are easily written in terms of Landau levels [10] and the above 

equation can be evaluated, for. example, by using zeta-function regularization method, or Schwinger's proper-time 
integrals. The full evaluation of (1) can be found in [11]. 

In [11] we have shown that the most important effect of intense magnetic fields during a symmetry restoring 
phase transition happen. when the phase transition is first order. In a first order phase transition, our results show 
that the presence of strong magnetic fields tend to lead to a stronger first order phase transition, that is, the 
external magnetic field can raise the potential barrier between a global and a local vacuum, leading to a higher rate 
of supercooling during the first order phase transition. 

This could lead to important effects during, e.g., the electroweak phase transition and in electroweak baryogenesis 
based scenarios [12]. It has been argued that an electroweak phase transition could satisfy all conditions for 
generating a baryon asymmetric Universe. Among these conditions, out-of-equilibrium condition is an important 
ingredient (for a review of electroweak baryogenesis and its challenges see, for instance, [12]). However, recent 
studies of the electroweak phase transition, in the minimal standard model, have shown that the phase transition 
is too weak first order, if not second order, and therefore it would not occur in a sufficient out-of-equilibrium state 
for generating the required matter asymmetry. 

If intense magnetic fields are present during the electroweak phase transition, due to, for example, the presence 
of superconducting cosmic strings formed during some previous phase transition, or due to a backreation effect, since 
the own phase transition is expected to lead to intense fields, these strong fields could make the phase transition 
stronger first order and could lead to a favorable scenario of electroweak baryogenesis. 
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The effects of the vacuum electromagnetic fluctuations and the radiation reaction fields on 
the time development of a simple microscopic system are identified using a new mathe-
matical method. This is done by studying a charged mechanical oscillator (frequency wo) 
within the realm of stochastic electrodynamics, where the vacuum plays the role of an en-
ergy reservoir. According to our approach, which may be regarded as a simple mathematical 
exercise, we show how the oscillator Lionville equation is transformed into a Schrodinger like 
stochastic equation with a free parameter h' with dimensions of action. The role of the 
physical Planck's constant h is introduced only through the zero-point vacuum electro-
magnetic fields. The perturbative and the exact solutions of the stochastic Schrodinger 
like equation are presented for le > O. The exact solutions for which te < h are called 
sub-Heisenberg states. These non-pertairbative solutions appear in the form of Gaussian, 
non-Heisenberg states for which the initial classical uncertainty relation takes the form 
((Ax) 2 )((Ap) 2 ) (re/2) 2  which includes the limit of zero indeterminacy (h' 0). We 
show how the radiation reaction and the vacuum fields govern the evolution of these non-
Heisenberg states in phase space guaranteeing their decay to the stationary state with av-
erage energy hi,J 0 /2 and ((Ax) 2) ((AP)2) h 2 /4 at zero temperature. Environmental and 
thermal effects are briefly discussed and the connection with similar works within the realm 
of quantum electrodynamics is also presented. We suggest some other applications of the 
classical non-Heisenberg states introduced in this paper and we also indicate experiments 
which might give concrete evidence of these states. 

In this paper we shall study a charged oscillator by comparing some features of the Quantum Electrodynamics 

(QED) and the Stochastics Electrodynamics (SED) approaches 1 1, 2]. Our motivations are inspired in the early 

attempts of Planck, Einstein and Stern and Nernst to clarify the role of the zero-point energy Pi. Another motivation 
is the recent tendency to bring classical and quantum theories to a closer (and maybe nonconflicting) relation[ 1-31. 

Within the QED approach, the Heisenberg equation for the unidimensional motion of a charged oscillator 
(charge e and mass rn) is given by 

	

mr = —V'(x) + e[Ev0)-1- ERR(t)1 
	

(I) 

1 
where V(x) 

= 2 
- rru...) 2

°  x
2  is the harmonic potential, W o  is the oscillator frequency, x(t) is the position operator 

2 e 2  .. 
z 

. 	
i , e ERR(L) 	= 5 -c73- 	 is the radiation reaction force, and EvF is the electric field associated to the vacuum ( 

fluctuations. The total /quantized   electric field acting on the particle, that is, E(t) E Evr+ERR is also an operator, 
and will be considered only a function of time within the nonrelativistic approximation (the vector potential will 
be denoted A, E Avp + ARR). An important point to notice is that the quantum equation (1) is identical to the 

corresponding classical equation of motion. Several authors[ 2 1 3) consider that the quantum fluctuations associated 
to the electromagnetic fields, namely EVF in (1), are the source of the quantum fluctuations on the position 
x of the oscillating charge because only Ev F. depends on h. In fact, it is not difficult to derive the quantum 
commutation relation between the position and the canonical momentum of the oscillator. From the stationary 
solution of (1) one can show that: 

e 	2e 2  , 
, 771i 	- AVF 	2} = 	, T77i1 = 

3C3  



K. Dechoum and H.M. Franca 	 203 

= 	 data 
87re 2 	 wPo(w) 	= ih , --- 

3771 0 	(L41 2  - W 43) 2 (2e 2  w 3 (3me-3 ) 2  

follows from the commutation relations associated to the zero-point electromagnetic fields. We observe that the 
last equality in (2) is valid only if the radiation reaction force is precisely 2e 2  x /3c3  . The validity of (2) within 
the non-stationary (or transient) regimen, and under special environmental conditions, are discussed in detail in 
ref. 4. Therefore, we can easily recognize that, as far as the harmonic oscillator is concerned, the QED and the 
SED descriptions of this system are very similar. As a matter of fact, the Planck's constant 5 enters in both 
descriptions only through the zero-point fluctuations of the electromagnetic fields . This is the corner-stone of our 
approach. 

According to the classical view, the probability distribution in phase space x and p = rnx (kinetical momentum) 
will be denoted by W(x,p, t), and will evolve in time according to the Lionville equation, namely: 

OW 	0 . 
Ot 

+ 0—x(r  W) + —
a 

(0 w) = o . 
Op (3) 

Since Wm = x is related to the stochastic "vacuum" field EVF(L) (see (I)), the above equation (3) can be 

transformed into a Schrodinger like stochastic equation N. Dechoum and Franca [ 4] present the Schrodinger like 
equation in a new form through the introduction of a free paranteter Ii' with the dimension of action. They also 
show how to apply the approximate methods of perturbation theory, in order to make simple calculations. As an 
example they calculate the rate of exchange of energy of an arbitrary excited state of the oscillator. 

A large part of the Dechoum and Franca paper is devoted to the discussion of exact solutions of the stochastic 
SchrOdinger like equation and to the introduction and interpretation of the non- Heisenberg states. The evolution 
of these states in phase space is also presented in the final part when they discuss the limitations of the approach and 
suggest some applications of the non-Heisenberg states in more complicated physical systems. They also indicate 
experiments which may give physical evidence of the non-Heisenberg states. 

According to this paper the stochastic Schrodinger like equation, for a charged particle moving in a general 
potential 

V(x, t) = a(t)x 2  + b(t)x + c(t) 	 (4) 

is given by [4 ] 

le 2 a2 
ifi #  -6-1.1911'  = [- -

2m 49
—

x2 
+ V(x, t) — ex(E v p ERR)] b 	 ( 5 ) 

This equation, and also 10(x, t)1 2 , has a classical stochastic interpretation because it can be derived from (1) and 
(3). 

REFERENCES 

[1] T. H. Boyer, Phys.Rev. D 11, 790 (1975); 809 (1975). See also the remarkable paper by T. W. Marshall, 

Proc.R.Soc. London Ser.A 273, 475 (1963). 

[2] L. de la Pena and A. M. Cetto in "The Quantum Dice, an Introduction to Stochastic Electrodynamics", Klewer 

Acad. Publishers, 1996. 

[3] P. W. Milonni, in "The Quantum Vacuum: an Introduction to Quantum Electrodynamics" (Academic, Boston, 

1999). 

[4] K. Dechoum and H. M. Franca, Found. of Phys. 25, 11, 1599 (1995). 

(2) 



204 
	

XVI Encontro National de Fisica Particulas e Campos 

Fighting Astrophysics Subrahmanyan 
Chandrasekhar A Life for the Stars* 

Herman Julio Mosquera Cuesta 
Diviscio de Astrofi'sica, Instituto Nacional de Pesquisas Espaciais - INPE 

Avenida dos Astronautas 1758, Cairo Postal 515 

CEP 12201-970, Scio load dos Campos, SP, Brasil 

e-mail:herrnangdas.enpe.br 

Received March, 1996 

Chandrasekhar's achievements in astrophysics were widespread in many branches. His fruit-
ful work moved from the revolutionary Theory of White Dwarfs to The Mathematical Theory 
of Black Holes. From one main stream to the other there were seminal contributions to the 
stellar structure and evolution, theory of radiative process in astrophysics, hydrodynamics 
and hydromagnetic stability, galactic morphology and dynamics, black holes physics and 
gravitational radiation emission from astrophysical sources. Such an intelectual and plen-
tiful scientific heritage deserves on our behalf the most sempiternal acknowledgement and 
gratitude. So fully convinced that Chandrasekhar's outrageous legacy will keep on guiding 
our future search for understanding the Universe for decades to come, we devote this brief 
retrospection to his memory. 

There are many fashions to approach this retrospection to the Chandrasekhar scientific legacy. In this article we 
decided to shortly revise his fundamental contribution to the stellar structure and evolution in his theory of white 
dwarfs to later take a look on other of his personal contributions to the astrophysics fundations. 

Adiabatic Index for an Inclosure containing Matter and Radiation 

In his first paper (3, 81 Chandrasekhar shows how to obtain the adiabatic index for an admixture of matter and 
radiation, his approximation to white dwarf stellar interior. His procedure will be followed here, not fully detailed, 
just to remember his deep thought on what this parameter should be for a massive white dwarf. 

A perfect gas is endowed with an equation of state given by [111: 

	

p1/ 1  = Constant, 	 (1) 

the well-known polytropic thermodynamic relation. 
Cur iously, an inclosure of pure radiation behaves exactly like such gas. Perhaps a reminiscence of the wave-

particle duality of the new quantum theory. 
In his approach to study white dwarf thermodynamics he discovered a closed group of thermodynamical param-

eters; the adiabatic exponents. Chandrasekhar's adiabatic exponents are defined as follows: 

(4 — 3f3) 2 (7 	— 1) r, = 	 —_ Tad 	 (2) 
+ 12(7 — 1)(1 — (3) 

where -y 	It the adiabatic index, sin eq(1), is a relation of the specific heats of the substance, and 13 
with p9  the gas pressure and p, the total pressure. The other indexes are: 

= 1 + 	
(4 — 3/3) 2 (7 — 1) 

	

l32  + 3(7 — l)( 1  — 	+ /I) 
and, 

'Poethie appearance of this subtitle is subtle. It encompasses the fact that main Chandrasekhar motivation to do research in 
astrophysics was his search for understanding how stars behave, the physics that underlie them with no respect to isolated or clustered 
stars, galaxies or cosmic black holes. 

P 

(3) 
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(4) 

(5)  

1'3 	l+ = 

These adiabatic exponents obey the relation: 

+ 12(7 

rt 

- 1)(1 - 

P2 

()(4 + 

1'3 - 1 P2 - 1 

In particluar, from eq(2) is easy to see that: r, = 7 when # = 1, and P i  = ;, when # = 0. 
These astrophysical quantities are fundamentals for depicting the physical (therino-hydrodynamics) behavior of 

main sequence and also evolved stars, and particularly, for the thermodynamical description of life and death of 
white dwarf stars. 

Physics of Extremely Dense Matter 

From another point of view, in quantum mechanics is shown that the number of quantum states with momenta 
between p and p+ dp is given by 

,,87rp2 dp
V 	 (6) 

h 3  

Pauli's principle asserts that no two electrons can occupy the same quantum state. So the number of electrons 
in this interval are 

N(p)dp < V —
81192 

h3 dp 
	

( 7 ) 

Now, a completely degenerate electron gas is one which all the lowest quantum levels arc occupied. This leads 
to 

N(p) = 
„ 87rp2  
V 	 (8 ) h 3  

and consequently, 

8r fP° 
N = V —

h3 	
p2 dp 	 ( 9 ) 

or 

87 

	

N = V —P-
131 	

(10) 
3h3   

where we define the density of quantum states as: 

N 	87r 
n = 	= 

3h P 
	 (11)

V

The total pressure can be calculated from 

PV = r N(p)pvp dp, 	 (12) 
3 A 

here vp  is the velocity of the particles with momentum p. So we are left with, 

8
h
7r r 

P = 	
30E 

p —ap, 	 (13) 
3 3  0 	op 

where E is the kinetic energy of the electron whose momentum is p. 
At this point Chandrasekliar realizes that relativistic effects should be taken into consideration in order to 

describe correctly white dwarfs's structure. So he used the relativistic relation 

'The appropriate Newtonian relation is given 	E = 	. This relation, clearly, is not correct for the case of degenerate matter. 

See previous section. 
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2 

	

E = mc2 [(1 + 71
p ) 
	 11; 

which yields 

aE P2 ) 4 
= ;77  (1 + 

	

m2 c2 	
p. 

This leads to 

87  po 
P = 

3h 3  Jo  
P4  dp  

( I- 

(16) 

After some algebraic substitutions (see the book for details) we get: 

P
M4 C5  

) 

3h 3  

where 

f(x) = x(2x 3  - 3)(x 2  + 	+ sinh - I  x. 

The function f(x) has the assymptotic forms: 

f (x) 	
8 6 4 

- -x
7 
 -x

9 
 - 

5 
 x -F... 

5 	7 	3 

1 	
22 

	

2x4  - 3x 2  + 	 (x co) 

Taking only the first terms in the expansions of f(x) we obtain for the electrons' pressure: 

p  = 1 (3) 1  h2} na 

	

20 7r 	m, 

and 

P = [ 1  ( 3 ) 4  hcini 	(x 	oo). 	 (22) 

From these equations we can confirm Chandrasekhar's conclusion that the adiabatic index has to be 3  for fully 
relativistic degenerate white dwarf stars, it reads as a direct confrontation between eq(1) and eq(22), together with 
eq(11). It is also easy to see, from eq(22), that for non-relativistic degenerate white dwarfs this adiabatic index 
becomes 1; as found by Chandrasekhar [8, 9). 

Chandrasekhar's Theory of Maximum Mass for White Dwarfs. 

Describing the mechanical structure of white dwarf encorporates the hydrostatic equilibrium equation and the 
equation of state for the particles responsible for the pressure that support the star against its gravitational self-
attraction. Electron's degree of degeneracy is defined by z = 4.1.7, where pi is the Fermi momentum of the electron, 

which varies as pi. 
Equation of state reads: 

	

P = Cif(x), 	p C2 z3 	x= 
771,C 

	 (23) 

with 

(14)  

(15)  

0) 

4 C  5 7/71c  	rt  
j ‘ xl  3h 3  Pe = (24) 
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as adapted from eq(17), and 

f(x) = z(2x 3  — 3)(x 2  + 1) 1  + sinh - 

as defined in eq(18). Also, the electron density is defined as: 

p 	87rmc3  x3  
n, = 	= 	 

rat, 	3h3  

is given in eq(11). 
Resolution begins with Poison's equation radial component: 

1 d ( r2  dd i kr ) 
= 4 irG p. 

In this equation 
r 

is replaced from the hydrostatic equilibrium equation 

where P and p can 
Thus we get 

dP 	dO 
dr  	dr P  

be substituted from eq(23). Constants CI 

(28) 

and C2 are the coeficients of equations(23,24). 

C,', I d (r 2  df(x))  
= —47rGC2x 3 - 	 (29) 

C2 7' 2  dr k,x 3  dr 

From the quantum mechanical treatment. of a completely degenerate electron gas we get for the particles' 
pressure: 

8rcI" pa 	phn e c 	dp.  
3h3 o 	

[1  + 
 p2/(mic2)P 

By introducing the new variables: 

0 = phn e c, 	x 

it reads, 

87rc 5 m4, r 04  dO  
P 

	

3h 3 	02)V 

The integral can be replaced by 

ja
04 d0  _ I +  02)i  — -§ [x(2x 3  3)(x 2  + 1) 1  + 	xl . 	 (33) 

Here, the square bracket corresponds to the f(x) function defined in eq(25). 
Differentiating this equation we see that: 

1 df (x) = d [, 
+ 1 	= 4.1 — 

X 3 

 - 

dr 	dr 	 dr ' 

where 

With these substitutions in eq(29) we get, 

1 d 	) 	 2 	3 
—726-c CI   (z2 — 07. - - r2 dZ 

r 2  dr 	dr) -'.. 

Replacing r and z for the dimensionless variables c and 0, defined as follows: 

(25)  

(26)  

(27)  

(30) 

(31)  

(32)  

— 2 Z 2 = X + 1. 

(34)  

(35)  

(36)  

(37)  
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(38) 

where a = 	u!..,7, and z, is density value at the star's center, we obtain through the use of eq(36): 

1 d 	2  CiE) () 
e2 	de ) = (tv2 	

39 
) 

This way we get the Chandrasekhar's differential equation for the structure of white dwarf stars[8). It could be 

written as 

2 
d2 tzr 	2dtEr 	2 	1 ) 

+ ---"' + 
(

WI 
	 = 0. 	 (40) 

dE 2 	Ede 	 z? 

The Chandrasekhar equation looks Like an Endem equation for politropes [11], and reduces to this when politropic 
exponents are n .:_ 3 and n = ?, what corresponds to assymptotic values z —• 03; (i. e. x —. oo), and z —I. 0; (i .e. 

x —, 1) [12]. 
Solving it with central conditions 

E = 0, 	, tvi = 0 

we get the density stratification as 

1 
p = Ca? = C2(z2  — 	= V2Ze3 

7 
— — 

4) 

As usual, it surface is found from E = e l , where p becomes zero. It yields, 

C =CI, 	,xl = 0, 

The radius of the star is given by 

1
2C1 1 

R = ere .' = 	
ir

Ei• 
G C2 2C 

Finally, the star mass M is obtained from the functionals of r and z defined in equations(37,38): 

M = r 4rr2pdr 

Or equivalently, 

M = 42-a 3C24 
VD' 

E 2 (roz 	I ) i de.  

In this equation the integrand can be replaced by the left-hand derivative of Chandrasekhar's differential equa-
tion(39), thus getting 

M = 47ra3 C2z3, (—e 2  thy  
de) 1 .  

Substituting for a we are left with 

= (2Ci Le2 dtV) 

7G 	dE 

This equation runs for the whole range between non-relativistic degenerate to the fully relativistic degenerate 
white dwarf stars. It requires a numerical solution. Notwithstanding, we are able to derive Chandrasekhar's limiting 
mass for white dwarfs by restoring the star proper variables (r, z) and their numerical values into it. This follows 
after forcing the equation to the fully relativistic case; i. e., z, = oo, to obtain the relation: 

(41)  

(42)  

(43)  

(44)  

(45)  

(46)  

(47)  

(48) 

Mch = 5.8611: 2 M O . 	 (49) 
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Since z, —+ oo corresponds to a Lane-Endem functional of adiabatic index n= 3 [8], as referred to earlier, this 
equation represents the maximum mass is allowed for any white dwarf star. In other words, no white dwarf star 
can be heavier than this given limiting maximum mass. [6]. 

Eddington Confrontation to Chandrasekhar's Relativistic Degeneracy Approach. By the eve of the 
World war II the energy source of stars on the main sequence on Hertzsprung Russell diagram was pretty well under-
stood as a consequence of Aitkinson, Houtermans, Bethe and Von Weizacker and their colaborators implementation 
of Gamow's tunelling mechanism. To astrophysicists the answer to how stars evolve thereafter had been achieved. 
But a nagging inquiry was bothering around, yet. Knowing that star's light is the by-product of thermonuclear 
fusion reactions, the point was: what happens when finally their nuclear fuel becomes exhausted? The answer to 
this puzzle problem had been given in the 1930's. Few people awared of it. A reason for that derives from the 
fact that the explanation suggested to this key quiry in astrophysics was obscured and ridiculed by the eminent 
luminarie of the british astronomy, Sir Arthur Stanley Eddington. This episode will be reviewed below. 

Meanwhile, in Cambridge Chandrasekhar received his Ph. D. degree in 1933. Since then he was nominated 
as a fellow of Trinity College, the centre where his well-known astrophysicists Fowler and Eddington were faculty 
members. He kept this position until 1938 when he moved to University of Chicago as a member of the faculty 
staff. 

With his Ph. D. diploma at hands Chandrasekhar reinitiated a utter study on the limiting mass for white 
dwarfs. About the end of 1934 ha had gotten demonstrating that for the ten representative white dwarfs he used to 
check up his theory none of them had a mass heavier than its limiting maximum mass [7]. To obtain this conclusion 
he ought to solve numerically the differential equation for the stellar structure, eq(39). This way of showing to 
the astronomical community that his earlier computations were essentially corrects it was suggested to him by the 
armenian astrophysicist Ambartsumian; sonic months before [15]. 

As a magic glove for hands, for January 11°' 1935, it was scheduled a Meeting of the Royal Astronomical 
Society. That was an excelent opportunity to present his revised calculations of the white dwarf stars and their 
maximum mass. At his turn Chandrasekhar with mastery on the subject did demonstrate that effectively white 
dwarf stars cannot be heavier than 1.44MO. Otherwise, they should implode under their own gravitational squeeze. 
An impecable lecture was given. Audithorium responds with a polite aplause. 

Eddington's Absurd Behavior of White Dwarfs. 

Following Chandrasekhar lecture, another one from Eddington on "Relativistic Degeneracy" was scheduled. 
After a brief discussion on the Sun destiny and its final quiet death at the white dwarf grave according to Chan-
drasekhar's analysis, Eddington parted to a description of the sine awaiting for a star as massive as Syrius A, whose 

mas is 2.3MO. Rapidly he showed that if Chandrasekhar's theory was right there was no quiet end for this sort of 
stars and, unavoidably, they must implode. This conclusion shocked Eddington's astrophysical beliefs. How absurd 
is the white dwarfs' behavior, he reasoned. Why does nature allow for this to happen? Quoting Eddington's words: 
"Dr. Chandrasekhar had got this result before, but he has rubbed it in in his last paper; and, when discussing it 
with him, l felt driven to the conclusion that this was a reductio ad absurdum of the relativistic degeneracy formula. 
Various accidents may intervene to save the star, but I want more protection than that. I think there should be 
a law of nature to prevent a star behaving in this absurd way!". Then Eddington argued against Chandrasekhar 
mathematical proof saying that people could not trust in it since it was obtain from an inadequate meshing of 
special relativity and quantum theory. Ile said: "1 do not regard the offspring of such a union as born in lawful 
wedlock". 

A day after the conference Chandrasekhar wrote a letter to Leon Rosenfeld at Copenhagen asking for his opinion, 
and that one from Bolir's about Eddington's way out for the white dwarf stars' destiny. The response was conclusive. 
Too much clear for. Both of them could indeed not find any meaning in Eddington's arguments. They concluded 
Chandrasekhar was right and, therefore, Eddington should find another more physically based escapement. Despite 
of that the astronomical community gave no credit to Chandrasekhar's maximum mass limiting. All of them 
adhered to Eddington's conclusion. They believed, as Eddington, that a a law of nature to prevent the star from 
behaving in this absurd way is to exist, when in fact, there is none. Implosion is compulsory. 

Conclusions. 

During the intervening years until his departure Chandrasekhar kept eagerly his active pursuit scientific research. 
All those years did see a number of colleagues and students receiving his advice and friendshipness. Many times 
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his struggling for unveiling nature's misteries was homaged. On may 27-29; 1975, his colleagues at the University 
of Chicago, Norman Lebovitz; who joined Chandrasekhar in the sixties' to rediscovering Dirichlet, Dedekind and 
Riemann works on rotating liquid masses [10], William Reid and Peter Vandervoort of the department of physics 
organized a Symposium on Theoretical Principles in Astrophysics and Relativity to honored him at. 65 gh  year. In 
the papers compilation they wrote as preface: "This book, the proceedings symposium, is likewise dedicated to 
Chandra. We know that his many friends throughout the world will joint to us in this expression of our admiration 
and affection"[13]. All of us certainly joined to. Like this one many other meetings around the world were held to 
tributing to Chandra our gratitude for his fighting. 

That year was also the beginning of a definitely new example of his tenacity. During summer, William Press, Saul 
Teukolsky and a selected team of young physicists held a meeting at Princeton University to put an appropriate 
epitaph on to the black holes theory. They organized the Funeral for the Golden Age of Bkack Hole Research. 
According to these people there was nothing more interesting at all to be done in this field. They believe the 
essential aspects of the theory had already been worked out. Particularly, it was guessed that Teukolsky's equation 
encompassed all the things could be said on black holes. Notwithstanding, Chandrasekhar not believed so. So he 
began for revising the work done thus far. In 1983, at age 73; and after having worked patiently for eight years 
restudying what people had been done in this field, he gave a surprise to everyone interested in black hole theory. 
He published his marvelous, deeply elaborate treatise on The Mathematical Theory of Black Holes which contains 
an elegant description of the perturbation theory technique to study the black holes' dynamics. One of his last gifts 
to the relativity community. 

The time has come to remember Chandrasekhar's first thought after his discouragement for Eddington attack 
to his limiting mass. achievement: "I felt that astronomers without exception thought that I was wrong. They 
considered me as sort of Don Quixote trying to kill Eddington. As you can imaging, it was a very discouraging 
experience for me to find myself in a controversy with the leading figure of astronomy and to have my work completely 
and totally discredited by the astronomical community. I had to make up my mind as to what to do. Should I go 
on the rest of my life fighting...? It was better for me to change my field of interest and go into something else . . 
So in 1939, after having written his famously quoted book An Introduction to the Stellar Structure, Chandrasekhar 
turned his back to the field that fifty four years later helped him to be honoured with the Nobel Prize in Physics, 
the white dwarfs and the stellar death [15]. 

To his whole life of science dedication we express our sempiternal admiration 2  [16]. We will endlessly be indebted 
to Chandra for his also outrageous legacy. 
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Utilizando urn conjunto de dados obtidos nos detectores de Interacoes Hadronicas da Co-
laboracao Brasil-Japao de Halos COsmicos, mostramos que os secundarios fiestas lnteravies 
parecem se dividir em grupos. Esta divisao e tida como consequencia da criacao de Estados 
Intermedicirios Discretos entre a colisio hadronica e a producao dos secundarios. Em urn 
cada destes grupos (dois, no caso deste trabalho) foi feita a busca de sinal estatisticamente 
significant•da producao de mesons rj. Tal busca indica a producao seletiva de mesons ja 
que sinal significativo dos mesmos so foi encontrado em um dos grupos analisados. 

I Breve descricao do detector 

0 detector e constituido essencialmente de material fotossensivel acondicionado em envelopes selados. Experimentos 
especificos adotam geometrias especiais. Detalhes em (0). 

II Metodos de analise 

0 conjunto de fOtons provenientes de uma mesma Interacio Hadronica a denominado familia. De acordo corn a 
regiao do detector onde ocorreu a Interacao HadrOnica (III), esta a classificada como A-Jatos (III na atmosfera sobre 
o detector), C-Jatos (IH no alvo de carbono) ou Pb-Jatos (IH numa placa de chumbo). A altura do ponto onde 
ocorreu a IH, ou simplesmente a altura de interacao, a tambern determinada. Verifica-se entao se cada uma das 
familias identificadas sao realmente resultantes de uma anica 111 corn producao isotrOpica de secundarios usando urn 
algoritimo descnvolvido para tal finalidade. Os dados que atendem tal criterio sao entao submetidos a urn segundo 
algoritimo, chamado de mDW. Nota-se entao que o conjunto de dados se divide em grupos. A cada grupo associa-se 
urn Estado Intermediario Discreto diferente, batizados de Mirim, Acu , Guard e Centauro. ApOs into, busca-se em 
cada uma das familias dos grupos Mirim e Acd os pares de fotons provenientes de pions neutros. 

Determinados os pares de fOtons provenientes de ir°'s, os fotons restantes (em cada familia) sao combinados dois 
a dois para gerar a distribuicao de massas invariantes dos supostos mesons que tefiam produzidos estas combinacoes. 
Esta distribuicao experimental e entao comparada corn uma distribuicao de massas invariantes obtida da mesma 
maneira de dados siinulados scm a producao de Pi's. Nas III do tipo A-Jato, foi feita tambern a busca individual de 
pares de fOtons provenientes de q's. Isto porque notou-se que, entre os fotons nao identificadas como provenientes de 
7r° , Wpm de energia razoavelmente alta estavam afastados do centro de massa da familia. Alem disso, verificou-se 
que a massa invariante da combinacao destes fotons era prOxima do massa invariante do 0. Este tipo de busca nao 
foi feita nos C-Jatos porque, devido a pequena altura de interacio dos mesmos, a separacao entre os secundarios 
nao a suficiente para se usar os criterios citados anteriormente. 

III Conclusifies 

Na figura 1 nota-se corno as III parecem se dividir em alguns tipos diferentes. Na tabela 1 sao rnostradas algumas 
grandezas caracteristicas de cada urn destes tipos. A busca estatistica de ifs nos tipos Mirim e AO indica a 
producao seletiva de n's, pois sinal estatisticamente significante da sua producao so foi notado nos Actis (figures 2). 
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Na figura 3 vemos a distribuicio integral de (PI ) para os 7r°'s e rj's identificados nas familias do tipo A4u - A-Jato, 
Waves da busca individual. 

A maioria dos componentes da familia do tipo Centauro foram identificados como hadrons (nos ASus e Mirins 
os componentes sao, na sua maioria, identificados como fotons). Corrigindo-se entao o momento transversal medio 

de hadrons em forma de fOtons (Pm) usando-se uma multiplicidade razoa.vel, obtem-se da ordem de 1 
GeV/c. Como a familia Centauro analizada foi produzida isotropicamente (segundo o algoritimo usado para verificar 
isotropia, figura 3), podemos descreve-la atraves de modelos termodinamicos para 1H. Tais modelos mostram que 
ha uma relacao entre (P,) do Estado Intermediario e a(s) massa(s) da(s) particula(s) produzida(s). Entao, pode-se 
associar ao fato de (Pr ) dos Actis ser maior que o (P,) dos Mirins a producao de uma particula mais pesada no 
Ace (no caso o como mostrarn os resultados experimentais. Seguindo esta linha de raciocinio, o valor de 1 
GeV/c para o (P,) do Centauro pode ser visto como sinal da producao de particulas mais pesadas que o R  nos 
Centauros. Este valor de (P,), associado a outras caracteristicas exotecas dos Centauros, sugere que os Centauros 
sejam resultantes nao do fenomeno de Productiollipla de Mesons que ocorre em IH's de alta energia, mas sim 
duma Producdo MUltipla de atirions e Anti -Bdrions. 

fOtons 77-0 rl 
(N.,) (Pi) 

(MeV/c) 
(Nr o) (F,) 

(MeV/c) 
(N, ) (Pi) 

(MeV/c) 
Mirim 

. 
A-Jatos 7 ± 0.4 168 ± 13 2.5 ± 0.3 280 ± 17 - - 
C-Jatos 7 ± 0.5 125 ± 11 2.5 ± 0.4 192 ± 14 - - 

AO A-Jatos 15 ± 0.4 385 ± 20 4.6 ± 0.3 547 ± 23 0.6 ± 0.11 1281 ±36 
C-Jatos 17 ± 0.6 258 ± 16 6.4 ± 0.6 387 ± 20 - - 

hadrons 

(MeV/c)  
(Nh) (P,,(7) ) 

Centauro I A-Jatos 39 ± 4 267 ± 16 

Tabela 	Resurno dos resultados obtidos. (NO , (No ), (N,,) e (Nh) sic), respectivamente, as multiplicidades 
mediae por IH de fOtons, r°'s, re's e hadrons. 

Referencia 

1. M.Akashi & outras, Prog. Theor. Phys. Suppl. 32 (1964), 1-2 

• Chacaltaya Emulsion Chamber Experiment, Prog. Theor. Phys. Suppl. 47 (1971), 1-125 
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Figura 1: Grafico do mDW para o Centauro V, Guacti e as families A-Jatos. Notar a separagiio entre as quatro 
tipos de Estado Interrnediario identificados. 
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Figura 2: Comparactio entre as distribuicaes de M-r., experimental e eimulada para familias do tipo Mirim (esquerda) 
e Act"' (direita). Notar a diferenca significativa entre as distribuicZes para os AO's, principalmente na regal:, de 
mama invariante do n. 
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Figura 3: A esquerda: Distribuiciio integral de momento transversal de a°'s e q's para A-Jatos do tipo Aga. A 
direita: Grifico do ajuste da fungi° R uaada para testa de isotropia. Notar que a qualidade do ajuste e boa, 
indicando que a familia Centauro V atende o criterio de isotropia. 
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Semileptonic Decays in E781 ? 
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R.A. de Paula, R. Zukanovich Funchal 
Institut° de Fisica da Universidade de Sao Paulo 

05389-970 C. P. 66318 — Sao Paulo, SP, Brazil 
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We have used the GE781 Monte Carlo to investigate the E781 trigger and filter effi-
ciencies to several semileptonic decay modes of charm hadrons as well as for simulated 
FRITIOF/PYTHIA background. A complementary filter, based on the TRD response, was 
also investigated in order to increase efficiency to semileptonic modes of short living charm 
hadrons, such as -22. 

1 Introduction 

The theoretical description of charm hadron decays is, in general, not simple. The models depend on many unknowri 
factors related to our lack of knowledge of the relative importance of exchange and interference diagrams and, 
specially, of nonperturbative QCD effects. 

Semileptonic decays of charm , mesons and baryons are nevertheless thought to be particularly simple. The 
lepton-neutrino system produced by the virtual W boson is well understood and it cannot have strong interactions 
with the hadronic decay product. The nonperturbative QCD effects on the semileptonic decay amplitudes are 
parametrized in terms of. Lorentz-invariant form factors, which depend only on q 2  , the square of the mass of the 
virtual W. Morover, in the charm sector, one can use the assumption of CKM matrix unitarity to measure the q 2  
dependence of the form factors independently of the determination of CKM elements. This should provide very 
useful information to improve predictions for b decays [1]. 

Because they are theoretically more tractable, semileptonic decays represent the best possibility to disentangle 
weak from nonperturbative QCD effects providing us with a good probe of nonperturbative models. They are 
probably the best candidates to give us some insight into hadronizatiou phenomena. 

Semileptonic decay rates are also reasonably large (a few percent at least) and should be experimentally accessible 
in E781. 

In section 2 we discuss how trigger and filter calculations were made, in section 3 we show our results for some 
hadronic modes and compare them with previous results [3], in section 4 we show our results for some semileptonic 
modes, in section 5 background suppression is presented and finally in section 6 we draw our conclusions. 

2 Trigger and Filter Calculations 

We have used the GE781 [4] Monte Carlo to calculate trigger and filter efficiencies to LUND generated events (signal 
and background). The trigger response was simulated according to multiplicity matrix proposed in H-643 [2] i.e. 
three or more positive particles matching the matrix in both hodoscopes. • 

The filter selection was simulated in the following way. Primary interaction in the target was smeared randomly 
in z, arround the half thickness of the target. Tracks seen by interaction counter and hodoscope 1 were extrapolated 
back to the interaction plane and the coordinates of crossing were smeared to simulate track finding resolution. 
Miss-distance mdi ( 	st)  was calculated considering the primary interaction to have happened in the center of the k  
target. In fact the track finding resolution is not so crucial for miss-distance calculations, the thickness of the target 
(1.5 mm) being the dominat contribution to the error. 

'On leave from Petersburg Nuclear Physics Institut 
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The TRD (electron transition radiation detector) filter was simulated taking tracks that were seen by both 
hodoscopes. The coordinates of the hits of these tracks in the TRD chambers were predicted. TRD, pulses along a 
road of ±1 strip around the predicted position were added up to produce the TRD response for this track. 

3 Results for some hadronic modes 

Before going on to investigate semileptonic modes, we decided to check the results of H-722 (3] for At  - pKir with 
our simulation. We also have simulated At A°7r+ because we would like to see how the signal is suppressed 
in the case of a low multiplicity mode. The A:8 where generated according to (1 - xF) 4-2 , so this cross-section 
behavior is already taken into account in our results. 

To do this we have calculated the maximum mdist(mcharm)  for charm decay products seen in the hodoscope 
1, for each event. 

We will define reconstructable charm events [3] as events that have at least one daughter particle from 
charm decay in hodoscope 1 and with m charm  > 30. We will calculate c o  global efficiency with respect to the total 
number of charm events generated. Our results are presented in the following table 

A: -. pit- Ir+ At -) Aux.+ 
(9 (trig) (%) 33.9± 1.4 27.5 ± 1.3 
eg (charm + me h orm  > 30) (%) 30.4 ± 1.3 17.9 ± 1.0 
es (trig + charm + mcharm > 30) (%) 13 ± 0.9 6.0 ± 0.6 

In the case of events At 	p t rr+ , we have an approximately equal contribution to the filter from all decay 
products, in the case of A. 	A°x+, only r+ contributes. 

We observe that our results are compatible with the ones presented in Ref. [3]. 

4 Results for semileptonic modes 

We have generated the following semileptonic decays to study: 

• .7? 	-7, - e+vc , with (1 - xF) 2  (F1'); 

• kJ- 	A°e+ lie , with (1 - xp) 4 • 2  (An; 

• D° 	K - e+ve  (D°); 

• D',1- •(I)e+ 	(14 ); 

• D+ 	RGe+ vc  (D+); 

As semileptonic decays are somewhat suppressed by the trigger and the miss-distance cut is bound to diminish 
the final number of accessible events even more, specially for short living particles, we would like to investigate a 
complementary filter similar to what was proposed for the RICH [5], but using TRD. The TRD algorithm proposed 
is much simpler and faster than any possible RICH algorithm and will, most certainly, accept less background. 

The TRD detector is very good in separating energetic e+ le-  from other particles. The efficiency of this selection 
depends very much on the nature of the background and on the kinematics of the signal one is looking for. 

We have investigated the TRD response to signal and background and found that the appropriate cut should 
be 5-6 TRD pulses. 

The TRD filter consists in selecting the events that have at least one positive track coming from one of the 
targets ( < 0 ) with more than 6 TRD pulses (trdsum) along its road and having less than 120 GeV/c. The idea 
is to OR. this filter with the miss-distance one. 

Our results are presented in the following table: 

. al A: D°  D: D+ 
cAtrig) (%) 23.0 25.4 13.3 17.2 14.6 
cs,(charm + mcharm > 30) (%) 7.9 12.5 38.7 35.8 39.4 
co (trig + charm + mcharm > 30) (%) 2.7 4.7 6.2 9.0 7.8 
OR (%) 12.6 12.0 8.2 11.1 2.0 
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Here OR means (trigger + charm+m charrn  > 30)OR (trigger+charin+trdsum > 6). 
The statistical errors are as follows: 

• cg (trig):3% for D° and D+ modes and 1% for all the others; 

• cg  (charm + "charm > 30):4% for D° and 5% for D+ modes and 1% for all the others; 

• cg (trig + charm +mcharm > 30): 1.5% for D° and D+ modes and 0.6% for all the others; 

• OR: 2% for D °  and D+ modes and 1% for all the others; 

Trigger efficiency for D mesons semileptonic decays seem to he about half of the one for charm baryons. This 
efficiency depends mainly on the xF distribution for the cross-section ;  we take here the default distribution given 
by PYTIIIA. In real life, specially with E beam, it may be quite different. 

Note that the final efficiency (trigger+charm+"'charm > cut)) is not a simple product of e g (trig)* c g (charrn + 

mcharm > cut). 

5 Results for background 

To study the effect of trigger and filters to background one has to use two types of LUND generated events. 
FRITIOF events that simulates beam-nucleus interaction, but do not simulate charm production, and PYTHIA 
events that simulates beam-nucleon interactions. 

In the first case one is interested in estimating the real backgroud suppression, as FRITIOF is considered to 
simulate real backgroup rather well. 

In the second case, one is preoccupied to estimate the ratio of signal to background, as signal is also simulated 
using PYTIIIA. On average PYTIIIA events have smaller multiplicity than FRITIOF ones but it is supposed to . 
provide the right signal to background ratio. 

In the table that follows we present our results: 

FRITIOF PYTIIIA  
f9 (trig) (%) 23.5 ± 0.4 9.6 ± 0.8 
cg (rnaist, > 30) (%) 4.9 ± 0.2 3.6 ± 0.5 
cg (trig + mdist, > 30) (%) 1.5 ±0.1 0.7 ± 0.2 
OR (%) 4.9 1 0.2 2.0 ± 0.5 

6 Conclusions 

Our background investigation confirms the conclusions of Ref. [31. The trigger efficiency is very sensitive to the 
background conditions. As these conditions are really not known a priori, our trigger approach should be flexible 
enough to allow for changes. We have to be able to adapt it to the real experimental conditions. 

Trigger on its own almost does not increase signal to background ratio, but reduces rates to a reasonable level 
so as to make full read-out possible. Trigger combined with miss-distance cut really does a good job suppresing 
background really increasing the signal to background ratio (five times in the case of A -el-  A°e+ve ), but cutting 
total signal to about 1/3. 

Using NA32 data, see Ref [6] one can also estimate the total number of the so-called reconstructable events that 
we will have on tape for some D meson semileptonic decay modes (1000 II): 

• Di+ ---. cile+ve  : 9000 events after trigger and miss-distance cut of 30 pm; 

• D° 	K - e+me : 32000 events after trigger and miss-distance cut of 30 pm; 

• D+ 	Rue+ : 14400 events after trigger and miss-distance cut of 30 pm; 

The TRD filter in the "OR" scheme improves signal to background ratio to the same level as the "trigger +flidist > 
30 " scheme for hadronic modes. In all our investigations of semileptonic decay modes we found that about 10% 
of the signal events survive the "OR" scheme. This gives an increase of the total number of events selected, 
with respect to the "trigger +mdisi. > 30" scheme, variing from 2 to 5 times, depending on the mode. This will 
be specially important in the case of short leaving charm hadrons semileptonic decays, that are tremendouosly 
suppresed without the "OR" scheme. As in semileptonic studies we would like to be able to measure not only 
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branching ratios but also form factors, the total number of final events in each mode is crucial. If the background 
level achived with the "OR" scheme is acceptable to the whole experiment we would like to propose to use the TRD 
filter as a part of the filter program as described here. 

These conclusions strictly depend on the TRD algorythm, background conditions and track reconstruction 
accuracy. We should reserve the possibility to switch some of these options for filter program. 
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Received March, 1996 

1 Introduction 

Studing the reaction e+e - 	Z° 	r+r- , we determine the branching ratio of the decay r 	pr., at the 
DELPHI experiment at LEP, using data taken in 1993. 

The good agreement between the DELPHI Monte Carlo and data allows us to estimate efficiencies and the 
background from r decays and from other Z° decays directly from the Monte Carlo. 

2 p selection 

The DELPHI detector' and the rr selection 2  have already been described. 
In order to reconstruct the p, we selected r decays containing one charged particle, 7± and a 7° through its 

decays seen as two (one) photons in the electromagnetic calorimeter. We then required that the angle between . 
the reconstructed track and the 7r °  was less than 20° and that the effective mass of these two particles lies in the 
interval 0.48< M„0 <1.2 GeV/c 2 . 

2.1 Track selection 
The charged 7r* was selected as a single 'good' track in the hemisphere of the decay considered, registered by 

the tracking detectors within the central region 45° < 0 < 135°, being 0 the polar angle with the beam axis, having 
a momentum greater than 0.5 GeV/c, track length greater than 30 cm, impact parameter consistent with origin at 
the collision point and vetoed with DELPHI particle identification programs as not being an electron or muon. 

2.2 7° selection 

The 7r° reconstruction, which is the most delicate point of the analysis, was done with the following three 
different criteria: 

2.2.1 2 photons 

Photons were selected if they were reconstructed in the fiducial region of the barrel electromagnetic calorimeter 
(HPC), which corresponds to 45° < 0 < 135°. It was also required that their energy was greater than 0.5 GeV and 
that the longitudinal and transverse profiles of the showers in the calorimeter were compatible with the structure 
of a photon. Photons that converted in the tracking detectors were also accepted when the effective mass of the 
e+e -  pair allowed to reconstruct unambiguously the original photon. 

Pairs of photons were combined and considered as a ir° candidate when their effective mass was 0.04 < Mr, < 0.3 
Gev/c 2  and the angle between them was less than 10°. This last cut was done in order to minimise the combinatorial 
background, as the typical angle between two photons coming from 7r° at LEP energies is of the order of 2.5°-3.0°. 

2.2.2 1 photon 

We also considered the case where only one of the two photons is seen in the detector. This may be due to 

losses in the cracks of the calorimeter or, in the case of a very energetic ir°, the angle between the photons is so 

small that the two photons are reconstructed as one. 
In order to accept one photon as a '7°', we required that its energy was greater than 2.5 GeV. 
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2.2.3 Merged ra  

This category corresponds to the last case of the previous selection, in the special situation where the profile of 

the shower in the calorimeter is such that clearly there are indeed two 'merged' photons. 

3 Data analysis and results 

Background and efficiencies were estimated using simulated events, which were generated with KORALZ 3 , fully 
simulated through the detector with DELSIM 4  and reconstructed with the same algorithm as the real data. 

The internal background, coining from other r decays was determined to be b=15.93±0.16% , the 'external' 
background from Z° decaying into hadrons, electrons and muons was estimated as y=1.30±0.05% for r identification 
and x=0.03±0.01% for p identification. 

The r selection efficiency, in 47r, is rg.1 =49.39±0.11% and the corresponding p selection efficiency was found to 
be Opci =22.85±0.10%. 

The selection performed on the real data amounts to N.;.',.̀ i =18371±136 rr pairs and Nr 1 =4933±70 p decays. 

With these results, we obtained for the Branching Fraction: 

Al" 1  (1 — b — x)el..1  
B R93 = 	P  	= (24.71 ± 0.42)% 

2Ngi (1 — y) elpei 

3.1 Systematic error 

In order to evaluate the systematic error we calculated the Branching Fraction varying the selection cuts one 
at the time. 

For the rr selection we considered two variations: 
a) increase in the number of prongs and tracks in each hemisphere 
b) relax the requirement of total reconstructed energy and momentum. 

We introduced a bias factor due to KORALZ and the number of generated p after the rr reconstruction. 

For the p analysis itself, we took the following variations: 
1) energy of '1 photon' ir° > 5. GeV. 
2) energy of '1 photon' 7r° > 0. GeV. 
3) energy of photons (for pairs) > 1. CeV 
4) r° mass < 0.5 GeV/c 2  
5) 0.3 < M„0 < 1.35 GeV/c 2  
6) track momentum > 1.0 GeVic 
7) accept 'standard' identified electron and 'standard' muon 
8) just one track in the hemisphere 
9) angle between pair of photons < 20° 
10) angle between photons and charged track < 60° 

Our final result is: 

BR.93  = (24.71 ± 0.42 ± 0.65)% 

The figure shows the effective p mass distribution for the three classes of selected 7r° and the total one. Real 
data is shown as dots, the full histogram corresponds to Monte Carlo and the shaded area to background. The 
table contains the individual contributions to the systematic error. 



Contributions BR 

  

r selection a) 
r selection b) 

I:011ALZ 
p selection 1) 
p selection 2) 
p selection 3) 
p selection 4) 
p selection 5) 
p selection 6) 
p selection 7) 
p selection 8) 
p selection 9) 
p selection 10) 

0.20 
0.29 
0.10 
0.09 
0.13 
0.26 
0.13 
0.41 
0.03 
0.03 
0.10 
0.02 
0.00 

Total 0.65 
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This preliminary result is in agreement with LEP results for r branching fractions. 
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1 Int rci ducao 

Destinado ao estudo da anisotropia da radiacao cOsmica e procura de fontes pontuais corn limiar inferior de 
energia em torno de 10 14  eV, o EASCAMP [1], localizado a 22°54'S-47°05'W, em tuna profundidade media de 937 
g/cm 2  , é urn dos poucos experimentos do hernisferio Sul voltado ao estudo dos raios cosmicos. 0 experimento 
constituido por urn arranjo de cintiladores plasticos e modulos de reconstrucao de trajetorias de particulas compostos 
de detectores do tipo streamer [2]. Tais modulos (telescOpios) sao utilizados na reconstrucio de trajetOrias de nations 
pois, alem do estudo da distribuicao angular e da anisotropia de eventos muonicos de diferentes multiplicidades, a - 
determinacao das trajeterrias deltas particulas secundarias Lorna-se urn fator importante na melhoria da resolucio 
angular do experimento [3], obtida pela tradicional teenica de tempo de %oo. 

0 experimento EASCAMP possui tres modulos de trajetogralia. 0 major deles, denominado detector 
central [4], é constituido por quatro pianos retangulares horizontals de deteccao corn areas iguais de 17,3 m 2, onde 
cada piano é igualmente separado do outro por uma distancia de 1,0 m. 0 detector central utiliza 1024 canais 
eletremicos de deteccao para urn total de 512 tubos streamer de seccao transversal de 29X27 mm 2 , semeihantes 
aos tubos utilizados peios experimentos MACRO e EASTOP. Os outras dais modulos utilizam tubos streamer corn 
seccao transversal de 9X9 mm 2. Um destes telescOpios utiliza 800 canals de deteccio, corn urn total de 480 tubos 
streamer, distribuidos em cinco pianos retangulares horizontals de deteccao, corn areas de 0,74 m 2 , sobrepostos por 
uma distancia de 0,50 m. 0 outro telescOplo utiliza 480 canais eletronicos para um total de 288 tubos streamer 
distribuidos em tres pianos de deteccao de area 0,74 ni 2 , separados par uma distancia de 1,0 m.Todos os tres 
telescopios operam corn uma mistura ternaria de gas a pressao atmosferica. 

2 Abertura para particulas individuals 

Nos telescOpios retangulares a taxa de contagem para particulas individuais 6 dada por [5] 

dN 
1(w)dw I do-S. 	 (1) 

t 	ra 

onde 1(w) é a distribuicao das particulas detectadas (cm -2  sr -1  s- ' ), dw = dcosed9 e o elemento de angulo solid° 
(0: angulo zenital, so: angulo azimutal), dcr.• e o elemento de area efetiva na direcao de w, S e a area total e 

o angulo sOlido definido pela geometria do telescopio. Assumindo tuna intensidade de radiacao corn distribuicio 
angular zenital da forma 1(w) = locosnO, a taxa de contagern equivale 

dN 
= 

dt 	
loAn 

onde 

= 	cosnOdw dcr 	 (2) 
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a abertura do telescOpio. Substituindo as relacoes 

= cosOdxdy, 

A COS v , 
dw — —az ay 

Z2  

e 

cosO = 

 

EZ2  + (X .-- xi)2 (y y1)91/ 2 

na equacio (2), a abertura de urn telescOpio retangular de dimensoes X, Y e Z, sera entio 

A. = cos"Odw 	= 	 cosn+40dxdz dydy 
1 	X irX fY ji r 

fo Jo 	o 
	 (3) 

Para reduzirmos a equacio (3) a ulna expressio matematica mais simples, como por exemplo uma integral dupla, 
devemos utilizar uma lunch.° de resposta direcional [6] definida como 

S(w) = 	da.f, 

que representa a area disponivel perpendicular h. direcio de uma particula na direcao w(8,w). Neste caso a expresiao 
de S(w) para' urn telescOpio retangular em fungi° de seus parhmetros geometricos, ou seja, em funcio de X, Y e Z 
sera 

	

S(w) = cosOIX 	IZIgOcoswillY — IZtgOsencol]. 	 (4) 

Apiicando as tra.nsformacoes 

e = ZtgOcosw, (—X < e < X) 

e 

= ZtgOsen<p, (—Y < < Y), 

onde agora cosO zy[ z 2 	2 + u2]1/ 2 e  = (cos3 0/Z 2 )dtdri, encontramos uma expressio para a taxa de contagem 
de particulas na direck de cu igual a 

dwdt 

d 2  N 	
locosn+ 1 01X — IZtgOcoscol][Y — IZtgOsencol). 

Da mesma forma, a expresSio final obtida para a abertura do telescdpio e igual a 

1 x j r 

	

A n  = cos" OS(w)dw = —
Z2 	

coe+4 0[X — 	— Itlijcgdg 
-X -Y 

4 

	

= 
Z 	

cosn+4 0(X e)(Y Ockdri 
0 	0 

x 	 —  o(y —  = azn+2 00 (Z2 4. e 7121( n 1-  4 ) / 2 ekdR 

(5) 

(6) 
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3 Abertura dos detectores de muons do experimento EASCAMP 

Em uma intensidade de radiacao da forma /(L)) = /o cosne, o valor do &xpoente n estit relacionado ao tipo de 

radiacio e a profundidade em que o detector se encontra. Para moons detectados nas proximidades do nivel do 

mar, n 2. Neste caso (em que ternos urn ntimero n inteiro) podemos calcular uma solucao explicita da expressio 

(6) para o expoente n em questio . Tal solucio e representada por 

1 	 X 	 Y A2 = ORy2  + Y 2 )—X arctg(—)+ (1?; + X 2 )-ii;arctg( T1; ) — 

Rs, 	Rs,  

—ZIXarctg(—
X

)+ Yarctg(—)11 
	

(7) 

onde Rs = X2 + Z 2  e 	= Y2 + Z 2 . Para obtermos a estimativa da abertura dos modulos de reconstrucio do 

EASCAMP, basta conhecermos suas dimensoes geometricas e substituir seus valores na expressao (7). 

As dimenthes do modulo central do EASCAMP saga X= 404,8 cm, Y= 428,0 cm e Z= 316,0 cm. Substi-

tuindo tais valores em (7) encontraremos uma abertura A, equivalents a 

A, = 11, 78m 2  sr. 	 (8) 

As dimenges dos dois mOdulos restantes sfio X = 0, 96cm, Y = 0, 77cm e Z = 200, 0cm. Neste caso a abertura 
Ad destes dois telescOptos sera 

Ad = 0, 23m2sr. 	 (9) 

4 Conclusio 

Neste trabalho encontramos expressoes analiticas titeis para a obtensao da abertura e taxa de contagern de 

telescopios retangulares. Utilizamos os resultados para calcular a abertura dos telescapios de muons do experimento 

EASCAMP. Os resultados analiticds para a abertura foram possiveis pelo fato de termos utilizado um valor inteiro 

para o expoente n. Caso contrario Berta necessario a utilizacio de metodos numericos para o calculo das integrals. 

Pretendemos no futuro extender esses calculos para o caso de eventos de particular paralelas de multipli-
cidade m > 2 
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Neste trabalho, apresentamos a aplicacao do processamento neuronal na analise de dados 
de urn calorimetro hadronico de telhas cintilantes. Estero incluidas a compensacao de vaza-
mento de energia e a busca cia otimizacio da resolueao em energia. Resultados preliminares 
mostram que, no caso do vazamento de energia, o processamento neuronal e capaz de re-
cuperar inteiramente dados de 100 c 300 GeV. Para os estudos de resolucao em energia, o 
sistema neuronal foi capaz de identificar eventos de 20, 50, 100, 180, 200 e 300 GeV. 

1 Introducao 

Redes neuronais vem sendo cr.escentemente utilizadas em experimentos de fisica de altas energias, notadamente 

cm problemas de cla.ssificadores. Separadores de particulas e sistemas completes de segundo nivel de trigger para 

experimentos de grande porte vem sendo projetados corn base em redes neuronais [1]. No caso particular do LHC, 

novo colisionador de particulas ora em desenvolvimento no CERN (Suica), os sistemas neuronais de segundo nivel 

de trigger corn base na calorirnetria vem se mostrando lima opc5o de projeto, pois tendem a superar os sistemas 

clissicos eni termos de desempenho e possuem um paralelelisrno inerente, o que os torna extremamente eficientes 

em termos do tempo gasto para o processamento 121. 

Neste trabalho, apresentamos a aplicacao do processamento neuronal na analise ob4ine de dados experimentais 

de urn calorimetro hadrOnico de telhas cintilantes, ora sendo desenvolvido para use no LHC 131. Este calorimetro 

utiliza telhas de material cintilante corno material ativo, sendo que o sinal produzido e transportado ate o detector de 

luz por meio de fibras oticas. 0 material absorvedor utilizado e o ferro. Urn protOtipo projetivo corn 5 mOdulos vem 

sendo testado corn sucesso em feixe de particulas no CERN e e deste calorimeto que provem os dados experimentais 

utilizadas neste artigo. A Figura 1 mostra um modulo deste calorimetro. 

0 calorimetro de tellies apresenta segmentaeoes longitudinal e radial, visando uma melhor medidadas particulas 

incidentes. Assim sendo, cada modulo ester dividido em cinco torres e possui quatro secaes de amostragem, sendo 

que cada uma destas subdivisoes apresenta urn par de fotomultiplicadoras associado. lsto ocorre, devido ao fato de 

que para cada telha cintiladora temos o transporte dos sinais por nreio de duas fibras oticas, uma para cada lado 

da telha. Desta forma, se encontram disponiveis 40 sinais para cada modulo, ou seja, urn total de 200 sinais para o 

prototipo ern consideracio. 
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Figura 1. Estrutura dos modulos do calorimetro de telhas. Extraido cle [3]. 

Nas secoes seguintes discutimos o use do processamento neuronal na correcio do vazamento de energia para 

prototicos de dirnensoes laterais reduzidas, como e o caso do detector por nos utilizado. A tern disto, apresentamos urn 

mapeameanto neuronal para a otimizac5o da resol ucao em energia do calorimetro de Telhas. Os dados experimentais 

disponiveis foram divididos em dois conjuntos. 0 primeiro foi utilizado para o treinamento da rede neuronal, 

enquanto que o segundo conjunto de eventos nao foi usado no procedirriento de treinamento da rede e foi utilizado 

para testar a eliciencia da rede. 

2 Compensacao de Vazamento de Energia 

No caso de urn protOtipo corn din -wrist:3es laterals restritas, a cascata hadronica nao se encontrara totalmente con-

tida no interior do detector. Desta forma, parte da energia desta cascata nao sera absorvida pelo calorimetro, 

caracterizando-se o fenomeno da fuga lateral de energia. 

Diversos metodos clasicos tem sido utilizados para compensar tais efeitos 14j. Uma vez que deseja-se identificar 

a energia de uma dada particula apesar do vazamento, podemos utilizar o processamento neuronal para mapearmos 

a energia total medida pelo detector na energia incidente. Para isto, podernos utilizar a informacao do perfil de 

deposicio da cascata hadronica, o qual varia corn a energia. Tteina-se, portanto, ulna rede neuronal para identificar 

as suds diferencas presentes na rnaneira corn que particulas de diferentes energias depositam a sua energia no 

detector. 

No caso do calorimetro de telhas, a informacao utilizada, inicialmente, e composta de cada caula de leitura 

do detector, totalizando 200 elementos de energia. Utilizam-se redes do tipo feedforward totalmente conectadas, 

as quais sao treinadas pelo metodo backpropagation [6]. Usa-se como funcio de ativa.cao para os neuronios uma 

sigmOide, sendo que o neuronio de saida e linear. Corn isto buscamos recuperar a escala linear de energia do 

calorimetro. 
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A Figura 2 mostra o resultado alcancado para pions de 100 e 300 GeV. A topologia da rede neuronal incluiu 

200 nos de entrada, 10 neuronios na camada intermediaria e um neuronio de saida. Neste caso, podemos observar 

que a rede neuronal foi capaz de separar completamente os eventos de cada classe, tendo uma eficiencia de 100% 

na identificacio da energia incidente de cada particula. 

Figura 2. Saida da rede neuronal para pions de 100 e 300 GeV, corn vazarnento. 

Para uma aplicack mais realistica desta tecnica, teremos que investigar a eficiencia da rede neuronal para 

particulas corn valores de energia mais proximos. Estudos neste sentido se encontram em desenvolvimento. 

3 Otimizacao da Resolucao em Energia 

Para a otimizacio da medida de energia, e pratica comum em calorimetria buscar-se urn mapeamento para a medida 

efetuada das celulas de deteccao que faca corn que a resolucio em energia seja a minima possivel [5]. Corn isto, as 

ceIulas de deteccio sao ponderadas e consegue-se corrigir alguns efeitos de descompensacio do calorimetro. Num 

tal mapeamento, comumente os seus parametros dependem da energia. Para o calorimetro de telhas, tais estudos 

vom sendo tambem efetuados. 

Pot sua vez, as redes neuronais tern sido usadas corn bastante sucesso na realizacao de mapeamentos multi-

variaveis [7). Portanto, podemos utilizar o processamento neuronal para encontrar urn mapeamento que permita 

otimizar a resolucio em energia. 

Para esta aplicacao, a:rede neuronal utilizou a mesma topologia da secao anterior. Neste caso, a rede foi treinada 

para identificar 6 classes de eventos, cobrindo pions de 20,50, 100, 180, 200 e 300 GeV_ A Figura 3 mostra a resposta 

da rede para esta situacio, quando pions destas classes silo apresentandos a rede al:6s ter-se concluido o treinamento. 

Da figura, pode-se observar que o sistema neuronal foi capaz de identificar tais eventos. 
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Figura 3. Saida da redo neuronal para pions de 20, 50, 100. 180, 200 c 300 GeV. 

Para a apficacio do metodo proposto, estudos da otirnizacio dos parametros da redo para obtermos distribuicoes 

Gaussianas para Codas as energias e uma resolucao em energia quo escale corn o inverso da raiz quadrada da energia 

da particula incidence estao ern andamento. 

4 Conclusoes 

O use de redes neuronais artificiais na analise de dados de urn calorimetro hadronico de telhas cintilantes foi estudado. 

Duas aplicacoes foram especialmente exploradas, incluindo a compensacho da fuga de energia e a otimizacao da 

resolucao em energia do detector. 

Os resultados ate aqui alcancados sao encorajadores. Na parte de compensacio de energia, o processamento 

neuronal foi capaz de identificar plenamente pions de IOU e 300 GeV. No quo se refere a resolucao de energia, o 

mapeamento neuronal foi capaz de recriar a escala linear de energia para pions de seis energias diferentes. 

Estudos utilizando uma major gama de dados estao sendo realizados no moment°, visando estabelecer o alcance 

de tal tecnica enquanto ferramenta de analise em calorimetria. 
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Utilizando-se de urn arranjo experimental onde e acoplado urn detector a cintilador pla.stico 
corn urn modulo de tubos "streamer", obtem-se a distribuicao de sinais de uma particula, 
para o detector a cintilador. Esta distribuicao 6, entio, utilizada para simular os sinais 
de detectores 'a cintilador plastic° em uma experiencia generica de deteccao de chuveiros 
atmosfericos extensos (CAEs). 
E estudada, assim, a influencia que os cintiladores exercem na caracterizacio dos CAE's. 

1 -Introducio 

0 grupo de Leptons do Depto. de Raios COsinicos do IFGW-Unicamp mantem urn experimento para a deteccito 
de Chuveiros Atmosfericos Extensos, o EASCAMP [1] [2). 0 experirnento tern por principais objetivos o estudo da 
anisotropia da radiacao cOsmica, a busca no hemisferio sul por fontes pontuais de raios cOsmicos de energia superior 
a 10 14 0/ e o estudo da fisica dos processes que ocorrem na producao de urn CAE. 

Neste trabalho estudamos a inlluencia que os cintiladores pla.sticos exercem na determinacao dos parimetros 
fundamentais dos CAEs. Estamos interessados nas medidas de densidade de particulas realizadas pelos cintiladores. 
Elas sao fundamentais para a determinagao da posicao do centro dos CAEs e para o conhecimento de parametros 
importantes como a energia do primario, o minter° total de particulas, a secio de choque de processos hadronicos, 
entre outros. 

2 Calibracao do sinal dos cintiladores 

0 EASCAMP consiste atualmente de urn conjunto de 12 modulos a cintilador plastic° e 3 modulos de tubos 
"streamer". Os detectores a cintilador sao formados por uma fotomultiplicadora e urn bloco de cintilador plastic° 
acondicionados em uma caixa de madeira no formato de piramide de base retangular. 0 sinal gerado pela fotomul-
tiplicadora a convertido em urn rnimero (canal de ADC) proportional a sua carga em urn modulo ADC (LeCroy 
2249W). Este sinal depende, em tiltima insancia, do ntimero de particulas que cruzam o cintilador, da regia° por 
onde alas passam e de suss inclinacoes. A dependencia da energia a Inuit° fraca para as particulas relativisticas que 
excitam o cintilador na reglio de minima ionizacfio. Assim, os sinais dos detectores flutuam em tome de urn valor 
medio para urn dado numero de particulas nas mesmas condicoes de energia e inclinacio. Tais flutuagoes devem 
ser levadas em conta na calibracio dos sinais pelo ntimero de particulas. 

Esta calibracio foi obtida por urn sistema experimental acoplando urn modulo a cintilador pla.stico sobre urn 
modulo de tubos "streamer". Pelo modulo "streamer " (utilizado corno modulo de trajetografia) foram selecionados 
eventos de uma Unica particula cuja projecao do traco incidisse dentro do bloco de cintilador. Na figura 1 aparece 
a distribuicia dos sinais de eventos de uma particula, normalizados na direcia vertical. Note que as sinais se 
distribuem ao Iongo do espectro. Como o valor da media desta distribuicao a usado como escala na conversio de 
canal de ADC para ntimero de particulas, a existencia da distribuicao introduz erros na medida de densidade de 
particulas. 
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Figura 1. Distribuicio de sinais de uma particula vertical. 

3 Simulacao e Resultados 

Pelo metodo de Monte Carlo, foi avaliado a influencia quc as flutuacoes no sinal dos detectores a cintilador plastic° 
exercem na caracterizacao de urn CAE. A simulacao fornece, para cada chuveiro, a densidade de particulas ao nivel 
do mar em furicao da distancia radial do centro. A posicao do centro dos CA Es e sorteada corn distribuicao uniforms 
na superficic do "array", dentro de urn intervalo pre-definido. 

As densidades de particulas da simulacao dos chuveiros sao utilizadas como parametros de entrada para o 
calm& da posicao do centro sera a flutuacao do detector (detector ideal) e para simular as densidades corn as 
flutuagoes dos cintiladores e reaplicadas no crilculo. Para cada CAE, sao gerados valores de densidade de particulas 
pi nos detectores. Supondo quc estes sao formados por cintiladores de 1 rn 2 , o rairnero de particulas a dado por 
N; = int(p; ). Cada particula produz urn sinal cuja distribuicao 6 a da figura 1 c o sinal de mais de ulna particula 
6 a soma dos sinais individuals, o valor do canal de ADC do detector i fica dado por: ADC; = sortk , onde 
sortk é uma variavel randomica sorteada da prOpria distribuicao experimental da figura 1. Obtemos, finalmente, 
mn novo conjunto de densidades subtraindo do sinal do ADC o valor do seri pedestal e dividindo pela media da 
distribuicao de tuna particula: p';  = (ADC ;  — ped)/rned i . 

0 metodo de calculo do centro dos CAEs foi desenvolvido atraves dos algoritmos do MINUIT. A eficiencia do 
metodo a medida pcla distancia do centro simulado ate o centro calculado. Na figura 2 estao representados os 
resultados de urn caso estudado: "array" de 25 detectores, corn separacio de 10 m entre si, chuveiros simulados 
com os centros distantes do centro do "array" em ate = 100 m e iniciados por primarios de 10 L5 01/. Note 
quo os histogramas apresentam uma grande quantidade de eventos corn a distancia proxima de zero, isto é, corn 
o centro calculado prOximo do centro simulado, rnostrando a eficiencia gcral do metodo. May, o mais importance 
de se notar é o fato de (pre o caso sem flutuacao a mais preciso do quo o caso corn flutiracao: a distribuicao sem 
flutuacao se aproxima mais do zero. Este resullado mostra que, devido a existencia dos espectros de sinais nos 
cintiladores, Iles exercem uma i ► portante influencia na precisio da determinacao da posicao do centro que dove ser 
levada cm consideracao na estimativa da precisio dos experimentos de CA Es. Ainda na figura 2 estio apresentadas 
as correlacoes entre as abscissas da posicao do centro simuladas (X) c calculadas (XC). 0 metodo e tanto mais 
preciso quanto mais os eventos se localizarem sobre uma rota de inclinacao 45°. 



?. 100 

75 

50 

25 

0 

- 25 
.50 

- 75 

-100 

- 130 - 50 0 	50 ICO 

On) 
x V5 la' 

XVI Encontro Nacional de Fisica Particulas e Campos 	 233 

Figura 2. Acima: histogramas das distancias do centro simulaclo ao centro calculado. Abaixo: correlacio entre as abscissas 
simuladas e calculadas. 

Estudamos, tambem, a eficiencia do metodo alterando-se os parametros da simulacao: inimero de detectores (N° 
det.), separacao entre des (sep.), raio maxima do sorteio do centro do chuveiro (r,,,,,,) e energia do primario(Eo). 
A tabela a seguir resume os resultados obtidos, onde: d distancia que contern 90% dos eventos, ou seja, 90% dos 
eventos neste caso possuem distancia entre os centros simulados e calculados menores que d 90% e flut.: flutuacio. 

Caso N° det. sep.(m) rmax(m) Eo(eV) drio% s/ flut.(m) d90% c/ flut.(m) 
1 9 10 100 10' 5  57.25 64.75 
2 25 10 100 10 15  13.00 38.00 
3 9 20 100 10 15  9.25 43.00 
4 9 10 20 1015  .026 1.75 
5 9 10 100 10" 25.75 52.25 

Observamos novamente que a flutuacao do detector piora a resolucio do mitodo. Alem disso temos a comparacao 
entre os desempenhos dos diferentes casos corn o caso 1: foi alterado um parametro por yea em relacao a este caso. 
1st° fornecc informacoes importantes para o projeto de uma experiencia de CA Es. 

Alem destes estudos, foram obtidos os desempenhos na determinacao dos parametros do CAE como o niimero 
total de eletrons, a idade do chuveiro, a energia do primarioe a direcao de chegada que sao diretamente influenciados 
pela precisio na determinacao do centro, ou seja, quanto melhor se obtem a posic5.o do centro mais precisas sao as 
sues determinacries. Estes resultados nao serao apresentados neste resumo que podem ser encontrados juntamente 
corn uma descricao detalhada dos procedimentos seguidos neste escudo na referencia [3J. 
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Sao mostradas no presente escudo medidas do coeficiente de atenuacio atinosferico e mapea-

mento do ceu a partir das direcOes de chegada dos eventos de chuveiros atinosfericos extensos 

registrados. Discutir-se-ao Lambent estimativas quanto a resolucio angular do experimento, 

tanto na sua atual configuracao coino apOs a sua ampliagao. 

1 Introducio 

0 experimento EASCAMP (baseado ern Campinas, no departamento de Raios Cosmicos do Institute de Fisica 

"Gleb Wataghin") a constistuido por 4 cintiladores plasticos corn 0,7 m 2  de area dispostos em uma configuracao 

quadrada de 14 metros de lado. De valor quase didatico, tal experimento vem operando continuamente desde 

novembro/89, registrando a passagem de frentes de chuveiros atmosfericos atraves da coincidencia qua.drupia entre 

os cintiladores do array. Nesse regime de operacio estima-se que o experimento apresente um limier de energia de 

10" eV, que se reflete no registro de eventos a uma taxa de 35000 eventosimes. 

Uma vez quo se encontra prevista urna ampliacio do experimento (que passara, a operar corn 12 cintiladores 

dispostos em uma area de 20 X 25 metros quadrados), o presente estudo consiste em uma compilacao dos resultados 

obtidos corn os eventos ate agora registrados. Ernbora tal analise nao seja sobremaneira conclusiva, tern-se aqui como 

principal objetivo uma exposicao sabre o que pode-se esperar de urn experimento de deLeccao de raios cosmicos, 

bem coma urn registro para referencias futuras. 

2 Detalhes sobre a reconstrucao 

Atraves do use de cintiladores, a direcao de chegada de urn chuveiro atmosferico extenso e geralmente obtida 

pelo metodo do "tempo de viio" (lhne of flighl). Uma suposicao basica geralmente aceita e quo as particulas 

carregadas do chuveiro registrado, a priori, atingiram cada cintilador a partir de uma frente plana de particulas. 

Tomando coma base essa suposicao, a direcio de chegada de urn piano de particulas pode ser determinada corn o 

tempo de voo de um conjunto minimo de 3 cintiladores. 

No presente estudo foram selecionados apenas os eventos quo apresentassem uma densidade de particulas major 

que 9 particulas/m 2  ern cada cintilador. Tal selecao teve como objetivo proporcionar uma melhor garantia na 

precisao temporal dos dados obtidos, alem de nos propiciar a reconstrucao de eventos cuja frente de particulas 

mais se aproximasse da configuracao de frente plana. Uma vez que a calibracao "sinal analOgico registrado versus 

[lamer° de particulas incidentes" so esteve disponivel a partir de junho/94, foram selecionados aproxinnadamente 

75000 eventos, obtidos entre 03/99 e 08/95. 

3 Resultados 

Como esperado, o tiuxo apresenta ulna forte atentracao fungho do angulo zenital (proportional a cos 9.7  0 ), que 
acaba resultando em urn universo de eventos situados em sua maioria corn angulos zenitais nao maiores que 25 

graus (fig. 1). Tal valor diferc do valor usualmente aceito para esse coeficiente (da ordem de 7.5), porem devennos 

lembrar que a selecao de eventos corn densidade que major que 9 particulas/m 2  nos quatro cintiladores se reflete 
como uma forte atenuacio adicional. 
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Figure I.: Atenuacio do fluxo de raios cOsrnicos Figure 2.: Reprentacao, em coordenadas lo- 
corn cosseno do ingulo zenital, segundo eventos cais, do fundo uniforrne de raios cosmicos 
registrados pelo EASCAMP 	 atraves do use de urn fluxo zenital corrigido 

A major parte dos raios ccismicOs incidentes 6 constituida por protons de alta energia corn clirecoes de chegada 
isotropicamente distribuidas sobre a abOboda celeste, devido as deflexOes ocasionadas por campos magneticos es-
telares. A obtencao do valor do coeficiente de atenuacio do fluxo zenital 6 urn passo delicado no que se refere a 
obtencao de urn "fluxo zenital corrigido", onde o ceu se apresente como urn fundo uniforme de raios cOsmicos. A 
principio, esse fundo uniforme e homogenio corrigido seria o ponto de partida no que se refere a procura de fontes 
pontuais de raios cOsmicos, ou a deteccao de anisotropias. 

0 fundo "corrigido" obtido, no sistema de coordenadas locais, se encontra na figura 2. Note que, apesar da 
aparente existEncia de acumulos em alguns valores de anguio azimutal, o que realmente acontece a que o universo 
de eventos a pequeno no que se refere a flutuacao estatistica dos dados. Alern disso, o coeficiente de atenuacao 
zenital obtido apresenta variacoes conforrne a faixa de fingulos zenitais sob analise, o que nos leva a concluir que a 
dependencia comumente aceita corn cosN 0 seja de fato aproximada. 

4 Estimativas da precisio angular do array 

Foram feitos, para a atual configuracao de 4 cintiladores e para a fauna configuracao de l2 cintiladores, estudos 
da precisao angular do experimento. As estimativas do erro na determinacao da direcao de chegada dos eventos foi 
obtida atraves de simulacio. 

Basicamente 6 atribuido a cada cintilador do array um tempo de interceptacio, supondo a incidencia de uma 
frente piana de particular carregadas. Posteriormente tais tempos registrados sao submetidos a flutuacoes de ordens 
varias, e, de posse desses tempos "alterados", a direcao do evento a entao reconstruido. A diferenca entre o *Angulo 
zenital "original" e "reconstruido" e assim avaliada. 

Os resultados das configuracoes horizontais simuladas se encontram na tabela 1 e figura 3. A coluna "Faixa de 
observacao" se refere a faixa de angulos zenitais onde a distribuicao dos valores de angulo zenital reconstruidos se 
mostra simetricamente distribuida em torno da direcao do eventos incidentes. 
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Num. det. Faixa de observayao Dispersao (graus) Eficiencia da reconstrucao 
4 0 - 35 graus r:-.., 3.5 - 	96 % 
12 0 - 45 graus 2.5 100 % 

Table 1: Caracteristicas da reconstrucao da direcio de chegada de eventos atraves de simulacao. 

Figure 3.: Diferenca entre o angulo zenital reconstruido (apOs flutuacOes nos tempos de chegada) e o angulo zenital 
original gerado pela simulasio, para faixas de angulo zenital 

5 Conciusao 

A pesar da localizacao geograficarnente privilegiada do experimento (observando diretamente o centro galatico), o 
universo de dados de pouco mais de 1 ano de direcoes de chegada se mostra insuficiente para uma boa caracterizacao 
do fitixo de raios cosmicos incidentes sob:c o EASCAMP. Faz-se necessario que o experimento seja expandido, de 
mode que o taxa de evcntos registrados aumente, possibilitando assim uma maior estatistica e uma maior precisao 
angular. 

Quanto a procura de fontes e anisotropias, esti devera ser realizada atraves de metodos que nao pressuponham 
correcoes analiticas pelo use do coeficiente de atenuacao zenital do fluxo de raios cOsmicos incidentes. 0 use de tais 
correceres, se inevitiveis, devera ser feito com extremo cuidado. 
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E apresentado urn estudo da performance de urn detector modular para a deteccio da com-
ponente eletromagnetica de chuveiros atmosfericos extensos. 0 detector é composto por 
uma caixa de forma piramidal contendo uma placa de cintilador pla.stico e urna fotomultipli-
cadora. Foram estudadas a resposta temporal a o ganho do detector em funcao da posicao 
da cintilacao e da alta voltagem de operacao . Ohtivemos uma eficiencia de contagem de 
85% a uma resolucao temporal de 2,0ns. 

1 Introducao 

0 cstudo da radiacao cOsmica de energia superior a 10 11  eV 6 realizado atraves de experimentos localizados 

na superficie terrestre, devido ao fato do fluxo a partir desta energia ser extremamentc reduzido. 0 que observa-
se sac os subprodutos da interacao das particulas primarias na atmosfera, os chamados chuveiros atmosfericos 
extensos-CA Es. 

A procura por fontes pontuais de raios cOsmicos requer que possamos determinar as direcOes de chegada dessas 
particulas primarias. Consequentemente estes experimentos devem possuir uma resolucao angular da ordem de 
urn grau na determinaeao da direcao de chegada do raio cdsmico primario. A medida da direeao de chegada da 
particula primaria é geralmente realizada atraves do metodo do tempo de voo, utilizando-se dezenas de detectores 
corn boa resolueao temporal espalhados na superficie terrestre. Devido a processos de espalhamento na atmosfera, 
principalmente espalhamento mUltiplo coulombiano, os eletrons da frente do chuveiro nao formam urn disco per-
feitamente piano, formam urna figura geornetrica mais prOxima a uma calota esferica, alem disso existe a flutuack 
na densidade de particulas que comp -oem essa frente de particulas. Os detectores de CAEs geralmente utilizam 
cintiladores plasticos devido a boa caracteristica temporal deste detector. 

A partir de meados dos anos 80, surgiram as primeiras evidencias da existencia de fontes pontuais na faixa de 
energia de 10 15  eV. Novas tecnicas estao continuamente sendo propostas para medir a direcao de chegada e tecnicas 
de calibracao e monitoramento desses experimentos tern sido aprimoradas. 

2 Forma geometrica do detector 

As principais caracteristicas que procuramos neste detector sao : possuir uma resolucao temporal da ordem 
de poucos nanosegundos e uma resolueao de carga da ordem de 100%. Estas caracteristicas nao devem depender 
fortemente da posicito por onde a particula atravessa a placa de cintilador. Alen' disso ele deve ser modular e 
economic°, visto que devemos utilizar muitos desses detectores para medir a componente eletromagnetica do CAE. 

Para satisfazer as caracteristicas acima projetamos urn detector coinposto por uma placa de cintilador plastic° 
(100x70x2,5 cm3) que foi colocada na base de uma caixa de madeira de format° piramidal. No vertice da pirarnide 
colocamos uma fotomultiplicadora corn urn fotocatodo de diametro igual a 110 mm. Para estudar a uniformidade da 
resposta do detector em fungi() da posicao de passagem da particula variamos a altura entre a fotomultiplicadora 
e a placa do cintilador. Procuramos a altura que propicie uma eficiencia de contagem elevada, urn resolved° 
temporal da ordem de poucos nanosegundos a uma boa uniformidade de resposta do detector, utilizando somente 
uma fotomultiplicadora. 

Para o cintilador e fotomultiplicadora citados acima estudamos qual a meihor disancia entre estes. Para 
uma distancia de poucos centimetros a resposta da regiao central do cintilador é niuito mais intensa do que as 
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regiOes das bordas. A umentando-se a distancia cintilador-fotomultiplicadora melbora-se a uniformidade, pordm se 
continuarmos a aumentar a distancia a resolucao temporal e a eficiencia de contagern climinuem. A Figura 1 mostra 
o comportamento da diferenca de tempo entre a borda e a regiiha central do cintilador c a Figura 2 o angulo solid° 
para cstas regioes . Escolhemos 55cm para a distancia consider-and° quo os eletrons que desejamos detectar sac' 
relativisticos, quo sac) produzidos cm media 100 fOtons/100eV [2], que 16,7% da luz produzida emerge par um lado 
do cintilador [3] e quo a eficiencia quantica do fotocatodo e 20% [4] 

Figura 1. Diferenca entre o tempo da lux (direta) ernitida na borda e daquela emitida no centre do cintilador em funcio da 
distancia fotomultiplicadora- 

Figura 2. Angulo stilido da regiao central e da borda do cintilador ern fungi° da distincia fotomultiplicadora-cintilador. 

3 Montagem experimental 

Montamos detectores corn a geometria estudada na sec:do anterior. A parte sensivel 6 utna placa de cintilador 
pla.stico NE102A (100x70x2,5 cm 3 ), a fotornultiplicadora 6 do modelo Philips XP2040 [4], quo foi colocada dentro 
de um cilindro de mu-metal. A fotomultiplicadora possui urn adaptador Otico de forma piano- concavo de Material 

plastic° que perrnitc ulna transmissao daluz a partir de 300 tint. Foi realizado o acopla.rnento &lc° entre o fotocatodo 
e o adaptador Otico corn silicone fornecido polo fabricante. 

0 cspectro da luz ernitida pelo cintilador csta dentro da regiiio do sensibilidade da fotomultiplicadora e nao 

afetado polo adaptador ritico. 0 divisor de tenstio utilizado foi o t ipo A indicado polo fabricante [4]. E importante 



E = I 	 ( 1 ) n. total de eventos 

0 limiar do discriminador foi de -20mV/50Q. Na Figura 3 mostramos as curvas de eficiencia para as regioes 

estudadas em funcao da voltagem de trabalho da fotomultiplicadora do detector modular. 

A eficiencia de contagem,e,foi calculada utilizando os dados lidos polo TDC 

n. eventos f undo cscala 
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notar a necessidade de urn cuidadoso ajuste da voltagem entre o fotocatodo e o dinodo de foco para obter um ganho 

maximo da fotomultiplicadora. 

A caixa de forma piramidal foi construida corn placas de madeira de lcm de espessura e suas paredes internas 

foram pintadas de branco fosco para difundir a luz de cintilacao e assim obtermos urn melhor rendimento do detector 

(11. Entre os lados da piramide e a placa de cintilador exist,em 6 cm para facilitar a saida da luz de cintilacao pelas 

bordas do cintilador. Aproximadamente 67% da luz produzida no interior do cintilador emerge pelas bordas. 

A placa de cintilador plastic° foi fixada internamente base da piramide por quatro pequenos suportes metalicos, 

o que possibilita girar o detector mantendo as posicoes relativas entre o cintilador e a fotomultiplicadora. 

Para realizacio das medidas utilizamos dois outros detectores compostos por uma placa de cintilador plastic° 

NE102A (30x15x2,5 cm 3 ), urn guia de luz de lucite, e uma fotomultiplicadora tipo Philips XP2230. Esses detectores 

possuem uma resolucao temporal de I ,7± 0,2 ns e foram utilizados para disparar a aquisicao de muons da radiacao 

cOsmica. Realizamos medidas da resposta do detector modular em funcio da posicao de passagem da particula e 

da voltagem de trabalho da fotomultiplicadora. 

A coincidencia temporal (de 5Ons) do sinal desses dois detectores determinou a condicao de disparo da aquisicao 

de dados. Po.4icionando adequadamente esses detectores pudemos selecionar a regiiio do detector estudado por onde 

passaram os muons cOsmicos. Assim estudamos quatro regioes do detector modular: centro, borda e vertice da 

placa, e quando a particula passa pelo fotocittodo. Para cada evento registramos: a diferenca de tempo entre o 

detector modular e urn detector de disparo e a carga do sinal do detector modular. Utilizamos um sistema CAMAC 

para a aquisicao automatica de dados e o TDC e ADC utilizados foram da marca LeCroy (1 lbits, 100ps/canal, 

0,25pC/canal). 

4 Resultados e discussao 
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Figura 3. Eficiencia de contagem das regiOes estudadas do detector modular. 

Os histogramas da diferenca de tempo entre o detector modular e o cintilador de disparo para a regiao central 

sao mostrados na Figura 4. Para os menores valores de voltagem a distribuicao da esquerda refere-se s particulas 
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que produziram sinal ao passarem pelo fotocitodo. Para as voltagern mais elevadas esta distribuicao a pouco visivel 

devido ao aurnento da eficiencia de contagem e consequentemente crescimento da relacio entre os sinais originados 

pela luz de cintilasao e aqueles gerados no fotocitodo. Para uma particula vertical a probabitidade dela atingir o 

fotocitodo e de 1,4%. Notamos tambem nesta figura o decrescimo do tempo de transito da fotomultiplicadora corn 

o aumento a alta voltagem corn uma taxa de -2,2ns/ 100V. 

Da anilise dos histograrnas das diferencas de tempo pudemos calcular a resolucio temporal do detector modular 

em funcao da alta voltagem. Mostramos estes resultados na Figura 5. Na regiao do patamar de eficiencia a resolucio 

temporal media e 2 us. Os espectros de carga da regiao central mostram uma variagio da carga de pico de poucos 

picoCoulomb ate valores superiores a uma centena. Pela Figura 3 pode-se ver que o patamar de eficiencia ocorre 

para voltagens superiores a 2000V. A carga media para estas voltagens esta entre 50 e 80pC. Logo convern atenuar 

o sinal na entrada do ADC par cerca de 5X para aumentar o alcance do fundo de escala do ADC (igual a 512pC) 

para 35 particulas. Isto significa que a resposta do detector saturara para 35particulas/0,7m2. A resolugio de carga 

R=FWHM/Qpico na parte central do cintilador e na regiao de maxima eficiencia e de 100%. 
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Figura 4. Histogramas das diferencas de tempo entre o detector modular e o detector de disparo em fungi° da voltagem da 

fotomultiplicadora. 
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Figura 5. Resolucio temporal do detector modular em funcio da alta voltagem para diferentes regiOes do cintilador. 

5 Conclusao 

Estudamos a performance de um detector modular para ser utilizado na medida da componente eletromagnetica 

de chuveiros atrnosfericos - extensos. Corn uma placa de cintilador e somente uma fotomultiplicadora o detector 

construido tern uma eficiencia de contagem de 85%, uma resolucao de carga de 100%, uma resolucio temporal de 

2ns. A uniformidade da resposta do detector foi estudada e os resultados obtidos foram bons para a utilizack 

pretendida. Obtivemos uma uniformidade na resposta temporal de l ns e de 30% na resposta da carga. E born 

salientar que estes resultados experimentais foram obtidos corn muons relativisticos (particulas na regiao de 

minima ionizacio ), consequentemente a performance do detector para chuveiros atmosfericos extensos sera melhor, 

principalmente quando detectando a parte central do CAE, onde a densidade de particulas e elevada. 
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We present recent results from Fermilab experiment E791 on the search of the flavor-changing neut rabeurrent decays D+ 	jz -  p+ 71-+ 

and D+ 	c-  c+ 	. New upper limits On the branching fractions for these channels arc obtained. 

1 Introduction 

One important feature of the Standard Model (SM) is the diagonality of the neutral currents: flavor-changing 

neutral-current (FCNC) decays are forbidden at the tree level and can occur only through higher-order loop dia- 

grams, with branching ratios (BR) between 10 -11  to 10' [1]. Since the experimental limits are still much higher, 
e.g. 11R(D+ 	is - pfir+ ).< 2 x 10 -4  [2], finding a BR. above 10 -7  would be strong evidence of a new phenomenon. 

To search for rare decays like D+ 	r+ I+ 1-  (1 --= e, 11), a high statistics charm sample is needed. Here, we report 

on the results of a search for the decays D+ — 	 p+p-  and D+ 	7r+e+e -1  in data collected from Fermilab 

experiment E791. 

2 The E791 Experiment 

The fixed target experiment E791 [3] recorded over 20 billions events from 500 CeVic 	interactions in a segmented 

target (one platinum, four diamond thin foils). More than 200,000 charm decays were fully reconstructed. 

The E791 tracking system consists of Silicon Microstrip Detectors ;  Wire Chambers and four stations of Drift 

Chambers. Two dipole magnets are used for momentum analysis. Two Cerenkov counters, hadronic and electro-

magnetic (EM) calorimeters and muon scintillator counters provide particle identification (ID). In particular, the 

EM calorimeter is used to identify electrons and muon identification is obtained from a plane of scintillators (muon 

scintillator wall) located at the end of the spectrometer, after a steel absorber wall which prevents other particles 

from reaching there. 

3 The D+ —> it+ r+ Search 

Charm decays are characterized by the presence of multiple vertices: the primary vertex, where the charm pro-

duction has ocurred, and secondary vertices, where the charm particles decay. To separate charm candidates from 

background, events containing a secondary vertex formed by three charged tracks (with total charge ±1) are selected 
requiring, 'among - other things, that the secondary vertex be well separated from the primary vertex and located 

outside the target foils or other solid material and that the momentum vector of the D+ candidate point back to 
the primary vertex. 

'Representing the E791 Collaboration. 
Throughout this text, charge conjugate states are implied. 
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Aside from non-charm background, which is supressed using the vertex selection criteria described above, when 

searching for a rare decay like D+ — 7+ it is very important to take into account backgrounds from other 

charm decays. The three major contributions to charm background in the p -  p+ 71-+ mass spectrum from 1.7 to 
2.0 GeV/c2  are D+ —• K , D+ err+ and Dt 7r - 7r+7r+ . The first one can be eliminated by 

excluding candidates with a 1C -  ir+ 7T+ invariant mass between 1.85 and 1.89 GeV/c 2 . 2  In figure 1(a) we show the 
trie+71 1-  invariant mass spectrum with no muon ID requirement. The two peaks for D+ 	71- - 7r+7r+ (left one) 

and Dt —• 	r+ signals can be clearly seen. They are broadened and shifted downward from the true parent 

masses due to the incorrect assignment of the daughter masses. 

To identify muons we require that two oppositely-charged tracks from the decay vertex be identified as muons 

by separate counters in the muon scintillator wall. The spectrum obtained after muon ID is shown in figure 

1(b). The histogram is fitted with four components (solid line): two Gaussians describing the D+ 	7r- ar+7r+ 

and D;1" 	7r+ r+. signals, with central value and width taken from the fit to the histogram in figure 1(a), a 

Gaussian centered at the D+ mass for D+ 	p -  0+ 7f + and an exponential falling function to describe the remaining 

background. The fit gives 0.35 +32 -Z events from D+ 	ir+ or 4.4 events at the 90% confidence level (CL) 
(dashed curve -in figure 1(b)). 

The 90% CL upper limit on the branching ratio of the decay D+ 	p+ n-+ is calculated using the D+ 

K - 7r+r+ channel as normalization and taking into account the relative efficiency of these two channels. The result 

is [4]: 

	

B R(D+ 	) < 1.8 x 10 -5 	(90% CL). 	 (1) 

1 7 	1.8 	1 9 	2 
	

21 
(GeV/c2) 

Figure I. The tt -  7+ invariant mass spectrum: (a) with no muon ID requirement. The curve is a fit to the sum of two 
Gaussians from misidentified D+ 	x- r+r+ and D: 	r`r+ w+ and an exponential background; (b) with ninon ID. 
The solid curve is the best fit to a sum of contributions from D 4 	it-p+x+ , D4 	7C . 1r+  7+ and D: 	7+ and 
an exponential background. The dashed curve shows the size and shape of the D+ 	m+ ir+ contribution ruled out at 
90% CL. 

This cuts has a negligible effect on D4 	p 4+ ir+ efficiency. 
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4 The D+ e- e+r+ Search 

For D+ 	&Fir+ analysis, the same vertex selection criteria are used and again the D+ 	K r+ r+ candidate 

events are excluded with a mass cut. Two oppositely-charged tracks from the secondary vertex must be identified 

as electrons. The electron ID is based on the deposited energy in the EM calorimeter and the shape of the shower. 

The r+e+ e —  mass spectrum after electron ID is shown in figure 2. There are three events from 1.7 to 2.0 GeV/c 2 

 and only one is inside a search window from 1.83 to 1.89 GeV/c2 . After normalizing the background (diamond 

points) to two events outside the signal region, the 90% CL upper limit on the number of D+ e -  e+Ir+ events is 

3.6. The size and shape of this contribution is represented by the dashed curve, where the signal is widened to the 

left due to the loss of energy (brenasstrahlung) suffered by the electrons through the spectrometer. 

1.5 

_ 	
il— 

0.5- 
..., 

n10.0-0-0.04 .0,00oo  

l 
0 	 oeiNk09_00.04000,04,00000.90,  
17 	1.8 	19 	2 	21 

Mnee (GeV/c2) 
Figure 2. The r+ e+ e -  invariant mass spectrum. The estimated background is represented by the diamond points. The 

clashed curve shows the size and shape of the D+ 	e - e+ ri" signal excluded at 90% C L.  

The 90% CL upper limit on the BR of the D+ 	c+ 7r+ channel is calculated as for D+ 	p+ r channel. 

The result [4] is: 

ti R(D+ 	e+ e - ) < 6.6 x 10 -5 	(90% CL). 	 (2) 

5 Conclusions 

A search for the FCNC decays D+ 	p+ ir+ and D+ 	c+ 7+ has been made using the full data set from 

Fcrmilab experiment E791. At a 10 -5  level on the BR, no evidence of flavor-changing neutral-current processes was 

found. The E791 Collaboration has obtained new upper limits on the BR. of these channels, BR(D+ 	p —  0+  7 +  

)< 1.8 x 10 -5  and BR(D+ 	e - e+7r+ )< 6.6 x 10 -5 , which are at least an order of magnitude smaller than those 

previously published [2,5]. 
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July 2, 1996 

Since its discovery in 1975, the tau lepton has been an important laboratory to test the fundamental aspects of 

the electroweak interactions and confirm many theoretical results predicted by the Standard Model. The discovery 

of new heavy leptons predicted by extended gauge models would help understanding the problem of the number 

of quark and lepton generations. Besides that, the large mass of these new leptons allows hadronic decays and so 

opens the possibility of studying specific strong interaction topics. 

In almost, all the Standard Model generalizations, new particles are predicted. This is the case of the production 

of leptonic pairs. This has been intensively studied in LEP until the kinematical limit of M2/2. Another possibility 

is the production of a single heavy lepton [I], that up to the moment, has not been detailed studied with high 

statistics and for different decay channels. 

The aim of this work is to investigate the existence of new charged leptons in the Mz /2 and Mz mass range 

using the experimental data of DELPHI at LEP/CERN. 

The Institute de Fisica of the UFRJ is in the DELPHI collaboration and has access to the data collected in the 

period of 1989,until 1995, corresponding to more than 4.0 x 10 6  Z° decays. The analysis of these data will be done 

in the Institute de Fisica using local and CERN computational resources. 

The models studied are: the vector singlet (VSM), the fermion-mirror-fermion (FMF), and the vector doublet 

(VDM) models. In the VDM model [2], a new neutral lepton and new charged leptons are in doublets with right 

and left helicities. The FMF model [3] introduces a new right-handed doublet and new left-handed singlets. The 

VSM [4] includes new left and right-handed leptons in singlets. 

Experimentally, a great effort has been done in the case of pair production. For single production, a search [5] 

has been done in the mass range from 10 GeV up to 225 GeV by the HI experiment at the electron-proton collider 

HERA. This work used an integrated luminosity of 528 nb — I. 

A fast detector simulation software (SG V) was used to make a preliminary analysis using DELPHI to discriminate 

the new heavy leptons generated accondingly to the three different models studied (VSM, FMF and VDM). First, 

we have used only leptonic channels for the heavy lepton decay. In this case, one can see that the DELPHI detector 

would be able to distinguish cle -arly not only the existence of a heavy lepton in the mass range from 60 to 80 GeV 

(figure) ) , but also, with enough statistics, to discriminate the different models using the angular distribution of the 

primary lepton. 
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Figure 1. Energy of the particles after the reconstruction. 

Figure 2. 
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After the study of the leptonic channels, we have analysed the hadronic channels, that correspond to 70% of 

the total branching ratio. Here we have also implemented the fragmentation of the quarks into hadrons using the 

software. package JETSET. Figure 2 shows the "seen" primary lepton energy. The primary lepton energy peak at 

about 10 GeV is related to the heavy lepton mass by the expression Ee  = (s — M2)/2f. In despite of a great 

multiplicity, we can clearly distinguish the existence of a heavy lepton in the hadronic channels. It was shown that 

the angular diStribution of the - primary lepton, as in the previous case, can also tag the different models. 
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Experimental results are presented on high energy cosmic-ray hadron interactions recorded 

in homogenous-type thick lead chambers (total thickness being 60 cm and 110 cm) exposed at 

the Pamirs (atmospheric depth 596g/cm 2 . High energy cosmic-ray hadron flux is measured. 

The attenuation mean free path of the arriving cosmic-ray hadrons of Eh > 6 TeV measured 

in the chamber is obtained as 252 ± 30g/em 2  of lead. However, for the high energy hadrons 

Eh > 10Tel/ constituting cosmi-ray families of the highest energy range, LE"'' > 700 TeV, 

which we have been accumulated so far in the series of exposures at the Pamirs and analysed 

by MSU group, the attenuation mean free path of hadrons in lead has turned out to be as 

short as 170 1-1 76 g/em2  with 95% CL by the maximum likelihood method. The present 

experimental result of such a short attenuation length of hadrons in cosmic-ray families is 

essentially consistent with that obtained fo high energy hadrons E y  > 10 TeV constituting 

the "Chiron-type" families of EE-, > 100 TeV in the Chacaltaya two-storeyed chamber 

experiments. ' The anomalous transition characteristics of high energy hadrons in lead is 

found and examples are presented. The physical significance of the experimental results on 

extremely high energy hadron interactions discussed. 

Introduction 

On the basis of a. systematic study of hundreds of cosmic-ray families of visible energy exceeding lOOTeV [1] it has 

been shown that the frequency of exotic cosmic-ray events named "Centauro species" could never be insignificant. 

The main question is whether the particles produced in the high energy interactiones are already known ordinary 

hadrons or they are hadrons of novel origin. Existence of new type of interaction might strongly suggest the 

possibility that secondary particles represent new state of hadrons. Uniform-type lead chambers provide sufficient 

thickness of traversed material for detailed observation of showers behaviour and give us a clue to clarify the nature 
of interaction. 
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Experimental procedure 

Our experiment uses a chamber composed of 60 layers of lead plates of 1 cm thickness and the RT6M-type 
X-ray films that are placed every 1-2 cm of lead (Fig. 1). The chamber is homogeneous in structure and uniform 
in detection efficiency of showers. The transition of an electron shower in the chamber can be observed at every I 
cm interval through the darkness measurement of photometry. Present paper is based on analysis of 16m 2  • year 
exposure at the Pamirs in 1988-1989. Showers observed in the chamber are classified into "family" which is a bundle 
of parallel showers with the same arrival direction and "single" which are not accompanied by shower above the 
detection threshold. Present experiment has 16rn 2  • year exposure for single showers. 

Attenuation of single cosmic ray hadrons in lead 

We have selected the deep-starting showers of 0 < 50 degrees and E. > 6 TeV to make convenient the comparison 

with the data from [3). Fig.2 shows the AT distribution of all the observed showers. AT expresses the shift of depth 
of the shower maximum from the expected position of pure electro-magnetie cascade of electrin pair origin. The 
maximum for the AT < 10c.u. present the contribution of gamma-ray induced showers and exponential decrease 
demonstrares the hadron attenuation in lead. We obtain AV, = 210 ± 27g/cm' within the range 10 < AT < 40c.u. 
This value is consistent with the result [3) Af ihe  = 209 ± 17g/cm 2  obtained in the range 20 < AT < 78c.u. Vertical 

flux of hadrons of vissible energy is well reproduced by 1(P,1 )= No (E7 /10TeV) -0 /m" • year with N o  = 17f 1 and 

= 3.09 ± 0.13. Data [3] give No — 18 ± I and f3= 3.01 ± 0.08. Mututal agreement is beoynd reasonable doubts. 

Attenuation mean free path of high energy hadrons 

Hitherto 16 superfamilies of total visible energy EE y  > 700 TeV have been collected [41 since 1977. The thickness . 

 of the chamber varied from exposure to exposure within 40-110 cm Ph. The AT distribution of the 143 hadrons 
of EZ > 10 TeV (closed circles) and 68 hadrons of EZ > 20 TeV (open circles) and AT > 10 c.u. from families 
is shown in Fig.3. The attenuation mean free path by least square fitting is given as A nil  = 176 f 48g/cm 2 . and 

Ant,. = 146 ± 40g/cm" respectively. To estimate the attenuation length we also used maximum likelihood method. 

The normalized distribution L(A nt ,)/foinfiv  L(A ntt )dA n t, is calculated using the experimental data of each hadron 

for a finite thickness of the chamber and the observation of the attenuation restricted within a certain interval. 

Fig.4 gives the normalized distribution for 143 hadrons of E7, > 10 TeV. From the maximum point and width of 

the distribution we get the value of A nt , with 95% confidence level, A nt , = 170+4276g/ern2 . The same distribution for 

68 hadrons of gam' > 20 TcV is given by kat = 137+ 5276g/cm2 • 

Global relation between attenuation and collision mean free path 

The attenuation mean free path depends on the slope of energy spectrum given by formula A a ss = AC011 / (1- < 
(1 — K)°) , where K is the inelasticity of the collision and a is the power index of energy spectrum in integral form. 
Power index a is found to be 2.09 for single arrived hadrons and 1.16 for hadrons in superfamili es . If A cne is the 

same for both categories of hadrons, the value of Aa gg should be larger for hadrons in families by a factor 1.2-1.3. 
If the hadron interaction is type of ordinary multiple-pion production, the majority of the single hadrons is likely 

to he nucleons, but most of the hadrons in families will be pions. The collision mean free path Aeon of protons is 
less than that of pions. So, A nt , of hadrons in families should be larger than that of single arrived hadrons, but the 
experiment shows just the opposite. 

Anomalous transition behaviour of high energy cosmic ray hadrons 

In the present thick lead chambers we have encountered showers of hadron origin which show anomalous tran-
sition behaviour. Fig.5 and Fig.6 show the transition with depth of the shower spot darkness through the whole 
depth of the chamber without significant attenuation. The event in Fig.6 is composed of two showers of 46 TeV 
and 73 TcV with the relative distance 1.3 mm. If we assume the vertex point tp be 1 km above the chamber, 
the relative production p, of magnitude would be as small as 40 MeV/c. The feature of transition curves seen in 
the above examples is never rare but was encountered in Chacaltaya experiment too [5] and majority are to be 
explained as she shower cluster phenomena initiated by particles produced with small pt in the families which are 
called "Chiron" [5). 
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Discussions and summary 

The striking fact we found is that the attenuation length of high energy hadrons observed in families originating 

front extremely high energy cosmic ray interastions over 10 16  eV is significantly smaller than that of single arrived 

hadrons. The study of two groups of hadrons, single hadrons and hadrons in families, has been carried out in 

chambers of the same structure, using the photosensitive materials of the same quality and the same way of shower 

analysis was applyed. We are led to the conclusion that the observed difference between the two is really significant 

and indicate the existence of "new hadronic state". 
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In this work we shall focus on the problem of classifying the axially symmetric solutions following the Caftan-

Karlhede procedure. During recent years many works have shown that the stationary axially symmetric solutions 

admit a specific simple canonical form and when some of its invariant scalars are calculated, factorization properties 

will occur. Ernst was the first one to recognize the simple canonical form for the Torniinalsu-Sato b = 2 and 

3 solutions. Peri& observed the same form for the Tomimatsu-Sato 45 = 4 and 5. The property was confirmed 

to be valid for all the known stationary axially symmetric metrics by Kerr. In the same way, the factorization 

properties could be confirmed by calculating the quantities directly via any computer algebra system for most of 

the known solutions. Hoefiselaers and Perjes proved that such a property is general and can be proved by defining 

a set of polynomials based on the vacuum equations for axially symmetric metrics. This class of metrics can he 

characterized by searching for solutions to a single complex equation, the Ernst equation. Various combinations 

of polynomials in the Ernst potential and their derivatives are then factorizable. If it is assumed that the solution 

is given by e = (a - 0)(a + #) -1 , the Weyl spinor components are proportional to (a + f3) -3  and therefore the 

scalar B5 = thq/.4 — 9 111 2 2  is expected to be proportional to (a + f3)". In fact, it is proportional to (a + fi) -5 , 

i.e. a factorization in (a + f3) occurred. This fact should be considered and could give a significant improvement 

in the study of the classification procedure for this class of solutions since we are seeking for an alternative way of 

computing the quantities assuming beforehand possible factorizations. 

1 The axially symmetric solutions 

The axially symmetric stationary metric can be written in the following form (see e.g. [1]) 

ds2  = f(dt - w d0) 2  - p 2 r 1 di0 2 e p (de dz2) 
	

(I) 

where f , .4,) and p are functions of p and z only. Define the complex function e f +i tp. The equation Re(e) 	= 

ez 2  + ep l  is called the Ernst equation and its solution e, the Ernst potential [2]. Let the following coordinate 

transformation from (t, p, z, ) to the prolate spheroidal coordinates (t,x, y, ¢) and then to (t, X, Y, 0) be given by 
x = cosh X e y = cos Y. By defining the operator, = Ox ±i Ov, the conditions vacuum conditions can be written 
as [3] 

-[a±(po,e)+ a*(paf e)i = 2 
-0±EaTe 

Ti090± 	= /20±W 
	

(2) 

0170±p = -
2

* 2  p 1  ck 	P , 

4 f 2  

with 1-1±4p = 0 and where e 21' = f eo (COSI1 2  X — COS 2  Y). 
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2 - Invariant scalars of the axially symmetric solutions 

The factor properties can be directly verified by giving the explicit form of the invariant quantities utilized in the 
Cartan-Karlhede classification in terms of the Ernst formalism [4]. Initially let us start by considering the following 
null tetrad [5) 

= (0+p dX + a_p dY 

1= 2dt (71' + 7w) do] 
	

( 3 ) 

k = 2 [V,idt + 	- Vif w) J.7 

V .1 
Since £ = f + i IL, in the above null tetrad the Weyl spinor components can be calculated and they are given by [5] 

410 

4, 2 = 

8 	
2a2 	40_70-e [ 

8
-e-2' [249_ £ - 0+£a_£] 

	

--
8

e -27  [282 	- 40+70+E 

+ 1(a_£)2] 

+ 1  (84) 2] 

1 = tiV3 = 0 

Taking all the possibilities for the *A's to vanish or not, the following Petrov types can occur: 

I. All tit A 's equal to zero: Petrov type 0. The solution is a Minkowski spacetime; 

2. Only ‘11 .0  (or 4/ 4 ). is different from zero: Petrov type N. This is not an interesting case if we seek solutions 
which are asymptotically Schwarzschild; 

3. Only 41 2 0 0 or th, 42 and ‘1, 4  non-vanishing with B5 = 4101 4 - 941 2 2  = 0: Petrov type D. These solutions 
are all known [6] and their classification have already been studied in detail by Collins et. al. [7]; 

4. Only To (or 11► 4 ) vanishes: Petrov type II. These solutions belong to a class of solutions divided into three 
distinct cases: the Weyl class, Lewis and van Stockum solutions, the last one admitting at most a group G3 
[1]; 

5. Only 'V 2  = 0 or all different from zero with 135 = 	- 9412 2  $ 0: Petrov type I. This is the general case. 

As we can verify the Petrov type III does not occur in any of the possibilities listed above. The components of the 
Weyl spinor can be rewritten as [3] 

1 D 	T_ 
= 

2 (a +,8)3  0_ pA +  

1 DM 

	

4, 2  = 	 
2 (a +13)3  

1 D 	T+  
2 (a +8) 3  0+pA_ 

where 
M A± = KT O±(cr + 11) - + f3)0± 
r±  (a + )3)Q± - 3K±o±p0±(a +0) 

and 

Q ±  = (9,pai K±  - K± (2H + alp) 

The Petrov type 1 is the most interesting case to be considered. Looking at it in details, it follows that in terms 
of the above relations, that the Petrov type I occurs when (a) K T 1;Va +13) - (a + ,8)8* = 0 and Tt $ 0; (b) 
B5 0. 

The expression for 135 is given by [3, 4] 

1 	DZ  
85 = 	 B±s 4 (a + ,0) 5 0±p0T p A 

(4) 

(5) 
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where 

8±5 = (a + #)[Q±QT — go*pe4 P Of KT aT  K±] — 
— 3 [Ii±a±p0±(nr + 13)Q T  + ICT OT paT (o + 0) c•?1 - 
- 9 IKtaT  kia±(o + (3) + 	a± KT  a,(o+ (3))0±p0T p 

It is worth noting that the cancellations as well as the factorizations only occur when the right expressions are 

substituted since the number of definitions and relations (mainly from the field equations) arc restricted to a small 

set. Of course, this fact may bring many difficulties when we are searching for simpler expressions involving the 

above polynomials. 
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Neste trabalho, apresentamos uma rede neuronal artificial do tipo "feed-forward" corn al-
goritmo de atualizac5,o "backpropagation" que e construida e treinada para discriminacao 
de eventos de fisica de particulas de altas energias do tipo e+e -  e+e- ff, simulados por 
Monte Carlo via Modelo Padrao (MP) dos eventos de mesmo tipo simulados via mode to 
estendido Fermion-Mirror-Fermion (FM F), na energia de 2- GeV (LEP II). Para eventos 
leptonicos &Fe-  — e -  11 a rede atinge uma eficiencia ern torno de 77% enquanto que para 
os eventos hadrOnicos e+ e+ hadrons uma eficiencia ern torno de 98%. 

1 Introducao 

fisica de particulas,especificamente a de altas energias, desempenha urn papel de destaque no quadro da fisica 
moderna contemporanea. Apesar do sucesso do MP, o qual assents as bases dessa fisica, ainda, devido a *limas 
nao evidencias experirnentais desvios da tcoria sao permitidos, oportunarnente abrindo espacos para quadro teoricos 
alternativos, como o model° estendido FMF aqui utilizado. 

Neste trabalho, a tecnica de processamento neuronal 6 utilizada para a discriminacao entre eventos, provenientes 
de colisoes c+ corn energia de 200 GeV no centro de massa, corn quatro ferinions no estado final, e+ e+e -  f 
os quais sao permitidos pelo MP c pelo FMF. 

0 trabalho 6 dividido em duas partes, uma referente a discriminacao dos eventos leptenicos provenientes dos 
dois modelos c a outra referente a discriminacao dos eventos hadremicos. Assirn sendo, duas redes sax) construidas, 
uma para discriminacao leptemica e outra para a hadreinica, uma vez que os vetores de entrada (rnimero de variaveis 
cinematicas escolliidas para representar a particula) das redes tem diferentes dimenseics. 

2 Simulacao e Variaveis de Entrada 

Os eventos via MP foram obtidos pelo simulador EXCALIBUR que releva processos fisicos nos quais ha producio 
de bosons vetoriais pesados que sera° investigados nos colisionadores e+ 	em urn amplo alcance de energia. Na 
energia do LEP II os processos e+ 	4fermions sic): 

e+e 147 + W 

e ZZ 

c+ c 

c+e Zc+ e- 

c+ e 

Utilizamos o canal e+ e 	ZZ 
Os eventos via FMF foram obtidos pelo simulador desenvolvido no Institut° de Fisica/UFRJ dentro do grupo 

da colaboracio Internacional UFRJ/CERN. Para este modelo as particulas do estado final provem do decaimento 
de urn link() lepton pesado produzido no estado intermedintio do processo e+ 
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Fig. 2.1 Processos 	e+ ff a) FMF b) MP. 

Fig. 3.1. Variiveis normalizatlas do eletron para FMF (linha cheia) e MP (firths pontilliada). Canal Leptiinico. 
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Fig. 3.2. Variaveis norinalizadas do eletron para. FMF (linha cheia) c MP (linha pontilhada). Canal HadrOnico. 

Para os eventos leptonicos o estado final e composto por 4 particulas onde cada uma e reprentada por seu 

quadri-moment° (E,Ps , Ps , Pz ), comb variaveis cinematicas que alimentam o vetor de entrada da redo neuronal, 

resultando na rode laptemica urn vctor de entradde de 16 posicoes. Enquanto, que para os eventos hadronicos, o 

estado final 6 compost() por 14 particulas, ja que as quarks e antiquarks sofrem hadronizacao, onde foram escolhidos 

os 6 lia.drons mais energeticos de cada jato hadrOnico, resultando na rede hadronica um vetor de entrada de 56 

posicOes. 

3 Result ad os 

A regao de interesse na (vial a rode neuronal dove atuar a fim de discriminar eventos via MP dos eventos 

que se superpoern tanto no canal hadronico quanto leptonico e mostrada MIS figuras abaixo, pars por exemplo, o 
eletrou que aparece n0 estado final. 

Utilizanda ulna rede de tres caniadas configurada corn : 16 neuronios na camada de entrada, 10 neuronios na 

camada oculta e.1 neuronic) na camada de saida para o canal leptOnico, 10000 eventos (a. " 50% via MP c a. 50 % via 

FMF) para treinamento da rede e 1000 eventos 50% via MP e 50% via IFM1') para teste, foram apresentados 

fornecendo-nos as seguintes eficiencias maximas e parciais por model°, atingidas pela redo. 

Para o canal hadrOnico h5 uma rede de tres camadas configurada coin 56 neuronios na camada de entrada, 1 

neuronio na cainada oculta e 1 neuroirio na camada de saida, 4000 eventos par treinarnento e outros 4000 eventos 

para taste, foram aleatoriamente apresentados apcnas 1000 vexes, fornecendo-nos o seguinte resultado: 
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Tabela 1. EficiCncia para diferentes ndmeros de apresentacocs. 

Apres. Efic. Efic. Modulo 

Maxima % MP FM r 

1000 60.57 48.86 100.00 

5000 74.27 51.87 100.00 

10000 75.92 53.83 100.00 

23000 77.90 55.80 100.00 

Tabela 2 Eficiencia da rode hadronica. 

Apres. Efic. Efic. Modulo 

Maxima % MP FM F 

1000 98.66 99.40 97.93 

4 Conclusoes e Propostas 

Diante dos resultados obtidos, mesmo quo preliminares, podemos concluir e propor: 

- 0 use da tecnica em futuros eventos reais torna-se possivel, na discriminac -do de eventos "background' (via 

MP) dos eventos quo representarn uma nova fisica (via FMF); 

- A otimizacao do tempo cornputacional que foi razoivel, cm torno de 24 horns para. 10000 ciclos do trcinaincnto, 

uma rode 16:10:16:1, 10000 eventos de treinamento c 4000 de teste, para. uma "workstation" SUN 10; 

- A melhora da configuracao das rides; 

- A plicacio de outros algoritnios inteligentes (quando possircl 1); 

- A extensiio do estudo para o espalhamcnto proton-proton na energia do I.I1C (trabalbo cm andamento !) c 

para varios outros canais de decaimento. 
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It has been suggested that a hadron may interact very weakly with nucleons in nuclei when it is forced to adopt 
a quasipointlike configuration during the lapse it travels through the nucleus. Such configurations have no color 
charge and a small dipole moment. Therefore they interact only weakly with nuclear matter. This phenomenon 
has been termed Color Transparency. 

Quantum mechanical features of Color Transparency have been studied considering the non-relativistic evolution 
of a cc pair produced, as a small wave packet, inside the nucleus. The soft interaction with nuclear medium has 
been modeled by dipolar-type interaction. 

Our purpose in this work is to study the relativistic evolution of the ce system by means of the Klein-Gordon 
harmonic oscillator Hamiltonian with the inclusion os a homogeneous electric field that accounts for the nuclear 
medium. 

1 Klein-Gordon oscillator 

In 1989 Moshinsky and Szczepaniak [I) proposed a new type of interaction in the Dirac equation. This potential 
is linear in r and the corresponding equation was named Dirac Oscillator because in the non-relativistic limit the 
harmonic oscillator is obtained. 
This kind of interaction was introduced in the Klein-Gordon equation [2][3] trough the ininimal coupling replacement: 

15.  — irniO • (j, 	 (I) 

where 

(f) = f14, 	/5  = 	 = wit% 	 (2) 

The resulting Klein-Gordon equation is: 

— aot22  ,i, (4.3 	(ty2 	,n2f1. 1Z 2 	tril + m2 ) 41(17, t), 	 ( 3 ) 

The physical sense of implementing rj and i• is obscure. 
Sakata-Taketani approach is caracterized by: 

(4) 

and 
. 	{770-3  + ir-2 ))5 

	

= 	 + rnr3 1 4), 	 ( 5 ) 2rn 

• UNLP 
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with ri being the Pauli matrices. it = column(0,x) is a two-component wave function with the components which 
could be written as following: 

= (1,11+ ;,,a,40/,/7.2 	
(6) 

Hence, Klein-Gordon equation can be explicitly expressed: 

[0+ 2 mc,.7 2  r 2  — 3 mw +;n 2 ] it/ = 0 	 ( 7 ) 

We have solved this equation for the isotropic three-dimensional case. The eigenvalues and eigenfunctions are: 

E2  = 2 ( N 1  + N2 + N3) 	m2 
	

( 8 ) 

N1, N2, N3 = 0, I ... 

14  E N1 Ng J.:3 

[F ► w 3  / 4 2-(NI + N2 + N3)12 _
i 6 1 

 

	

1. 	r4  N2 a 8  
(N11 N2! N31)11 
	  C 	1.4  

2  

X 	e-W4-1/21-z2)mw'li2 

x I Ni (“r-r—iw x) rirrui y) I( rnw z) 
	

( 9) 

2 Klein-Gordon equation for the charged harmonic oscillator in a 
uniform electric field 

Now we assume that the particle studied previously has a charge q and it is placed in a uniform electric field 
parallel to z axis. 
The classical potential energy of a particle placed in a uniform field E is: V(E) = —qSz . We introduced this 
potential energy in the Klein-Gordon equation making the correspondence: 

a . 0 	
2 	a  

- (iN)

2 	

(1 - ge l') 	- tc 2- 	— 2iqEz ejt-) 	 (10) 

Then, the Klein-Gordon equation reads: 

a 
( 0 + 	 nato 2 r  2 	(1 2E2 z 2 	3 m 	) 4, 	0 

01 

There exist three cases for mw > qE, nu., < qE and rnw = qE The eigenvalues and eigenvectors are 
a) into > qe 

N. ..3 = 
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E
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This solution corresponds to N3 even, the other independent solution corresponds to N3 odd. 
b) raw < q 

q
2E2 

EN, N3 N3 	 I m2,4,2 1) {(2N3  + 1) N/—q7e2  _ Tn2w2 - 2 (NI + N2 - 	 "121 (1,1)   

(12)  

(13)  
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In this case we have two independent solutions: 

	 2 geENIN2N3  \ 2  

(V92E2—"'2'  ?.3E2_,.24 

1■1 Ni 3 	 A N, N, „3 ‘7. - V -1- Y 31-z2) rIfiTwx) 115—zwy)e 

x ci, LinI 	. v/q2e2 - ,,, i2w 2 z  _ .771e.:„ iroupgeEN N N 	2  

( 4 2rnw ' 2 ' i 
	

2 %42E2 _ 	row2 	
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(15) 

( v43E2  	PE NIN2 N4   ) 
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2,/g2 E 2 - m 2 w 2 - 

c) rrua = qE 

	

[ -4i (214 Ez + E2  - E? - E3 + mi.,, _ rr2 	) 312  1/6  

	

3 	i0 
3 	 (21elelE1) 2/3  

-4i 2IeleEz+ /3 2  - E'? - 	+ rm./ - "42- 	
3/2 I/6 

x Wo, _ t 	3 	i0 
( 21€1EIED2/3  

When 

2Ie le Ez E2  - El - .E3+ nuo - 3 < 0 

the last solution presents an exponential decay as: 

—2 	21eICEa+62-5?_624....w_ 91:_ 3/ 3  

3 	 olocisik 
e 

(Note that (0 in all cases is the time-independent solution) 

3 Phenomenological model for color transparency 

We have the tools to extend the model [4] to a relativistic case. 
Specifically: P(t) = I < f(r.01kIl o  > 1 2  because if P(i)/P(0) = 1 there exist Color Transparency. Up to now we 
found: 

f(r,i) = EG'ne-IE•in(r) 	and 	< r2  >=< f(r,t)Ir 2 lf(r,t) > 	 (20) 

We are currently working on this subject, in particular we are implementing the Lorentz transformations in order 
to express e in the cc center of mass. 
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The profile functions of the eikonal formalism, obtained in the model of the stochastic 
vacuum from combinations of the two kinds of correlation function of the gluon field, arc 
determined and their properties are discussed. The influence of the correlation functions 
and their characteristic parameter correlation length on the observables of soft high-energy 
scattering are studied. Values are obtained for the gluon condensate and for the correlation 
length, and the possibility of the description of the experimental data on total and differential 
elastic cross-sections at high energies for the pp and pp systems is investigated. 

In the work here described we rebuild the application of the Stochastic Vacuum Model to high energy pp and 

p15 elastic scattering developed before (ref.l) , with the purpose of clarifying and improving the determination of 

the two fundamental QCD parameters that intervene in the evaluation of the observables of total cross-section and 

forward slope parameter. 

Compared to the previous work on the same subject, this paper presents several important changes in methods 

and results. 

1. The correlation functions 

Considerations of Lorentz invariance show• that there are two independent gluon correlation functions. We 

call them D and D i ; with same normalization at zero distance D(0)=D 1 (0)=1. Lattice calculations (ref. 2) have 

indicated that these two functions have the same exponential decrease at middle and long distances, and that they 

intervene in gluon correlations in the ratio 3 to 1, namely we may symbolically write that the gluon correlations 

are of the form rcD + (I — K)Di , with K. = 3/4. In the previous work of ref.l only the part corresponding to D has 

been included in the calculations, and now we take into account both D and D I  contributions. 
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In the impact parameter formalism that we use, the observables are evaluated through the profile functions J(b). 

In fig. I we represent the functions .1(b) obtained in the cases of pure D (x=1, in dashed line) , pure D1 (x=0, in 

dotted line) and the mixture with K=0.75 (solid line). We ohserve the small magnitude of J(b) for the pure D 1  

case, which has justified the neglect of the contributions of this correlation function in previous work. 

2. Determination of QCD fundamental quantities 

In order to avoid difficulties that may be argued to exist in the interpretation of the value of the gluon condensate 

which is extracted from lattice calculations, we have now chosen a method that makes use of all existing data on 
total cross-setions and slope parameters at all energies, showing that the whole collection of these data can be 

described with a unique choice of values for the QCD parameters of gluon condensate and correlation length. 

For a given energy, the fundamental observables are the total cross-section ay and the slope parameter B of the 

differential elastic cross-section. In ref.1 it is shown that the stochastic vacuum model gives expressions for these 

two quantities in terms of the gluon condensate (g 2  FF) , the correlation length a and the hadronic size S (we 

here consider pp and pp scattering only). Using the data for UT and B at a given energy, the parameter S can be 

eliminated from the two expressions, and a curve can be drawn in a figure with a and (g 2  FF) as axes. In fig.2 

we draw such curves for the energies 23.5, 62.3, 541 and 1800 GeV. Choosing two energies, and drawing the two 

corresponding curves, their intersection fixes the values of (g 2  FF) and a. Using all data on pp scattering from 

CERN ISR (these data range from from Vi=23.5 to 1i=62.3 GeV) , and the data on pp from CERN SYS ( 541 

GeV) and from the Tevatron ( ji=1800 GeV), taking all possible pairs of energies, all intersections fall in small 

ranges of values for (g 2  FF) and a : from 2.5 to 4.0 GeV' and from 0.28 to 0.39 fermi respectively. These arc 

indeed very reasonable physical ranges for these quantities. 
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Fig. 2 shows the remarkable clustering of the intersection points along a line. We may be inclined to choose 

for (g 2  FF) or a an average value taken over the cluster of points. Actually, with some manipulation of the 

experimental data within their reported error bars we could concentrate the cluster in very small ranges along both 

axes. 

We can easily write an equation for this line of intersection points, which is approximately of the form ( g 2 FF) 

const/a 3 . This relation allows us to eliminate one of the two QCD quantities in terms of the other before their final 

determination is made. 

3. Experimental data at high energies 

Pig. 3 shows the experimental data for crT  and B for the pp system at the CERN ISR energies (f = 23.5, 30.6, 

45.0, 52.8, and 62.3•GeV) and for Pp at 54 l GeV (CERN SPS) and 1800 GeV (Fermilab E-710 experiment). At 

the two lowest energies, instead of the full experimental data, we use the poineron exchange cross-sections given by 

the Landshoff-Donnachie parametrization (Ref.3). The line is the result obtained from our model with a = 0.31 fun, 

( g2 FF) = 3.03 GeV 4 . These values arc in the middle of the cluster shown in fig.2, and lead to a good description 

of the elastic differential cross-sections in the very low t range. 
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4. Increase of the effective proton radius with the energy 

After the QCD parameters are determined, we may return to the original expressions that give the total cross-

section in terms of the proton size S, use the experimental values for CT(s), and determine S as a function of the 

energy. We find that S increases linearly with log(s). 
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This work presents the last, results for the low-energy phenomenology for a class of super-
string models, based on Calabi- Yati compactification and with gauge symmetry, at the 
compactification scale, given by E, ; :r E6 . Nowadays, there is a fairly precise phenomenology 
coming out of it. Many phenomenological constraints were imposed in order to determine 
which of the models was suitable for a description of the "real world". 

Introduction 

Although the Standard Model has remarkable success when its predictions are compared with experiment, it is 
thought by many that it corresponds to an effective description of Nature. The reasons for that arc now classic and 
we will not enumerate them. This train of thoughts led to the introduction of many extensions of the Standard 
Model, namely, Grand Unified Theories (C UTs) and supersymmetric Models (SUSY). One of the criticisms that 
is made against the Standard Model is that it does not deal with Gravitation. Collecting all these ideas, the 
motivation for studying the low-energy phenomenology of superstring models is clear, since, besides the fact that 
they are Supersyminetric-Grand-Unified-Theories (SUSY-CUTs), thus dealing with the main criticisms made to 
the Standard Model, they also are the only possibly finite and anomaly free quantum description of Gravitation. 
So, superstring models present themselves as the extension to the Standard Model. 

One of the major problems in dealing with these models is that nobody knows how to derive the vacuum of 
the models from the strings. So, one is led to scanning compactified string models looking for consistency with 
low-energy experiments. Possible candidates are the models resulting from the Len dimensional Elia:E8 heterotic 
string compactified on the 3-generation Calabi-Yau manifold of Tian and Yau 

Many phenomenological analysis have been performed already on models belonging to this class, we refer the 
reader to [2] for details and better definition of the class of models. Prom now on, we are going to concentrate 
on the most recent results presented in [4]. Of course, these models have, at high energies, a much greater gauge 
symmetry than the one presented in the Standard Model, so there have to be symmetry-breaking-scales. These are 
required to: (i) preserve low-energy matt take place along flat directions of the potential; (ii) give heavy masses to 
all leptoquarks; (iii) keep the standard Higgs and (iv) take place along flat directions of the potential. 

The Class of Models 

The gauge symmetry of these models is, at high energies, given by E6 (the other E8 is the invisible sec-
tor relating to the visible one only through gravitational effects). The gauge symmetry is broken (via 
Wilson-Loops): L' 67  > SU(3) 3 , after that., we have two intermediate-symmetry-breaking scales: SU(3) 3 — > 
SU (3)X SU (2)X SU (2)X U (1) — > S. 14,1 odd. The non-sing let matter content of the models is given (at the corn-
pactificati by nine families of leptons A, six families of A, seven of quarks q and anti-quarks Q and four of q Q. The 
matter fields are put into 27 of E6 , so 

'E-mail: darnotaUvmesaaterj.br 

'This work was done in collaboration with P. del Aguila e M. Masip, Nuclear Physics B440, pp.3-23 (1995). 
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27 — > (1,j, 3) = A + (3, 3, 1) = q + (S,1,5)= Q 

The presence of gauge singlet fields was proven to be essential for phenomenological consistency[3]. recently, 
the couplings were calculated using cohomology techniques of exact spectral sequences151. So, with these famili es 
of fields, on end up with the Standard Model in the low-energy regime. 

Matter-Parity Models 
In these string models, one has discrete symmetries constraining the possible couplings appearing in the potential. 
These symmetries play a very important role. They are part of the matter parity that has to be present. Basically, 
the models (that already "survived" many phenomenological tests) are divides according to the "kind" of matter 
parity they show: IL has been shown that only two matter parities can be implemented in the class of models 
that are under investigation here[6]. They correspond to P2 = Cg2  generating a Z2 matter parity and P3 = B93, 
generating a Z3' discrete group. The B and C appearing above are related to the discrete symmetries[2]. In the 
case with a discrete symmetry group given by P3, we find that there are only three patterns of quark mass matrices 
(consistent with the phenomenological requirements (i)-(iv) above). Unfortunately, none of them can accommodate 
realistic (observed) quark masses and mixing angles. The problems with these three types of mass matrices are 
summarized as follows: type A - the quark mass matrices are anti-symmetric, due to an exact symmetry, and that 
would imply that m. = 0 and = mt, thus making these cases unrealistic. type B - in this case, the six quark 
masses can be accommodated but, after a detailed analysis, one can verify that the mixings of the third family 
are far too small. The relatively large entries with a non-perturbation origin would be in contradiction with our 
assumptions (phenomenological constraints). type C- here the problem is that the u-quark mass is found to be too 
high. For details (interesting ones) see[4]. - 

In the case with a P2 matter parity, one can do similar analysis and try to verify if one can find realistic 
models. For making the analysis simpler, it is more convenient to re-write the potential in terms of C-eigenstates, 
after doing that, one verifies that we have the following scenario: (i) we can find cases with the same symmetric 
quark mass matrix problem (patterns A discussed above); (ii) one can find cases where we have massless up-quarks 
(for absence of the appropriate Yukawa c or we do not have flat directions in the potential. The only interesting 
case is obtained when the singlet developing VEV has components along the flavour directions (si, 57, 3 1 3) (see [4] 
for the notation). Furthermore, the Higgs responsib intermediate-symmetry-breaking are placed along the flavour 
directions (.1 1),(X1,2), (a7) and (X3,4)• 

So, after careful analysis, this case was singled out as the only one having a realistic phenomenology. In this 
particular model, the three chiral families of quarks and lepton (after diagonalization of the mass matrices) are 
found to lie along the following flavour directions: 

up — quarks : q3,cr 1 q 1  cr2q2 ar3q41 Pigs +1320 + ii3q4; 

tic : u3 i a 1 tcj + (124 + 	fli + i324 + 034 

u c  : d§, 	+ 72d; + 73d.1 + 744 614 + 624 + 634 + 644; 

lepton — doublets : (Ili + f2h7 + E3h9) 163 la 

e` : eg,eZ,efi  

Conclusions 
To summarize, we singled out a model as the only one in the whole class being able to provide a realistic low-energy 
phenomenology. The history of this search is long and we recommend the reader the bibliography in the end of this 
paper. Basically, the imposition of a set of phenomenological constraints helps us in seeking the "right" vacuum of 
the string theory. The following set of constraints has to be satisfied 

• a model with three-generations 

• possibility of intermediate-symmetry-breaking 

• no Landau poles 

• gauge coupling unification 
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• correct value for sin(0) 2  

• light Higgs boson rnili gg , < 17'eV 

• realistic mass-matrices for the standard fields 

• realistic CKM-matrix 

The last two constraints (bold) were the strongest ones, eliminating almost all possible cases. They were the last 
ones to be imposed as well, completing the link from the high energy string theory to the low-energy phenomenology. 
It is remarkable that such a link could be completed satisfactorily. 
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A new type of geometrical model is proposed and applied to describe diffractive dissociation 
processes in soft hadron interactions. Such a model, which is based on a geometric conception 
of the Porncron-proton cross section and on a set of assumptions derived from the current 
phenomenology of elastic processes and total cross section, is able to describe a large amount 
of experimental data of single diffractive processes with just one free parameter. Results for 
interactions initiated by pp, pp, rIp and It'p collisions are presented. 

In this work we propose a phenomenological model based on the Regge theory [1] that permits an overall descrip-

tion of inelastic diffractive processes initiated by proton-proton and meson-proton collisions. Such an approach is 

mostly concerned with single diffractive (SD) processes in the soft region (Iti < 1 GeV 2 ), i.e. sernihard contributions 

are beyond the scope of the present work. 

The starting point of our analysis is the expression for the double differential cross section for hadron-hadron 

diffractive dissociation, derived in the context of the R.egge theory, which reads 

d2r 	113TAPh ()1 2 (  s .  12011301-1criphoi2,1) 	 (1) , 
dtd/I1 2 	16r 2 	M 21  

where iihilh) (t) is the porneron-hadron coupling factor, alp(t) is the pomeron trajectory and cr ip h (A/ 2 ,i) is the 

poirieron-hadron cross section. 

Since the formalism does not provide these three functions, we'll propose here some 'prescriptions' to get them. 

Such prescriptions should be taken as general statements that should be valid for all hadron-hadron dissociation 

processes. 

1. Analyses of elastic scattering and total cross section data seem to favor a linear trajectory, am(l) = l+c-Foli, 

with c = 0.08 and a' = 0.25. 

2. The pomeron-hadron coupling factor, in this approach, depends basically on three quantities, i.e. O hli:(t) 

n h  /3, Gh(t), where 

	

n h  — number of valence quarks in a hadron h; 	pomeron-hadron coupling constant.; Gh(t) 	form factor 

of the interacting hadron. 

3. We assume crip h  as proportional to the mean squared radius ((rD) of the interacting hadron as it is 'seen' by 

elastic scattering or, in other words, as Proportional to the slope of the elastic diffraction peak, crip h  = S (r1,), 

where 6 is a normalization parameter. 

In order to compare the predictions of the model with experimental data we have to fix the parameters required 

in each case. As much as possible, we try to do that by taking these parameters as established in other contexts or 
in independent analyses. 
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The coupling constant f3h, for instance, is taken from the connection between elastic scattering amplitude and 

total cross section. By the optical theorem, we have 

duri, 	(72 	 ,2 

	

It=0 = 	tor (1 + p ) 2 	-tog 
di 	167r 	- 167r 

Now, using the proton-proton elastic scattering amplitude at the Born level, we can write 

dere
. 

 [3 fipGp(1)]4  s 2. 0)-2 
di 	167r 	( so ) IP  

and 

	

di "=° 	
(3

1
)3
6ir

p)1 s 
)

2
(' 	 (4) 

do e , 

where so  is a scale parameter (so = 1 GeV 2 ). From (2) and (4), we have 

se° 9  A?, (—s  )(' so 

Some time ago, Donnachie and Landshoff 12] have shown that it is possible to accommodate the behavior of the 

total cross section data of several hadron-proton processes in a general expression, 

c hP = 	+ Zs - ' 101 - ( 6 ) 

where the first term comes from the pomeron exchange, while the second one represents all secondary reggeon 

contributions. As we are adopting here the same t (= 0.08) adopted by them [2], by comparison between (5) and 

(6) we can obtain ,t3p  directly from their fitted parameters, i.e. (3p2  = Y/9. 

For meson-proton elastic scattering, we write 

	

dcre 	[2 ,3„,G,„(t)]2 [3  flp Gp (i)] 2  s 2cr (t)- 2 

	

) 	 ( 7) 

	

di 	 16r 	 so  

and follow analogous procedure to obtain )3,2, = Y 2/(36 4). 

In so doing, from the Y parameters given in ref.{2] we get )3p2  = 6.19 GeV -2 ; ,t.3„2  = 5.50 GeV -2 ; PK = 

4.14 GeV -2 . 

For the electric form factor, we have assumed a general dipole formula corresponding to the quasi-elastically 

scattered particle, that is: Gh(t) = 1 / (1 - thi 12,) 2 , where, for protons (antiprotons), pions, and kaons, we have 

pp = 0.71 GeV 2 ; p„2  = 0.92 GeV 2 ; p 2K  = 1.45 GeV 2 . 

Now, in order to obtain the pomeron-hadron cross section we must establish the mean squared radius of the 

hadron interacting at the inelastic vertex. For this purpose, we use two relations found out by Povh and Baffler [3]: 

1. for protons (and antiprotons), we use (rp2 (s)) = 3b,p(s), where bpp (s) is the slope of the diffractive peak in 

(anti)proton-proton elastic scattering; 

2. for other hadrons (in this paper, ir and K), we use (r 2 (s)) = (r.,2 (s)) crh r. 
.,JP 

 CIPP 

	

to1,11- 	totar -.  

For a matter of consistency, we adopt for the slope the following parametrization, bpp (s) = 11.13+ 0.5 ln(s/so ), 

	

which corresponds to the definition b 	d/dt in(da/di)1,, 0  applied to eq.(3). 

At this point, the only undefined quantity is the 6 parameter. We determine this parameter by fitting the data 

of pp diffractive invariant cross section at 23.5 GeV measured by the CIILM Collab. at 1SR. The value of 6 was 

found to he 6 = 0.467. 

With this parameter fixed, we are able to describe the invariant cross section data for the entire ISR's energy 

range, as shown in Fig.la, together with the Collider results (Fig.lb), in fair way. In order to analize diffractive 

(2)  

(3) 

( 5 ) 
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dissociation of proton in meson-proton collisions, we use data of the EHS/NA22 Collab. [6], obtained at Vi = 

21.5 GeV and —t = 0.25 GeV 2  (Fig. 2), and we find a good agreement between the data and the model. Also in 

the case where the proton is quasi-elastically scattered and the meson dissociates, our results agree very well with 

R. L. Cool et al. [7] measurements (Fig.3). 
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Figure 1: 
Results for the invariant cross section distribution (s/ir)d 2crsD/dtdM 2  with M 2/s, as given by the model 
together with some data from: a) ISR [4] and b) Collider [5]. 
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Figure 2: 
Results for the non invariant cross section distribution d 2 o5D/dtdM 2  for f = 21.5 GeV and -1 

0.25 GeV 2  as a function of M 2  for the diffraction dissociation of p in ir+p and K+p reactions as given 
by the model together with data from NA22 Collaboration. 
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Figure 3: 

Results for the invariant cross section distribution (8/7r)d 2 crsD/citc/M 2  as a function of M 2 /s for the 
diffraction dissociation of 7r+, , K+ and K -  in 7r±p and ICIp reactions as given by the model together 
with data from [7] at / = 14 GeV and fa = 20 GeV and -i = 0.05 GeV 2 . 
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Starting directly from data we test the universality of the decomposition of total cross section 
in an asymptotically dominant term, the Pomeron, and a non dominant one, the Reggeon. 
Without assuming Regge pole model behavior or additive quark model relations we show 
that data are compatible with both models. Support is not found for models predicting 
asymptotic equality of total cross sections. 

The understanding of the high energy behavior of hadron-hadron collisions remains an open theoretical question 
of QCD. As the long distance behavior is necessarily present, a. pure perturbative treatment, starting from the 
asymptotic freedom limit, is most certainly not sufficient and non perturbative QCD may have to be included in 
an essential way. In any case, some universality features, due to the color structure of the theory, must be present 
in the data. 

We do not intend to address here the important and general problem of QCD in soft high energy physics (see 
[I] for a recent review) but simply to ask, looking directly at data, what conclusions can be drawn concerning 
universality in high energy elastic scattering data, namely, in total cross sections. 

Two very simple models will be taken as reference: the Regge Pole Model (RPM), in the version of Donnachie 
and Landshoff [2], and the Generalized Additive Quark Model (GAQM), in the version developed in [3]. Both 
models propose an asymptotically dominating term, the Pomeron, cr, and another term decreasing with energy, 
the Reggeon, c•R. 

In the RPM the emphasis is on the Regge pole behavior of the two components, 

Cr P 
	$ a F, -1 a R 	

S a 11 -I 
	

(1) 

p and a, R  being the intercepts of the Pomeron and Reggeon trajectories, respectively. In the GAQM the emphasis 
is on relations between total cross sections, for instance [4, 3], 

= 6 2 

a 	- 3 PP 

and 

, 	5 	 5 , 
(trilp app) = 5  (c.-p - 	(4 4-pl = VTR' - P 	'IT = 4-  (o Fn CrP") • 

It should be stressed that both models, RPM and GAQM, are at most reason - able approximations as, for instance, 
multiple scattering absorptive corrections are- not included. 

We shall write the total cross-section cr (s) for a process ab in the form 

a-  (s) = Pa l,cr P  (s) 	11„,i3 O. ri  (s), 	 (4) 
where (7 1"  (s) and ern (s) are, possibly universal, cross sections and the normalization is such that for Pp we have 

(2) 

(3)  

crijr(s) = 9tr (s) 	5•R  (s). 	 (5) 
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The numbers 9 and 5 are suggested by the GAQM (9 combinations of quark pairs in pp and pp, 5 possibilities for 
quark-antiquark annihilation in Pp). 

From the analysis of experimental data made in (2], using Eq.(1), the resulting values for P ab  and R a b arc the 
ones presented in Table 1. The values of Pa b and Ras of GAQM are also presented in Table I. Flavor breaking 
factors in Pat, were not included. A parameter u, not fixed by the model, measures the ratio of the forward imaginary 
parts of the 4q annihilation amplitudes in the channels u and s, respectively. In general one expects 

u < 1, 	 ( 6 ) 

the limit u = 0 corresponding to strong exchange degeneracy [5]. It should be mentioned that the relations in Eq.(3) 
are independent of u. Finally, in both models, RPM and GAQM, it is supposed that Pa o = Pea (Pomeranchnk 
theorem). 

Our strategy here is to go beyond RPM and GAQM and directly test the structure of Eq.(4), with universality 
of aP (s) and aR (s), by looking at data without making use neither of assumption in Eq.( I.) nor assumptions in 
Eq.(2) and Eq.(3). 

In order to test the universality of (T R  (s) it is enough to consider the positive differences 

	

Acr ab ado — aab > 0. 	 ( 7 ) 

By comparing hadron hp and hp processes to pp and pp we obtain 

ACrpp = A /I A Crhp 
	

( 8 ) 

with 

Ah 	14IP "PP 	 (9) 
Rhp  — Ith p ' 

A h  being a constant and A p  = 1. The parameterization in Eq.(4) thus requires the linear relation in Eq.(8). Plots 
of Aa pp  vs. Licr wp , Acric p , Llanp  are presented in Figs. la), 2a) and 3a). The experimental values of Ah and the 
values from the models RPM and GAQM are given in Table 2. 

In order to extract the Potrieron component we shall write 

P 
ahp — ahahp 	(ah — I) cri,p  = Crhp 	Cth 110. )ip 

with 

arp  = Php Cr P  

and 

= 	Rhp 	> 1. 
Rhp 

By comparing Eq.(l0) with the equivalent equation for crpPp  and introducing the parameter -yh, 

"hp 	Php 

	

= 	= 	= const., 
'PP 

with -yp 	I , one obtains 

r 	, 
Acrpp = 1 [(thacrhp (7happ rfhp)1 

n 

Consistency of Eq.(14) with Eq.(8) requires 

ha pp — ah p = Bh AO - hp • 

In other words, 7hcrfp  — chi, must depend linearly on Acr hp , with 

7,14 Rap —  RhP  

	

Hh = 	 = const., 
RhP — Rhp 

and B,, = O. 
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In the test of Eq.(15) for various reactions the parameter 7h was varied and adjusted to reproduce, as best as 
possible, a linear relations, going through the origin, between 7ha llp — alp  and Acrhp . In Fig. lb), 2b) and 3h) 
we present the fits using Eq.(15) and in Table 3 the values of 7h and Bh experimentally obtained and the ones of 
RPM and GAQM. One may ask if the tests in Eq.(8) and Eq.(15) or the knowledge of Ah, Th and Bh for different 
reactions, are enough to construct the true "experimental " Pomeron, a P  (s), and Reggeon, aR (s). Th 

In fact, from Eq.(14), Eq.(15) and Eq.(8), we obtain 

= Ahapl fh 	Rh • 	 (17) 

Eq.(l7) tells us that o p  and crh are not determined by knowledge of Ah, 7h and Bh . The constraints in Eq.(8) and 
Eq.(15) are not enough to fix aP (s). This can be easily seen in a different way. If one makes the transformation 

a P 
	

c/ P  = 	ka R  

a n 	cr IR  = (1 — k)a R  

crhp  becomes; 

. 	FP' 
ahp = Phpa 	BhPa = rhpa

P 
 nhpa

I? 
 

with 

= hp 

fehp  = 

Php  
Bhp  — k Ph p 

 1 	k 

(20) 

It is straightforward to sec that the transformation in Eq.(18), with Eq.(19) and Eq.(20), leaves Ah,7h and Bh 
invariant. For this reason it is not possible to extract unambiguously from data the normalization an the energy 
dependence of aP (s) and aR (s). Eq.(1) is just a possibility. 

It is clear that the tests in Eq.(8) and (15) are fairly well satisfied by the data, as can be seen by the quality 
of our linear fits. So far, we find no indication of deviations from the ansatz Eq.(4). In addition, the quark model 
relations Eq.(2) and Eq.(3) are approximately satisfied. On the other hand, the results of [2] satisfy reasonably well 
the universality tests, agreeing with the quark model for relations in Eq.(2) and Eq.(3) giving reasonably values for 
/3h (the GAQM with ti 0.4 is also acceptable). Better data - and more data, in particular at higher energy for rp 
and Kp - are needed in order to have more definitive conclusions. However, the fact that the linear fits with Eq.(8) 
and Eq.(15) work is in itself highly nontrivial and brings strong support to the universal ansatz Eq.(4). 

Another conclusion of this work is that proposed asymptotic equality of total cross sections, crab (s) 	cr pp  (s), 
[6, 7] does not seem to he favored by data. 

An extended version of this work including a discussion on the near forward direction elastic scattering data 
and on the validity of geometrical models is under preparation. 
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Table 1 

RPM GAQM 

Process PT b Bab Pa b Ba b 

pp 9 5 9 5 

PP 9 2.85 9 5u 

r - p 5.65 1.83 6 2 + u 

+ r p 5.65 1.40 6 1 + 2u 

K - p 4.90 1.34 6 2 

I . 	p 4.90 0.41 6 2u 

fin 9 4.71 9 4 

pn 9 2.78 9 4u 

Table 2 

Ah EXP. RPM GAQM 

A T  6.04 ± 0.24 5.00 5 

AK 2.52 ± 0.05 2.31 2.5 

A„ 1.32 ± 0.05 1.11 1.25 

Table 3 

EXP RPM GAQM 

hp Ith 131, l'h Bh 7h Bh 

IT 0.62 ± 0.15 3.27 ± 0.15 0.63 3.04 2/3 Ili ,u- 

Kp 0.53 ± 0.08 1.28 ± 0.03 0.54 1.49 2/3 P.- 

rap 1.02 ± 0.38 0.38 ± 0.04 1 0.15 1  la 
1-u 
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Fig. 1: Universality relations for /rp vs. pp, a) Test of Eq.(8): Licr 14. = A.Acr. p , b) Test of Eq.(15): -y„er pp  — cr„.. p  = 
The experimental and theoretical values of the parameter, A., 7. and B., are given in Table 1 and Table 2. For experimental 
data see [8]. 
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Fig. 2: Universality relations for Kp vs. pp, a) Test of Eq.(8): Aa pp = A K AerKp, b) Test of Eq.(15): -rivrrp, — 	= 

Dicao- F;p. The experimental and theoretical values of the parameters, AK, 7K and BK, arc given in Table 2 and Table 3. 

For experimental data see (8). 
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Fig. 3: Universality relations for up vs. pp, a) Test of Eq.(8): Clapp = AnAcrnp, b) Test of Eq.(15): -rnapp — 	= BriAar.p. 

The experimental and theoretical values of the parameters, A n , ey„ and 13 n , are given in Table 2 and Table 3. For experimental 

data see 14 
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We present a comparative analysis of the Inelastic Overlap Functions predicted by three 
geometrical models: Glauber-Velasco, Chou-Yang and Menon-Pimentel. Similarities and 
differences concerning optical and geometrical aspects are discussed for both pp and Pp 
elastic scattering, in the wide range from 1SR to Tevatron energies. Comparisons with ex-
perimental extraction of the Inelastic Overlap Functions by fit procedures are also presented 
and discussed. 

1 - Introduction 

In the Geometrical Approach to high energy hadron scattering, the Inelastic Overlap Function (Gi n ) represents 
the probability of ocurrence of absorption (inelastic process) as function of the energy and impact parameter [I] 

ain (s) = 	bdbG i n (b, s), 	 (I) 

where b is the impact parameter, f.; the center-of-mass energy, crin (s) the inelastic cross section. The s-channel 
unitarity connects Gi n (b, s) with the Profile Function r(b) (the Fourier transform of the elastic scattering amplitude) 
through the unitarity condition [I] 

2Ref(b, s) =11'(b, s) 1 2  -1-Gi„(b, s) 	 (2) 

and so with the eikonal, (b, s), by 

s) = 1 — exp[—S-1(b, s)}. 	 (3 ) 

In the first order Multiple Diffraction Theory (Glauber) the cikonal is expressed by [2] 

Il(b, s) = C J qdqJa(qb)G AG R 
	

(4 ) 

where GA,B are the hadronic form factors, f the elementary (parton-parton) amplitude and C the absorption factor. 
Geometrical models are usually distinguished by the phenomenological choices for GA , B and f. Once this is 

done and the free parameters involved determined by fit to experimental data, (3) and (2) lead to the determination 
of Gi n  in terms of the eikonal (4): 

Gin(b, s) = 1 — exp[-2Refl(b, s)] = 1 — lexPE — Q(b ,  sth. 
	

(5) 

2 - Predictions from Geometrical Models 

Among the various geometrical aprroaches, the Glauber-Velasco (GV), Chou-Yang (CY) and Menon-Pimentel 
(MP) models are simple and reproduce the general features of data with a reasonably small number of free param-
eters. Table 1 summarize the choices for GAB and f in each model. 

'Financial Support: CNPq 



P.C.Beggio and M.J. Menon 	 281 

Model G A,B 

 

G-V 	eletromagnetic BSWW 	e l0(q)[i + aq 2]- 
C-Y 	[1 + q 2 /m2 (s)] -2 	 1 
I'd-P 	[1 + q2/a ( s )2]- i [ i 4. 9 2111-1 	( I - q 2/ a 211- 1  + eia41-1 

Table 1 - Form factors and elementary amplitudes in Glauber-Velasco [3], Chou-Yang [4] and Menon-Pimentel 
[5] models. 

In the G V model the phase o(q) is null at collider energies and has the dependence 	= (biq 2 + b 2 q 1 ) at 1SR. 
The predictions for Gi n , scanned from G. Matthiae [1], are presented in Figure l.a for pp at 52.8 GeV and pp at 
546 GeV and 1.8 TeV. 

For the other two models we performed all the calculation. In the case of MP we made use of the parametrizations 
for the free parameters from reference {51. The results for pp at 23.5 GeV and 52.8 GeV and pp at 546 GeV and 
1.8 TeV are shown in figure lb. Following Chou and Yang [4], with the values of the free parameters from fits at 
23.5 and 546 GeV [4], we carried out linear regressions of the form 

C(s) = a l  + a 2 ln(s), 	 (6) 

( 7 ) 

obtaining a i =2.19, a 2 =1-.24, b1=0.837 and b2 =0.072 (all in GeV -2 ). With this we calculate G in  at the same 4 
energies referred before. The results are shown in figure lc. 

3 - Experimental Extractions 

Through direct fit to experimental data, the Gi n  may be calculated in a model independent way. With suitable 
parametrizations for the scattering amplitude (sum of exponentials, in general) fits are made to the differential cross 
section data, so as to furnish the profile function and then Gi n  through eq. (2). In this case the intervals in the 
transferred momentum with data available play a central role in the accuracy of the result. In this communication 
we will limit the discussion to pp scattering at 52.8 GeV since it corresponds to the widest range with data available 
(up to 10 Get/a). 

We shall make use of results from two different fit procedures: Amaldi and Schubert [6] and Carvalho and Menon 
[7]. The results for Gi n  are shown in part (a) of figure 2. We did not inclued the errors estimated by Amaldi and 
Schubert which become important above 3.0 fin. 

4 - Conclusions 

From figure 1 we see that above 	1.5 fin all models predict a dependence on b which is very close to an 
exponential. However, as the energy increases, the GV results show a uniform shift to large radii and differently, 
CY and MP predict expanding slopes. 

Comparisons with fit -  results in figure 2 show similar predictions up to 	2.0 fm and at 2.0 < b < 3.0 fm, 
the results seems to favour CY and MP models. Above 3.0 fm the errors become important and must be correctly 
estimated in order to allows quantitative conclusions. 
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We study the production of sleptons considering the minimal superiymmetric standard 
model. We compare the different slepton-pair-production mechanisms, (14, gg — II, finding 
that the gg cross section is the largest one due to the fourth-generation heavy quarks. 

I Introduction 

The Standard SU (3)c  X SU (2)L X U (I )1 ,  Model has been very successful in the description of all the present data on 
the electroweak interactions. However, it. leaves many fundamental problems unexplained, such as the magnitudes 
of particle masses, CP violating mechanisms, charged-current mixing angles, number of generations, etc. Tu try to 

solve these problems, one must. go beyond the Standard Model and as one extension of it. we can take supersymmetry 
(SUSY). 

In this paper, we shall consider the possible existence of sleptons and study the production of this particles 
in hadronic collisions. Traditionally, the production of sleptons proceeds via the Drell-Yan, i.e. (tpi ii), the 

electroweak boson (WW, ...) and the gluon (gg) fusion. 0 mecanisrno de Drell-Yan gives the dominant production 
[1]. Nevertheless, in high energy hadronic collisions we can take advantage of the high gluon luminosity and a 
assumption of a four generation of quarks and a squarks [2] to produce sleptons. In this work we shall study the 
production of sleptons pairs through gluon fusion, assuming the minimal supersymmetric extension of the standard 
model [3]. We shall demonstrate that when we shall consider the four family of quarks(squarks) the cross section is 

greatly enhanced, yielding a large number of events which can be extract from the background. 

II Subprocess cross section 

The conectiou between the initial gluons and the sleptons occurs, in the MSSM, via loop of quarks and squarks, 
since these are the only particles with both strong and eletroweak charges. Moreover, since the final state is neutral 
the S-channel involves only the exchange of the two neutral Higgs bosons, 14? and 14, the Higgs In do not 

contribute why don't exist vertices for H34i4 i , the Z °  exchange contribution is proportional to (Al – Al?), this 

can be understood due to the Z °E coupling and to the Z °  momentum , that gives (pi – pi)(pir + pi) = A/7 – Ali 
and therefore vanishing. 

In order to make explicit the direct contributions to the elementary toss-section, we will present them separately 

E 	x(l) (i) E 1/ (Pni q  [2 + (4A 9  1)/q ] 
1=1,2 	 q=u,d 

g 
cr , +Fr, = 

(1 2,1 2 

647rs sin' Ow °31  

  

2 

(1) 
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2 2 

= - 	)31 	70x(i)(g) 
256ns sin 4  Ow 

, 
a Cr, 

1=1,2 

X E 	+ 24, ) 

Where the summations run over all four generations. ,Oi = 	- 4A4f/i is the slepton velocity in the C.M. of 

the subprocess. The loop function / 9 ,i E 	= rqii /i) and the coupling constants 10, which arc functions of 

the angles n and 0, are given in the Appendix. We have also defined: 

x( o (g) = 
1 

Mk + 

with r 	being the Higgs-boson total width. 

The interference between the quark and squark-loop contributions is given by 

er.V-4 	 E 77-5C(i) 0) 111+112 	128ns sin 4  Ow 
Ni 
	12 1  

2 

( 3 ) 

x E r4i) Mq + ( 4A9 — 1)1,21 E ,,y),( •(i) ( ,; )  E E ii4)(1+ 24, 4, )1 

	

q=u,d 	 j=1,2 	 4 =11., I t=L,R 

Where 	stands for the real part of the expression. 

When we assume only light particles running in the loop, the contributions to the cross-section is small, but 

when we take a heavy generation the cross section is enhanced due to the terms ri g , which both are proportional 

to Mq . 

Considering the large-A1 limit, and neglecting the resonance effect of the Higgs bosons we have for the quark 

contribution 

	

a2 	 q 	 1 
Cr  11 1 -4-11 2  256ns sin 4  Ow  Mu, '9r  cos 4  0‘ sin4 f 

The squark contribution becomes 

coal. 	m2 	1 	I 	1 

	

04 	 L) 4  /3
I  - 
	 1( 

sini 
) 

;43  COS 4  8 647 sin 4  Ow Mw 

And finaly the interference term 

0 20 	 1 	1 	1 	t  (7 	 cr 	  2 ( 1114 

	

T cos4 	) 128n sin 4  Ow Mg \A7/W ) 

	

We can see that for large Mq  the total cross section for the subprocess gg 	a is enhanced in comparision with 

the cross section for small Mq , and here state Al q  = MD 	cth and MI  = Mu — 

III Results and Conclusions 

The total cross section for the process pp 	gg 	7 is related to the subprocess gg 	17 total cross section ir 

through 

2 
(2) 

17.  = 
r In 

-17„,,„ fin 
drdyG( N17--eY ,Q 2 )G( N,Fre -11 ,Q2 )ii(r,$) (4) 
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, 

Where r 	
4211,

) (rm i n  = 	with s being the center-of mass energy of the pp system and G(x, Q 2 ) is the gluon 

structure function. 

In Figure 1 we present the result for the total cross section, for the proton-proton center-of-mass energies of 

Nrs = 14TeV., [CERN Large Hadron Collider (LHC)]. Taking into account the expected integrated luminosity for 

LHC - 105pb- Ihr) we can expect a total of the order of 10 2 -104  sleptons right(left) pairs produced per year. 

For this calculation we have used the gluon distribution function given by Duke and Owens [4]. 

It is to see that the number of events are large and to separate the signal of the backgrounds must be done by 

a careful Monte Carlo analysis. 
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IV Appendix 

The loop integrals involved in the evaluation of the elementary cross section of Sec. 11 can be expressed in terms of 

the function h(A i ) which is defined through 

2 

	

100= 1  —dx In  [i  (1 	= -2 [sin -I  Wr)] 	> 4  1  

0 	 2 	r _ In2  (a) - 2  + ir In 	, Al< 4 

with, r*  = 1 ± (1 - 00 1 / 2  and A i  = rn;bi. Here, i = q, q stands for the particle (quark or squark) running in the 

loop. Assuming that these particles arc heavy, i.e. in the large Ai limit, we have 

	

Ail; 	
1 , 
	Ad2 + (4A1 - 1)./d 

We wrote the couplings of the scalar Higgses (// 1 , 2 ) to the fermions (f = u, d , P) as igm q q(1/2Mz. The constants 

►if(i)  are functions of the mixing angles a and p. 
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In the case of the pseudo-scalar Higgs (I13), we wrote the vertex with the fermions as gmo1 ) 75 /2/11z, with 
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Figure 1. Total cross section for the gluon fusion contribution to slepton production in the MSSM as a function of the 

&lepton mass. For the fourth generation of quarks we assumed MD = 600 GeV and Mu = 600 Get V. The curries are for the 

center of mass energy of (a) f w 14 TcV (LUC) for right-slepions and (b) fs = 14 Te V for left-sleptons. Considering the 

four generation of quarks and squarks (solid line), the Drell- Yon contribution (dashed line) arid the contribution of quark top 

(dotted line). 
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We assume the existence of solar magnetosonic waves to analyse possible observations of 

flux fluctuation in experiments which will begin operating in near future. Such predictions 

include an analysis of the modified solar neutrino spectra which will be detailed observed in 

these experiments. 

Slow magnetosonic waves are produced from solar plasma displacements perturbating the solar magnetic field. 

As a consequence, when a nonvanishing neutrino magnetic moment is assumed, a fluctuation of the solar neutrino 

flux anticorrelated with the referred magnetic wave could be observed. This is because the interaction of the solar 

neutrinos with the solar magnetic field through a nonvanishing neutrino magnetic moment leads to a conversion of 

an active left-handed neutrino into a nondetectable right-handed one. In a recent paper [1] we solved the !fain-Liist 

equation for solar plasma displacements and the evolution equations of neutrinos interacting with the solar magnetic 

field to conclude that present solar neutrino data can suggest the existence of such solar magnetossonic waves. 

Assuming a non-vanishing neutrino magnetic moment, the interaction of neutrinos with a magnetic field will be 

given by the evolution equations [2] 

d 	VR(r) 	_ 1C22 GFIV.(r) — 	Puigi.(01 
3T.  liar) ) T 	 141 51.(01 	— 4GOVF;(0+ 

E.R(r) 

ig,(r) 

where bri, (i.R ) is the left (right) handed component of the neutrino field, Am = 	m 2R 1 is their squared mass 

difference, E is the neutrino energy, GI: is the Fermi constant, N e (r) is the electron number density distribution 

and I iii (r)I is the transverse component, of magnetic field. 

Solving the equations ( ) we can calculate the survival probability of left-handed neutrinos P(iL, 	L,L ) produced 

in the Sun to arrive at the Earth after interacting with the solar magnetic field 01(01 periodically perturbated by 

the magnetosonic waves in the way discussed in the reference [1]. We use the values 5 x 10 -8eV 2  and 3 x 10 -12pin for 

the mass squared difference Am and the neutrino magnetic moment /4,, respectively, and the standard approximately 

exponentially decreasing 'natter density for N e (r) 

New detectors like as SNO (4] and Superkamiokande [5] will be based on 	scattering where the shape of 

the recoil electron energy spectrum will reflect the solar neutrino spectrum. Only neutrinos coming from one of 

the rarest. nuclear reactions in the Sun, Lhe 8B decay, which have the widest spectrum (0 — 15 MeV), will produce 
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neutrinos with sufficient high energy to be observed by the tid -e" scattering detectors. These experiments will 

permit to observe the suppression in the high energy portion of the 813 spectrum. 

In order to arrive to the expected detection rate in these future experiments we have, first of all, to calculate 

the survival probability, P(E, 0, of a left-handed neutrino created in the central parts of the Sun to achieve the 

solar surface (beyond this point the magnetic field is negligible and no left-right conversion can occur) after having 

crossed the fluctuating solar magnetic field. The survival probability will depend on the neutrino energy, therefore, 

the energy spectrum of the 88-neutrinos at the production region has to be taken into account. We considered the 

spectrum 8B-neutrino given by the solar standard model in reference [3]. 

The energy dependence of the survival probability is shown in Fig. 1 for different instants of time when the 

perturbating magnetosonic wave influence the solar magnetic field with different intensiti es . We considered the 

instant t = 0, as the moment where the magnetosonic wave is zero and showed how the evolution of this wave 

alter the survival probability until a period of oscillation is complete. We consider a wave which period is 114 

days [I]. After this interval the situation is merely a repetition of what is shown in Fig. 1. Therefore we have the 

suppression of left-handed neutrinos as they travel from the solar center to the detectors. There is a noticeable 

energy dependence in the shape of suppression curves. We note marked fluctuations for low energy neutrinos in 

contrast to the high energy neutrinos where the energy dependence is lower. Note that the time dependence is still 

appreciable. 

In Fig. 2 we show the neutrino spectrum suppression for various instants of time (continuos lines), that is given 

by the product of the production spectrum [3] (also presented in this figure by the pointed lines) by the survival 

probability shown in Fig. I. Note that the spectra shown in this figure are instantaneous spectra, i.e., for each 

indicated instant of time we show the spectrum of neutrinos arriving at the detectors. We can therefore call these 

figures as emission spectra. 

Finally we have to consider also the energy dependence of the detection process given by the vc e-  cross section. 

The expected event rate is calculated as R(E ,t) = (DIA m (E)cr(E)P(E,t) where 4)5 m (E) is the 8B-neutrino 

production spectrum given by the Solar Standard Model [3] and o(E) is the cross section v,-e -  scattering which 

increases linearly with energy [6]: a(E) = 9.2 x 10 -45 E cin2 MeV -1 . The energy dependence of the expected event 

rates is shown in Fig. 3 (continuos lines). These results can be compared with the predicted standard event rates 

Rssm(E) = (b asBsm (E)a(E) (pointed lines). The time dependence of this same physical situation is shown in Fig. 4. 

Due to the fact that future detectors will present accurate measurements and will allow to differentiate neutrinos 

with different energies, Fig. 4 is depicted for various energy intervals, each one of 1 MeV. This will permit to observe 

in detail the time dependence for specified energies of the 88-neutrinos. 

Solar neutrinos are commonly cited as a possible source of informations of the inner part of the Sun. We 

investigate the effects of the magnetosonic waves in the solar neutrino detection. We observed that the production 

spectrum of active solar neutrinos is attenuated by the survival probability of neutrinos which interact, by means of 

a nonvanishing neutrino magnetic moment, with the solar magnetic field modulated by these magnetosonic waves. 

We observed that this attenuation is very appreciable in such a way that the accuracy of the future neutrino 

detectors, from the point of view of both time and energy resolution, will be sufficient to identify the effects of the 
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ntagnetosonic waves. 
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We analyse the extreme nonadiabatic effects occuring in the terrestrial Flow Shock on left-
right solar neutrino conversion, when a nonvanishing neutrino moment is assumed. 

In this work, we analyse the consequences on the solar neutrino flux of a narrow region between the Sun and the 
Earth named Bow Shock, where due to the solar and terrestrial magnetic field interference, the resulting magnetic 
field is more intense than in its neighbourhood. If we assume that the neutrinos have a nonvanishing magnetic 
moment. lt, the passage through a region like the Bow Shock can result in an helicity change of these neutrinos from 
left- to right-handed helicity eigenstate riL vH. Since right-handed neutrinos do not interact with the detectors, 
the Bow Shock can he responsible for a decrease in the detection rate of solar neutrinos. 

We assumed that the transition felt by the neutrinos passing through the Bow Shock is extremely nonadiabatic, 
where the magnetic field jumps from 3 to 15 x 10 -5  G, falling immediately after to 9 x 10 -5  G, where it starts to 
slowly growing until achieving the value of 0(1) G in the Earth proximity. We used the following time evolution 
equations for a system of a left- and a right-handed neutrinos [1]: 

,d 

i 	

(V.+ .qpC1.-1sIc  pB 
1  d 	 (1) pB 	bon 	VR 

4p 

where Am is the neutrino L 	mass squared difference, and N,(1) and B(1) are the electron density and the 
magnetic filed intensity felt by the neutrinos at instant t. 

The mixing angles that relate left- and right-handed helicity eigenstates to mass eigenstates v 1  and 1,2, can be 
written [l]: 

Am + 24par,  Ne 

and the survival probability of a neutrino created in a left-handed state deep in the Sun to arrive in this same state 
at the Earth after having crossed a nonadiabatic region is [1]: 

	

= (1 - x)ps,adp.2  X(1 - P ) 
	

(3) 

where X is the transition probability 1/ 1 	I/2  in the nonadiabatic region and 

	

= 1/2(1 + cos(20s. ) cos(20Earth )) 	• 
	

( 4 ) 

%'e will treat the Bow Shock as two extreme nonadiabatic transitions. Therefore we can write X fhe following 
way: 

X =Z1(1  - Z2) + (1 - Z2) 21 , 

where Z 1  is the vi 	LA2  transition probability in the first Bow Shock boundary and Z2 is the same probability in 
the second one. To calculate Z1 and Z2, we used the extreme nonadiabatic limit approximation, that consists in 
considering the nonadiabatic transition as a discontinuos boundary in the neutrino evolution, to obtain: 

	

Zu(2) = 31/1 2 (02 — 0.43)) COS 2  02 COS 2  01(3) , 	 ( 5) 

tan 20 = 	
4ppD 

 (2) 

where 0 1 ,02,03 arc the mixing angles calculated through Eq. (2) in the region immediately before, during and 
immediately after the Bow Shock. 
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In order now to appreciate the validity of our approximations in Eq. (3), we calculate the adiabaticity parame-

ter [1! from the evolution equations (1): 

dO 	Am 2 ■TiG•pNe  1 

dt 
>> 

2p 

The Bow Shock region can be considered nonadiabatic if 

1 0161, 8  icv2 > 
> 1pB/ev 2  

Am 
(7) 

where we considered the magnetic field difference in the Bow Shock as 10 -5  G, extending for a region of 10 km and 

the neutrino energy around 1 MeV. 

Using the same parameter in the Sun, we guarantee the adiabaticity in this region if: 

< 1 0-6 1 t ► , 
	

( 8 ) 

where we replaced f2 GF 	= 1, 25.10 -11eV, the solar radius around 10 6 Km, and a magnetic field variation of 10 5 . 

G. 

We would like also to obtain a result that, if there was no Bow Shock, all the neutrinos produced in the Sun 

would stay left-handed. That means to do 	= I,which leads to the condition: 

< 10-8 /AB . 	 (9) 

In fig.1, 2 and 3 we show how the Bow Shock can interfere the left-handed neutrino survival probability, for 

different values of p/Arn. We note that there are regions where an appreciable decrease of this probability occurs. 

Furthemore the shape of this figure is compatible with a solution to the solar neutrino problem [I], although the 

size of the probability deflection is not sufficient for this. Nevertheless, an important remark is in order. This effect 

will not be sensible to sola.t neutrino detectors on Earth. This is because our results represent the average over 

several neutrino oscillations. In fact, for valu es of the magnetic field in the region of the Bow Shock around 10 -5 

 C and p,, -4 10 -11 pB, we find a neutrino oscillation length around 10236/ -1 , or 108  times the distance Earth-Bow 

Shock. Neutrinos arrive at the Earth in the the same state they arrived at the Bow Shock. 

Although our conclusions indicate that the Bow Shock will not significantly alter the solar neutrino flux measured 

at terrestrial detectors, our calculations can be used to infer that nonadiabatic effects can contribute to left-right 

neutrino conversion in other physical systems, including conveniently built experiments in accelerators [2]. 
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We analyse the different behaviour of Homestake and 71 Ga experiments and Kamiokande 
data as a consequence of the interaction of neutrinos produced in the Sun with a fluctuating 
solar magnetic filed by means of a nonvasnihing neutrino magnetic moment. The fluctuations 
of the solar magnetic filed are calculated solving the Hain-Liist equation. The appearence 
of slow magnetosonic waves simulate the time behaviour of solar neutrino data. 

Time variation of the solar neutrino flux has been an interesting discussion in the context of the solar neutrino 

problem. Analyzing individually each experimental point obtained from solar neutrino detectors, we see that 

they are widely dispersed in Homestake [1] and n al experiments (2][3] results, presenting values that vary from . 

approximately 0 to I times the standard solar model theoretical predictions [4]. Furthermore, observing their 

experimental errors we can conclude that these experimental points are not compatible (at 1 a-level) between them. 

Kamiokandedata (5], on the contrary, do not present this dispersion since their experimental points are statistically 

compatible (at 1 a-level) with a certain mean value. This apparently different behavior of Homestake and 71 Ga 

experiments and Kamiokande data could suggest that the former have observed a certain time variation in solar 

neutrino flux while the last ones show no compelling evidence for this variation. 

In this paper we analyze the possibility of such data behavior being a consequence of the interaction of neutrinos 

produced in the Sun with a fluctuating solar magnetic field by means of a nonvanishing neutrino magnetic moment 

[6]. Using a numerical procedure that calculates the fluctuations of the solar magnetic field as a consequence of 

the solar plasma motion [7], we show that the so called slow magnetosouic waves appear in the solar magnetic field 

and present. typical period of order of one hundred days. Interesting enough we show that these slow tnagnetosonic 

waves are sufficient to understand the refered apparently different behavior of the experimental data (8). 

The magnetic waves are calculated considering that they can be generated by small displacements of the solar 

plasma, from an equilibrium configuration. The time evolution of these displacements is described by the 

linearized equation of motion [9] 

=
Di 2 	

= V(707.0 — b x (Gr x Bo ) — Bo  x (V x b), 

where p is the density, p is the pressure, 7 = 1.0, Bo is the equilibrium magnetic field and g is the magnetic 

perturbation generated by the displacement 4 given by b = 	x (e x Be). Considering an exponential time 

dependence for the displacement 4, 	• 

((r, 0, z, t) = 	0, z), the frequency of the wave w and the displacement can be found solving the eigenvalue 

equations — pw 24 = 
We are interested in the behavior of the magnetic field inside the Sun along the trajectory of the neutrinos 

that reach the Earth. This trajectory is localized around the plane of the solar equator. We can use therefore 

cylindrical coordinates to solve the eigenvalue equations to obtain the magnetic perturbations in this region. We 

( 1  ) 
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consider the plane of the equator coincident with one of the planes of the cylinder perpendicular to the z axis. In 

cylindrical coordinates the linearized equations of motion present a very useful feature: for each Fourier component 

(m, k) they separate out into a second-order differential equation for C r  and two relations expressing es and e, 

in terms of C r  and (4,= 171. This property permits us to obtain all the components of the displacement and 

consequently, all the components of the fluctuation of the magnetic field solving just the differential equation for er . 
This differential equation was first obtained by Hain and Lust [10] and is solved numerically imposing appropriate 

boundary conditions. 

We take for the equilibrium profile for the magnetic field the model proposed by Allimedov and Bychuk in the 

Ref. [I I]: 

Hs (r) al 

 a2  

for 

G 	for 

0 < r < 0.7 

0.7 < r < 1 , 
(2)  r.r .) 

1 - ( 5 3V) 2 1 

where ai .̂4.7: 10 5  - 10' and 	104  - 105  in such a way that the continuity of the magnetic field at the point. 

r = 0.7 is satisfied (r is the radial distance from the center of the Sun normalized by the solar radius 6.96 x 10 5 

 kin). The equilibrium magnetic field ils  is chosen in the z direction. We assume the matter density distribution, p, 

usually accepted to fit the predictions of the standard solar model [4], i.e., an approximately monotocally decreasing 

exponential function in the radial direction from the center to the surface of the Sun [4]. We consider the pressure 

proportional to the density. 

The results of our calculations indicate that a known kind of stable fluctuations are found in the region of squared 

frequencies of order w 2  10 -15  sec -2 , corresponding to a period around 100 days. The fluctuations, localized out 

of the /Men and slow continua and characterized by V.e-t 0, are usually refered to as slow magnetosonic waves. 

Since we are assuming a non-vanishing neutrino magnetic moment, the interaction of neutrinos with a magnetic 

field will be given by the evolution equations [12] 

d 	vR(r) 	(7 1.-' Are(r) -  
PL(7) 	 1(01 

14 .1 171(01 	1 r iin(r) 
- 2 - 	 4E CFN (r) 	 1//,(r) (3)  

where Li!, (vie ) is the left (right) handed component of the neutrino field, Am = 	- 	is their squared mass 

difference, E is the neutrino energy, G1. is the Fermi constant, A/c (r) is the electron number density distribution 

and 1E11 (01 is the transverse component of magnetic field given by L71 	+102+bl. Solving the equations 

(3) we can calculate the survival probability of left-handed neutrinos P(vL 	Lit ) produced in the Sun to arrive at 

the Earth after interacting with the solar magnetic field [fli(r)1 perturbated by the fluctuations calculated in this 

paper. We can therefore compare this survival probability with experimental data. 

We can now compare the experimental panorama of the Hornestake and Kamiokande experiments with our 

calculations. To solve Equation (3) we use the values IV' eV 2  and 3 x 10 -12pu for the mass squared difference 

Ain and the neutrino magnetic moment pp. In our calculations the perturbation of the magnetic field is obtained 

using the displacement characterized by rn = 2, k = 10 - ", and ur 2  = 9.41 x 10'. We observe [8] that 

some general features of the refered experimental data can he found also in the calculated survival probability. In 

particular we observe that this survival probability varies from 0.15 to 0.65 for Homestake while its amplitude is 

much smaller for Kamiokande. 

Neutrinos have been indicated as a possible source of experimental informations of the inner part of stars and 

supernovae, which are in general very difficult to obtain through other observational methods. The solar magnetic 

field behavior in the very interior of the Sun has no direct experimental evidence other than the solar neutrino flux 

observations (if we assume a nonvanishing neutrino magnetic moment). In this paper we analyze the possibility of 

interpretating these observations as an evidence of the existence of slow magnetosonic waves in the Sun. 
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Although statistical fluctuations can not, in the light of the present data, he discarded to explain the behavior 

of the solar neutrino data, it is not possible also to discard the time behavior of these experimental observations as 

a consequence of a physical effect in the Sun. 

Finally we say that an analysis of short period (around 10 - 100 days) time variations in Kamiokande data could he 

interesting to add new informations on the possible existence of solar slow magnetic waves. Nevertheless a conclusive 

analysis of the 'consequences of the slow magnetic waves will have to wait for more precise experimental data to be 

obtained in future solar neutrino experiments (see [13] and references therein). Experiments like Superkamiokande 

IN and SNO [15] will measure the spectrum of high energy neutrinos in a quite accurate way. Time variation 

of neutrino flux presenting a period of approximately 100 days could be interpreted as the effete of slow solar 

inagnetosonic waves. This effect can be distinguished from flux modulation due to seasonal variation of Sun-Earth 

distance and vacuum oscillations. This is because it will be possible to investigate flux variation of neutrinos with 

a fixed energy. Such time variations will be different if neutrinos have evolution equations like (3) or evolve as in 

MSW [16] or vacuum oscillation phenomenon. Note, for instance, that the two free parameters p. and Am appear 

in different elements of the evolution matrix (3). Therefore, differently from what happens in pure oscillation 

phenomenon; where the corresponding free parameters vacuum mixing angle and squared mass difference appear in 

the same elements in the evolution matrix, fitting future experimental data using the expected theoretical probability 

equations will allow precise determination of Am and the value of the average of the product. p i, I& I. Together with 

other possible model independent analysis we will be able to use solar neutrino data as a source of informations 

about the physics of neutrinos as well as the inner part of the Sun. 
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Receidemente [1], obtivemos a representacao matricial para o operador exponencial exp[I'd, onde l'„ e urea 

matriz n x n. Discutiu-se tambem a representacao para a fungal) de Green a.ssociada a equacao de evolucao 

temporal de urn sisteina de dois niveis. Utilizarnos esses resultados neste trabaiho para reanalisar as transicoes 

ressonantes entre neutrinos propagando na materia. 

A equacao de. evoluciio de urn sisterna de dois neutrinos de sabores 6 dada por 

= 	 ( I ) 

onde ¢ 6. urn spinor a 2 co/14)011days, 

e H tal que 

H = 

0= ( 11 1 

0 	-7L' sin 20 \ 

( A- sin 20 .24 cos 20 ) 4E 

(2) 

(:3) 

para a hamiltoniana no vacuo e 

0 	Te'l  sin 20 

44, 
 

sin 20.,4; cos 20 - 2A 

para a hamiltoniana na materia, onde A = 	- tn3 , E e a energia, 0 o angulo de mixing no vtictio e A o campo 

de interacdo do neutrino corn a materia 

A = 
	

( ) 

coin o = 1.25 x 10 -11  eV e f3= 3.13 x 10' 5  eV. 

Enri [1] obtemos, sem ambiguidade, a expressao para o angulo de [nixing, que no contexto da hamiltoniana dada 

por (4), 6 escrita coma 

11 2 = ( ) 

sin e  20,, = 
sine  20 

(6) 
(i) o — cos 201 2  ± Si/1 2  20 

para o angulo de mixing na materia. 

A solucao da equacao (1) via fungi() de Green e 

= G(l,l0)0(t o ) 
	

( 7 ) 

onde 

G 	, to) = G2 (I, tr.) • G 1 (4, 1 0) ( 8 ) 
[GI (i, to)] = exp [i0„072 ] • MI  • expl-i0n, c52) ( 9  ) 
[G2 (l e , to)] = eXP[i0a2] • 412 • exp[—i0u2] (1 0) 

onde [Ai r  (t, to)] i  = exp 	(t - t o )] ∎Si e a1 sao os autovalores de H i  e H2 respect/ vamente. 
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Considerando-se a. situacio dinarnica tal que no dominio de 11 existe urn tinico ponto de Ease estacionaria [4], 

ou seja, existe urn tinico ponto de ressonancia, escrcvemos a funcao de Green como 

G(1.,10) = G2 014/.0 GR (tR-1-3 1 /1—) • GI (tR-, 1.0) 

onde IR+  e LR_ representam os limiter a direita e a esquerda do ponto de ressonancia respectivamente. Como 

calculado por Bellandi et al [3], escrevernos a matriz de ressonancia como 

onde e 2  < 1, e 

G(t ,g 1 + , tR_) = — 
2if —id 

1-4-c 
i=t1 
fie1 

irr 	sin 20  

2 4E /, ,42 
-g  P( 1 ) ir=1, 

CR 
p(t) = 	[ 4T  sin 20 + 2A(A)](0, 

Desprezando-se os termos oscilante, escrevemos a probabilidade de perrnanencia e troca adiabritica como 

p;1,diab = cos2  (O rn  — 0) [cos 2  0 cos2  Om  + sin 2  0 sin2  

+ sin 2  (0,, — 0) [cos2  0 sin 2  Or, + si n 2  0 cos2 	 (12) 

piadiab = sin 2  (Om  — 0) [COS 2  0 COS2  Om  + si n2  0 si n 2  0,[ 

+ cos2  (Ong  — 0) [cos 2  0 sin 2  Om  + sin 2  0 cos 2  Om] 

e a probabilidade de permartencia nao adiabatica corno 

Pi. 	
x)pitcliab x prildiab 

onde X e a probabilidade de level crossing ([3]), 

_2)2 
X = ( 1 	2 + 	sin 2  (0, — 	

(1 +4 2 ) 2  
0) + 	

241 	
[cos 2 (0,, — 0) + cos 2  (O. + 0)j I 	(  

Na Figura I mostramos o comportamento de Pp corn E/A, reproduzindo os resultados de P. Pal [5] e S. Petcov [6]. 
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Figura 1: Probabilidade de Perrnanincia para netilrinos criados no cen1ro do Sol. 
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We introduce a novel-complex analytic parametrization for the elastic hadronic scattering 
amplitude at high energy. Through the CERN-minuit routine we fit all proton-proton dif-
ferential cross sections data above 1.T; = 10 GeV. The Profile Function and the Inelastic 
Overlap Function are then extracted from this model-independent approach. Our prelim-
inary results show characteristic blackening and expasion effects, which are presented and 
discussed. 

1 - Introduction 

In the impact parameter representation the elastic scattering amplitude F is given by the Fourier-Bessel transform 
of the Profile Function [1h 

F(q,$) = i f bdbJ0(gb)r(b, 5), 	 ( 1 ) 

where b is the impact parameter, q the transferred momentum, Vt7 the center-of-mass energy, J„ the Bessel Function 
and F(b, s) the Profile Function (PP). The s - channel unitarity in the impact parameter space connects the PF with 

the Inelastic Overlap Function (IOF) Gi n (b,$) by [1), 

2Ref(b,$) =I F(b, s) 12 +Gin (b, s). 	 (2 ) 

In the optical analogy (Fraunhofer diffraction of light), Re F(b, s) represents the degree of absortion of an incident 
wave caused by the obstacle and so, may be seen as describing the hadronic opacity as function of b and s. The 1OF 
represents the absorption into open inelastic channels and its integration over the impact parameter plane leads to 
the total inelastic cross section: 

crin (s) = 27r I bdbGi r,(b,$). 	 (3) 

Extraction of the PF and IOF from experimental data is usually performed by suitable parametrizations for the 
scattering amplitude F(q,$) and fits to experimental differential cross section and !-parameter data: 

eF(0,$)  
dff 	'X F(q,$)I2, 	P(s) = l

R

InF(0, S) .  

'Phis is our goal in this work; in section 2 we present the fit method and in section 3 the results for Re r(b, s) and 

G in (b, s). Conclusions and final remarks are the content of section 4. 

2 - Fit Procedure and Results 

We introduce the following parametrization for the scattering amplitude 

2 	 5 

E(q, s) = E ct,( + 	i E al e -Pi1J , 

=i 	 j=3 
(5) 

(4) 

'financial Support: CNPq 
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with the constraint 

A(s) = -p(s)
E

=1 
a , 	 (6) 

cri + a2 

where a i , A, i=1,2,...,5 are real free parameters and p(s) is the experimental p-value at each energy. 
Making use of the CERN-mirmit routine we fit seven sets of pp differential cross section data above Nrs = 10 

GeV. These sets may be classifyicd into two groups: GI: VI=13.8 and 19.4 GeV, G2: ji=23.5, 30.7, 44.7, 52.8 
and 62.5 GeV. The group C2 was critically analysed by Amaldi and Schubert [2,3] and corresponds to a coherently 
normalized data set. This is not true for the group Gl. 

The results of our fits are show in figure 1 and table I (numerical values of the free parameters are available 
from the authors) and will he discussed in section 4. 

AGeV) N x 2 /d.f. 
13.8 100 1.87 
19.4 124 2.64 
23.5 139 0.95 
30.7 173 1.47 
44.7 207 2.14 
52.8 206 1.65 
62.5 124 1.11 

Table 1. Number of experimental data points and chi square per degree of fredom at each energy. 

3 - Profile and Inelastic Overlap Functions 

Substitution of parametrization (5)-(6) into equation (1) and then into equation (2) gives the Re r(b, s) and 
Gin  (6, s). The results at 23.5 and 62.5 GeV as function of the impact parameter are displayed in figure 3. Conversely, 
for G in , figure 3 shows the dependence with the energy at two different values of the impact parameter. 

4 - Conclusions and Final Remarks 

From table 1 (and figure 1) our fits present x 2/d.f.=1 ,--,2 for group 02 and x 2 /d.f.=2 ,---3 for group GI, which is 
statistically satisfactory. In figure lc we observe that the real part of the scattering amplitude changes sign at high 
energies, as predicted from dispersion relations analysis [4). 

Figure 2 shows that hadrons become blacker and larger (section I) as the energy increases in the ISR region 
(group 02) and that at fixed energies, Gi n (b) is nearly exponential above b-1.0 fm. 

From figure 3 the central opacity, G;,,(0, s), decreases with the energy in the region 13-19 GeV and is nearly 
constant at 23-62 GeV. However in the peripheral region (b---1.0 fm) it increases at 23-62 GeV. 

Similar results were obtained by Amaldi and Schubert with a parametrization that obey geometrical scaling [2,51. 
However our novel parametrization (5)-(6) does not assume this hipothesis and so is more general (less restrictive). 

In spite of all these features our final results for the IOF and PF are somewhat qualitatives since the propagation 
of errors from the fit parameters was not taken into account. We are currently investigating this subject. 
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Figure 1: Fit to pp differential croas section data: (a) complet region in transferred momentum; (b) diffraction peak; 
(c) contribution of the real and imaginary part of the scattering amplitude at the energy of 52.8 GeV. Experimental 
data are from reference [2,3). 

Figure 2: Real part of PF and 'the 10F as function of the impact parameter at ISR energy region. 
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Figure 3: Extracted values of the 10F as function of the energy at two fixed parameters. 
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Elastic pp scattering above V; = 10 GeV is investigated in a Multiple Diffraction Model, 
with complex averaged elementary (parton-parton) amplitude. The model predictions de-
scribe the general features of experimental data on differential cross section, total cross 
section and the p-parameter (ratio of the real to the imaginary part of the forward ampli-
tude). Extrapolations to Cosmic-Ray energies predict total cross sections above the (model 
dependent) results from the Akeno Collaboration and are in agreement with the reanalysis 
performed by N.N. Nikolaev. 

1 Multiple Diffraction Model 

In high energy elastic hadron scattering the Eikonal Approach and the Multiple Diffraction Theory (Glauber) 
connect hadronic form factors, GA, GB, averaged elementary (parton-parton) amplitude, f, with the hadronic 

amplitude, FAB, through the well known formulas [I] 

	

FAB(q,$)= i f bdb,1 0 (qb)11 - e -n e(b M] i < 1 - 	>, 

12e(b,$) = -iC qdq.10(qb)GA(q,$)G 0(q,$)f(q,$) = -iC < G A GB f > 

where q 2  denotes the momentum transfer squared, b the impact parameter, Nrs the center-of-mass energy, C the 
absorption factor and 0,(b,$) the complex eikonal. 

In a Multiple Diffraction Model recently developed the following parametrizations have been used [2] 

	

= [(1 + q2/ay)(1 	 j = A, B 

1 "){f(4,$)) 	 Re{f(q,$)) = A(s)Irn{f(Q, s))- 

For pp elastic scattering the complex hadronic amplitude reads, 

	

ReFpp (q, s) =< 	sin(ASIpp ) >, 

ImEpp (q,$) =< 1 - 	cos(Actm,,) > 

where 

q 2 /a 2  C 1 PP = C  < 	q 2 10,2)(1 + 	q 2 02)12 + 0/0  > 

and 
c2 c  = (1 - iA)Opp . 

With this formalism we have only five free parameters, C, 	a' and A, which may be determined through 
fits to the experimental data on differential cross section and the p-parameter: 

• Financial support: Capes and GNP(' 
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Relfopp (0,$)) 

d72 = 7 IFPp(q ,  4 2 , P — 
Int{ Fpp(0, s)} .  

Previous analysis limited to ISR, energies (23.5 - 62.5 GeV) led to a satisfactory description of Lhe experimental 
data [2, 3]. In this communication we extend the analysis to lower energies (hut above 10 GeV) and present 
extrapolations to cosmic ray. energies (V; > 10 TeV). 

2 Fits and Results 

Investigation of pp experimental data on differential cross section and p-parameter (7 sets of data between 13.8 and 
62.5 GeV; see figure 1 led to the following results for the behaviour of the free parameters in terms of the energy: 

- Constant free parameters: 

a 2  = 8.2 GeV 2 , 	132  = 1.80 GeV 2  

- Free parameters depending on energy: 

C(s) = 14.26 — 1.65[1n(s)] + 0.159[In(s)] 2  (GeV -2 ), 

1 
= 2.57 — 0.217[1n(s)] + 0.0243[In(s)] 2  (GeV -2 ), 

(I 2  

0.0695[In(s/s0)]  

A(s) = 1 + O. 18[In(s/s0)] + 0.015[In(s/s 0 )] 2  

We observe that this procedure does not correspond to solve an "inverse problem" only: we were able to extract 
the energy dependence of the free parameters (and this is not so usual in multiple diffraction models). Predictions 
for the differential cross sections, p-parameter and total cross sections are shown in figures 1 and 2. We observe that 
with the exception of the dip region at the 'SR energies all predictions are in full agreement, with the experimental 
data. 

3 Extrapolations to Cosmic Ray Energies 

At present, for pp scattering, experimental data from acelerator experiments arc available only up to j; = 62.5 GeV, 
the top ISR energy (figures 1 and 2). Extensive air shower data from the Akeno Cosmic Ray Observatory allows 
the determination of the proton-air cross section in the interval Vs : 6 •-•• 25 TeV. For these data cr,,P, may be 
derived using a nuclear model. Two distinct results conic from this kind of analysis: the results from the Akeno 
Collaboration [4] and a reanalysis performed by N.N. Nikolaev [5]. The differences in total cross section evaluation 
are about 30 nib. Both results are shown in figure 2 (right). 

Assuming that our parametrization may be valid at this so high energy region we performed extrapolation for 
the total cross section. As we see in figure 3 our result is in agreement with the reanalysis by Nikolaev. 
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Figure 1: Model predictions and experimental data on pp differential cross section: large transferred momentum 
(left) and peak region (right). Curves and data were multiplied by powers of 10. 
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We analyse rr - ro elastic scattering at ,fi= 19.4 GeV (Pt a h = 200 GeV/e) in the framework 
of a Multiple Diffraction Model recently developed for pp scattering. Hadronic form factor 
for the proton and pion are parametrized by double and simple poles, respectively. Taking 
account of flavour contents we assume similar complex averaged elementary (parton-parton) 
amplitude as in the pp case. With three free parameters our results reproduce quite well 
the 7r -  p differential cross section data. Profile functions for 7r - p and pp scattering are also 
presented and discussed. 

1 Introduction 

Through a Multiple Diffraction Model for pp elastic scattering recently developed, a satisfactory description of the 
experimental data above f = 10 GeV was achieved III. Two novel aspects of this model are the introduction bf a 
complex elementary parton-parton amplitude and the following prediction for the proton hadronic form factor as 
function of energy and transferred momentum: 

Gp (q, s) = 	+ qvcox + q2/(92) 	 (1) 
1 

where a2  = 1.80 GeV2  and 

cv2 = 2.57 — 0.217[Ins] 0.0293E/n51 2  (GeV -2 ). 	 (2) 

In this communication we extend the analysis to 7r - p elastic scattering at .15-=19.4 GeV. To this end we make 
use of the above prediction for the proton and introduce a complex elementary amplitude associated to the Tr -  p 

scattering. We shall use here the notation axplained by Martini and hlenon in these proceedings [1]. 

2 Formulation 

For pion-proton scattering the complex-eikonal is expressed by: 

00 

Sic = 	igdOn(gb)GpGyhp = — iGTp  < ap G, frp 
	

(3) 

where Gp(g, s) is•calculated from (1) and (2) at each energy. Our formulation is based on two essential assumptions: 
a) We use a simple pole parametrization for the (unknow) pion hadronic form factor 

= 
1 + q 2/72 ' 

'Financial Support:CNPq and Capes-NCI) 

1 
(4) 
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with 7 2  free parameter; 

b)Taking account of the u and d flavour contents in both pion and proton we assume, as first approximation, 
an averaged elementary amplitude with the same transferred momentum dependence as in the pp case, but with 
the ratio between real and imaginary parts as free parameter: 

1 — q 2 /a2  
I nt f irp (5) + 	e ira4 

Re lip  = A irp (s)Imf„ p  , 	 (6) 

with A„p (.$) free parameter. For the same reason we assume the same value of the (constant) a 2 -parameter obtained 
in the pp analysis : a 2  = 8.20 GeV 2 . Through (3) to (5) and according to the notation in reference [I), we have 

nc = — lAip)nrp 	 ( 7) 

— teira2 
Crp = CAT  < 	  + 0/0.20 +,? 2/02)(1 + q 2/7 2)(1 + gam >, (8) 

analytically integrable: 

S2rp (b, s) = Czp[Ai ko(ab) + 112 ko(gb) + A3k0(76) + A4kein(ab) A s kero(ab)], 	 ( 9 ) 

where 	i = 1, ...5 are algebraic functions of ar e , ,32 , 7 2  and a 2  and kei, ker arc Thompson functions. The connection 

with the differential cross section dal dq 2  and the p-parameter is obtained through the hadronic scattering amplitude: 

ReF,, p (q, s) =< 	sini4p (s)il wp (b, s)] >, 	 (10) 

IrnF„ p (q, s) =< 1 — e -n 'r (b .' ) cos[A rp (s)SZrp(b, s)]>, 
der 

7IFIP(q  ' 8)12  
Re Frp (0, s) 

p(s) = 
Ina Firp (0, s) .  

3 Fit and Results 

With this formalism we have for irp scattering only three free parameter: C„ p , 72  and A. p . The former two 

are obtained by fit to the differential cross section data and then the later is determined so as to reproduce the 
experimental p-value. The results obtained for 7r - p elastic scattering at fi = 19.4 GeV are shown in figure 1. This 

description of the experimental data was obtained with the following values of the free parameters: 

Gip  = 6.20 Ge V 2 , 72  = 0.42 GeV 2 , A„, = 0.0756. 	 (14) 

We observe that the real part of the scattering amplitude changes sign as predicted by dispersion relations 131. We 
have also calculated the Profile Functions, 

r(b, s) = 	F(q, s) >, 

for both reactions, it - p and pp, at ‘fi = 19.4 GeV. The results for the real part are presented in figure 2. 
In optical grounds we may interpret this behaviour as meaning that the proton is blaker and larger than the pion 

at the same energy. Our preliminary results show good agreement with experimental data. A complete analysis for 
7r+p and 7r - p scattering at different energies is being carried out and results will be presented elsewhere. 
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Figure 1: Results for r - p elastic scattering and experimental data PI. 

Figure 2: Predictions for the real part of the Profile Function. 
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Conventionally, in the study of supersymmetric theories, one starts with a free theory which is invariant. under 
supersymmetry transformations (transformations which take bosons into fermions and vice versa). This requires 
bosons and fermions (the superpartners) of the theory to have equal masses (or frequencies if one is dealing with 
quantum mechanical oscillators). Interactions are then introduced so as to maintain the tree level supersymmetry 
or build on it. 

We will show within the context of a quantum mechanical model how a theory can develop supersyminetry 
dynamically in the presence of interactions. More specifically, we will start with a free theory of a bosonic and a 
fermionic oscillator of unequal frequencies which is not supersymmetric and show that. in the presence of interactions 
this theory can become supersymmetric. This is what we call dynamical generation of supersymmetry and it does 

not require the boson and the fermion to have equal frequencies (masses) at the perturbative level (although the 
nonperturbative masses will be degenerate). 

Let us start with a quantum mechanical theory of a free bosonic and fermionic oscillator described by the 

IIp =wUta+ F.C t C 
	

(I) 

where a and Lc stand for the bosonic and the fermionic annihilation operator respectively with w and f representing 

their respective frequencies. The creation and the annihilation operators For the bosons (reunions) satisfy the 

standard (anti) commutation relations[I]. As is well known, when w = c, this defines the supersymmetric oscillator 

[1-3] which is invariant under the sliversymnietric transformations generated by the supercharges [1] 

Q = a lc and 0 = eta 	 (2) 

In our entire discussion, however, we will assume that w # c. Our starting theory is, therefore, not supersym-
metric since the bosonic and the fermionic frequencies (masses) arc not equal. However, let its now look at the 
following interacting Hamiltonian [4-5], 

H = wat a + cct c g(at *lc 	 ( 3 ) 

where g represents the strength of the interaction. We will now show that for the specific value of the coupling 
parameter (We assume c > w.) 

g 2  - = 

the Hamiltonian in Eq.(3) becomes supersymmetric. 
'to show this, let. us consider the ferniionic charges 

atcexp(—g  (at — a)) 

exp(- 1(at — a))cta 
w 

With the standard (anti) commutation relations of the theory, it is straightforward to show that 

Hi = (f — w — 5) Q 

EQ. 11 — ( c — w — 

Q = 
Q = 

(4) 

(5)  

(6) 
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It is clear now that when the condition in Eq.(4) holds, these fermionic charges are conserved and define supersym-
metric transformations under which the interacting Hamiltonian in Eq.(3) is invariant. It is also straightforward to 
show that 

[Q, 	= -‘,-;[ll — ( e  _ w  _ e)ct] (7) 

This shows- that the conserved charges Q and Q satisfy the conventional supersymmetry algebra when Eq.(4) 
holds. The Hamiltonian // of Eq.(3) can be easily checked (with the condition in Eq.(4)) to be invariant under the 
supersymmetiy transformations 

ba = —A(1 + at)exp(i(at — a))c 

Sat = — 2-Aatcexp(f-(at — a)) 

Sc = 0 
bet = Aat exp(±(at — a)) 	 (8 ) 

and 

6a 
	

Aexp(- 1(at — a))cra 

bat = aexp (— 2-(a 1  — a))ct (1 + y a) 

Sc = A exp (— ! (at — a))a 

ct = 0 	 ( 9 ) 

Here A and 5, are the two constant Grassmann parameters of the supersymmetry transformations. 
Thus, we see that even though the starting theory is not supersymmetric and the bosonic and the fermionic 

oscillators have different frequencies (masses), for a particular value of the interaction strength, the interacting 
Hamiltonian has become supersymmetric. The theory has generated supersymmetry dynamically. Since the bosons 
and the fermions correspond to different frequencies, it is worth investigating the structure of the supersymmetric 
spectrum of states in this theory. It can be easily checked that the superpartner states now involve coherent states 
in a nontrivial way ( Eq.(4) is assumed.). 

Qin., n, = 1) = 

Qlr ^ n + 1, n, = 0) = 

1 a tot ir . i i ne  = 
 W 

Jn o + 1   ( a t + 	_ ne  = 
 nal. 

(1 0) 

Here we have introduced the coherent states defined by [6] 

la, ti c ) = exp (a(at — a))In a  = 0, ne) 	 (11) 

Thus, we see that the relation between the perturbative supersymmetric partner states, in this case, are not as 
simple as in the conventional supersymmetric theories. 

Finally, let us note here that this theory can be exactly solved and all of the above features can be seen in a 
simpler way as follows. Let us define a generalized Bogoliubov transformation defined by the operator 

U = exp(-5, (al — a)ctc) 	 (12) 

This defines a unitary transformation leading to 

b = UaUt = (a + 9 ctc) 

bt = U at Ut = (at + ctc) 

f = UcUt = exp ( cg.:(at a))c 

ft = ct exp (- 9 (at a)) 
	

(13) 
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These new variables satisfy the canonical (anti) commutation relations like the original fields since the transfor-
mation is unitary. IL is now straightforward to check that the interacting Hamiltonian of Eq.(3) can be rewritten 
in terms of these new variables as 

	

H = wbi b + (c — 
92 
=)f I f 
	

(14) 

The energy eigenstates and the eigenvalues in terms of these variables are quite simple, namely, 

//inb,nf) = 	 ni) 	 (15) 

with 
g2 

E„,,„ 	(drib + (c — —)n f 	 ( 16) 
w 

with n f = 0,1 and nb = 0,1,2, • 	It is clear now that when Eq.(4) is satisfied the theory is nothing other 
than the supersymmetric oscillator in terms of these new variables. The supersymmetric partner states are the 

conventional ones in the quanta of the redefined variables. We also note that when c — 	< 0, the ground state of 

the theory becomes fermionic [4] whereas if e — 	= 0, the fermions completely drop out of the theory. Simple as 
the Hamiltonian in Eq.(3) may appear to be, it really has a rich structure. It is clear now (see, e.g., [1-3]) from the 
form of the Hamiltonian in Eq.(14) and the unitary transformation in Eq.(12) that one could also have started with 
a more complicated interacting Hamiltonian in Eq.(3) which would have resulted in a supersymmetric, interacting 
Hamiltonian in terms of the variables b and f. 

To conclude, we have shown in a simple quantum mechanical model how supersymmetry can he dynamically 
generated in the presence of interactions even when the free theory may not he supersymmetric. It remains to be 
seen if and how this idea can be generalized to relativistic quantum field theories. The properties of such theories 
would be quite interesting to investigate. 
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The hybrid chiral bag [I, 2] is an effective model to describe the behavior of strongly interacting baryons. In this 

model, color degrees of freedom are confined to a hounded region and coupled to a bosonic external field (skyrm ion) 

through boundary conditions. 

These two phase models (TPM) are intermediate between two successful descriptions of baryons: bag models 

[3, 4] - with QCD degrees of freedom at short distances - and Skyrme model [5, 6, 7], an effective (non renormalizable) 

nonlinear sigma model, useful when the low energy properties of baryons are considered. 

An interesting feature of Chiral Bag Models (CI3M) is the appearance of the so called Cheshire Cat Principle 

(CCP) [I, 8], according to which fermionic degrees of freedom can be replaced by bosonic ones in certain regions of 

space, the resulting position of the limit of separation between the two phases having no physical consequences. 

In 1 + 1-dimensions, the Cheshire Cat behavior follows from the bosonization of fermionic fields [1]. In the 3 +1 

case, topological quantities, such as the baryonic number, have a similar behavior [9] but, for non topological ones, 

the CCP is expected to be only approximately valid. 

We study the energy of a four-dimensional hybrid model consisting of quarks and gluons confined to a spherical 

bag plus a truncated exterior Skyrrne field in a hedgehog configuration. It is our aim to study the dependence of 

the total energy on the size of the bag, thus testing the Cheshire Cat hypothesis. 

The Casimir energy of quarks tinder chiral boundary conditions and that corresponding to gluons inside the bag 

arc obtained, by making use of functional techniques introduced in previous studies of the subject [10, 11]. 

The contributions due to the valence quarks in the interior region and to the external Skyrrne field are then 

added, so as to complete the total energy in the two phase model. To construct the Skyrme field in the hedgehog 

configuration, the Atiyah-Manton profile [12] is used. 

Imposing the validity of the TPM, even in the 11 -4 0 limit, the renormalization constants arc determined. 

Moreover, the continuity of the axial flux in the interface between the bag and the skyrmion helps us to analize the 

parameters of the model and c(R). 

The total energy is obtained, showing (Figure ) a good agreement with the Cheshire Cat hypotesis in the range 

of 0 < R < Urn. 

The study of CHM at finite temperature [13, 14] is an interesting effective approach to the analysis of decon-

linement transitions. In those references, successive approximations to the problem, based on the validity of the 

Cheshire Cat hypothesis at 7' = 0 have been made. The present results give a ground to such hypothesis, thus mak-

ing it sensible to took for the presence of deconfinement transitions only in the temperature-dependent contributions 

to the free energy of the hag. 

'This work was partially supported by CONICET and Fundacitin Antorchas, Argentina 
le-mail: defranci*dartagnan.fisica.unlp.edu.ar 
le-mail: falomiredartagnan.fisica.unlp.edu.ar  
5 ernail: mariel4dartagnanlisica.uulp.edmar 
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A teoria da gravitacao em duas dimensoes pode ser formulada como ulna teoria de calibre do grupo de Poincare 
estendido [11 ,cujas relacOes de comutacio sao : 

[P., Pb] = coz 

11)„,i) = 

sendo que as outras rclacoes de comutacao sac) nulas. Para construir uma acio invariante de calibre,precisamos de 
urn multipleto de campos de calibre e um de multiplicadores de Lagrange dados cm termos dos geradores por: 

A = Ao rlei = 	+ 	+ cz1,Z)4", 	 ( 1 ) 

= p.  + j  93z, 	 (2) 

onde e4  silo coordenadas do espaco-tempo e a curvatura de calibre 4 dada em termos do potential de calibre atraves 
de: 

Ft,,,, = ai,A„ — 	 ( 3 ) 
Ao longo deste trabalho usamos as seguintes convencoes : 

c ol = I; kb = diag( -1 , 1 ) 	 (4) 

enquanto que a metrica de Killing tern as seguintes componentes: 

hab ,h,32 = ha3 = 0 , h23 = I 
	

(5 ) 

obtidas do operador de Casimir da algebra de Poincar4 estendida,sendo usada para levantar e baixar indices do 
grupo que sio aqueles associados aos geradores P,,ao gerador J e ao gerador E. 
Na ausencia de materia a acao de gravidade pura e dada por urn invariante topolOgico(indice de Pontriagin) que 6 
invariante de calibre 

= f Tr(riF), 	 (6 ) 

onde o traco 6 tornado sobre os indices do grupo. Quando acoplarnos tomes nao-abelianas a esta teoria livre da 
gravidade,i.e.,acoplamos particulas pontuais sem massy corn simetria interna que descrevern uma linha de universo 
W 1 ,parametrizada pela curvy x(r), a ma° torna-se [2] : 

5' =Tr(nF)+ e l 	drTr(QA,,)X 0 (r)6 2 V x(r)) e i 	Tr(Kg -1 0d-r+ 
m2 	 AC1 WI 	 WI 

(7) 

i cirTr(Q 31)62 ( r(T)) m 3 
c2 
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onde as fontes nao-abelianas sac) descritas em termos do elemento do grupo g, e l  e e2 ski ors constantes de acopla-
mentodo campo de calibre e dos multiplicadores de Lagrange,respectivamente,com as fontes. 0 elemento do grupo 
g é parametrizado em termos dos geradores 

g = exp(0° Pa )exp(0 2  J)exp(0 3  Z) 	 ( 8 ) 

enquanto que as fontes tern a seguinte expressao cm termos de g 

	

Q(r) = g(r)Kg -1 (r), 	 ( 9 ) 

onde K assume valores constantes na algebra de Poincare estendida. As equacis de movimento para as fontes sa° 
obtidas atraves da variacao da acao cm relac5,o aos elementos do grupo g,ou seja 

dQ a  
c , 	l it' ( ebmc: Q 2 	f gQb) e,..tc :obce _ n 2 Qb) = 	 (10) 
' dr 

e  dQ2 
dr 
 0 (ii) 

d 3 

e l 	+ (e l 	- 0 2 110 Q b )f a i, = 0. 	 (12) 
dr 

Quando a acao 6 variada em relacao aos multiplicadores de Lagrange , obtemos as equacoes de campo para o setor 
gravitational 

	

("(0,0: + wiie6,4)+ e2 .1.  dr6 2 (e x(T))Qa(7)=  0, 	 (13) 

("Op + e2 f dr6 2(4 x(r))Q 2  = 0, 	 (14) 

	

f"(0,,u, + 
2  -

1

" 
eae 6  cab) + 0 2  1 dr45 2 ( 	x(r))Q3  = 0. 	 (15) 

svi 

Finalmente, tomando a variacao da acao corn respeito aos campos de calibre,obtemos as equacaes de campo para 
os multiplicadores de Lagrange (setor do dilaton) : 

eu(0„n2 + 4E 1;06) + e l  f drQ2(r)6 2 ( - x(r))im = 0 

(13„q a  to v etrib+ mc cac i,b )+ c i  J drQ'6 2 ( - x(r))i° = 0 
wl 

c"Ov ria  + e i 	drQ36 2V - x(r))ic° = 0. 	 (18) 
W 

Para resolvermos tais equacOesfazemos escolhas de calibre consistences corn o nUmero (le parametros de calibre 
da teoria. Em particular quando o espaco-tempo apresenta topologia trivial as solucoes nao representain buracos 
negros,enquanto que no caso de topologia nao-trivial existem horizontes de eventos que caracterizam os buracos 
ncgros. 

Em se tratando de topologia trivial do espaco-tempo,ha dois sistemas de coordenadas diferentes que fornecem 
fixacOes de calibre consistences, que sao as coordenadas de Schwarzschild e coordenadas do cone de ins. Ent tais 
sistemas de coordenadas a possivel (em particular nas coordenadas de Schwarzschild) perceber que uma trans-
formacao de coordenadas Lorna o espaco-tempo Minkowskiano localmente,cquivalente a urn obscrvador acelerado 
cm rnovimento hiperbolico cm coordenadas de Rindler[3]. Portant° nao ha incompleteza geodesica implicando que 
este Lipo de solucao nao correspondc de fato a buracos negros. 
No caso de topologia nao-trivial ha dois sistemas de coordenadas diferentes que fornecern Imagoes de calibre con-
sistentes: as coordenadas de Schwarzschild e as coordenadas conforms. 
Em coordenadas de Schwarzschild, fazcnios a seguinte escolha de calibre ((e , e) = (i.x ) ) 

0 	 0 , -I 	.0 = .1 = 0 
CO = eo(x) 	leo) 	-1 	-o (19) 

(16)  

(17)  

Qo  = Q t  =-. 0 , w o  = -ac(x) , w 1  = 0 	 (20) 
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sendo que a = constanle. Para a lirdia de universo das fontes , escolhernos x °  = r e xl = 0. A solucio para as 

fontes sao 

a 
Q3 = A = constante ,Q2 = 	= constanie. 

e2 

Para o setor gravitacional terries 

co = (b + 26 1 1 1) 2  

ao = —x + c 2 .4c(x)+ B (23) 

enquarito que para o setor do dilaton, obtemos as seguintes solucoes (coin o calibre fixo de forma que o dilator' e 

in(Iependente do tempo) : 

= A 

A , 
= —

a
etx)(b + 2a1x1)1 

= 0 

r72 =
a 

A
lx1+ C. 

0 clement° de linha 6 

ds 2  = — (b + 2a1x1)dx 2  + (b +2alxi)' l dt 2  

anilogo ao element° de linha de Schwarzschild eni quatro dimensoes. A curvatura escalar neste case, 

R= 4a6(x), 	 (29) 

exibe uma singularidade na origein que rule pode ser rernovida por transformacoes de coordenadas por scr Lima 

singularidade fisica. Portant°, existe incompleteza geodesica uma vez quo a regiao x < 0 e proibida e e impossivel 

mapear o piano (x,t) completamente,pois aquelas transformacoes de coordenadas descritas no case trivial "param" 

literalmente na hiperbole que caracteriza a singularidade. Por outro lade, um buraco negro e caracterizado por um 

horizonte de eventos, quo 6 lima superficie o vetor normal a esta superficie tern norma nula. Coln esta 

prescricao o horizonte de eventos do clemento de linha anterior e obtido 

111= --2a , 
	

(30) 

implicando que b e a tern sinais contraries. Esta soluck corresponde aquela obtida por Mann e colaboradores [4] , 

partindo do cornportamento tipo delta de Dirac no escalar de curvatura. Ern coordenadas conformes a escollia de 
calibre 6 

4(,) ;  e.g= el ;  c? = e (1)  = 0 ; a 1  = 0 	 (31) 

Q° 	Q 1  = 0; wo  = ne.(27); w i  = 0 	 (32) 

e para a linha de universe das fontes a escoiha 6 a mesma daquela feita em coordenadas de Schwarzschild. A sohicao 
para as routes e 

2 	a Q3  = A = constante; Q = — = cone ante. 	 (33) 
e2 

l'ara o setor gravitacional obtemos : 
eao 

(34)  

ao 	

2a 
Ic(x)e-2,21x1+ e2/1 'c(x) 

e para o setor do dilaton (o calibre 6 fixo de forrna que o dilaton e independente do tempo) terries que 

(35)  

T13 = A (36)  

(21)  

(22)  

(24)  

(25)  

(26)  

(27)  

(28)  
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rio  = 

rlt= 0 

A 

.12 	2a 2 

 0 elemento de linlia do espaco-tempo a dado por 

ds 2 = e- 2a1.0(_di  2 

sendo que a curvatura escaiar tambern diverge em x = 0 de acordo corn ulna In ticao delta de Dirac, de forma analoga 

ao caso anterior . No calculo do horizonte de eventos a prescricio c a mestria do caso anterior , corn a difercnca quo 

definimos a componeute contravariante do vetor normal e usanios a metrica covariante para calcular a norma do 

vetor normal. Novamente , como o vetor normal te ►  norma zero obtemos o horizonte em IzI = oo . Note quo este 
sistema de coordenadas e incornpleto,pois se descreve o interior (on exterior) do buraco negro sendo insuficiente 

para descrever todas as regiOes do espaco-tempo. Esta solucao corresponde aquelaencontrada no trabalho de Brown 

e colaboradores [5], no contexto do model° de Jack iw-Tciteibohn. 

E interessante enfatizar quo o buraco negro em coordenadas conformes a equivalente ao buraco negro em coordcnadas 

de Schwa.rzschild [4] , pois teLm a tricsma topologia c estao relacionados por ulna transformacio de coordenadas. 

Pretendemos estudar o caso supersimetrico[6] a fin] de entender como a nao localidade no setor fermianico infuencia 

na solucao para o espinor de Killing covariantemente conservado, c como este altera as solucoes acima descritas. 

Urn outro ponto quo pode ser investigado e a termodinamica destes buracos negros hem como a quanlizacao das 

solucifies 
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We show that R-matrices of all simple quantum groups have the properties which permit to 
present quantum group twists as transitions to other coordinate frames on quantum spaces. 

'Introduction. 

Quantum spaces which appear in the frame of quantum group theory [1] have many unusual properties, in 
particular, - q-deformed differential calculi [2] and, in general, non-commuting coordinates. In one-dimensional space 
q-derivative can be represented by Jackson difference operator. This, in turn, provides description of a quantum 
mechanical particle on a one-dimensional lattice [3]. Thus a q-deformation of a differential calculus apparently 
leads to space discretization. The relation of the non-commutativity of coordinates to space discretization is 
not so straightforward and causes problems in construction of field theories on q-spaces. Indeed, it. means that 
operators of coordinates can not he diagonalized simultaneously and have not common eigerivalues. On the other 
hand, asymptotic (free) states of a particle scattering process are well described by usual non-deformed Minkowski 
geometry and Poincare group representations. 

A natural preliminary step to understand a relation of low energy particle phenomenology to physics in q-
deformed space-time can be a reduction of a number of non-commuting coordinates, retaining q-deformed differential 
calculus and q-symmetry. This work is devoted to the study of such possibility. 

As is well known, quantum spaces, related to each other by twists [4] of corresponding q-groups, have different 
commutation relations for coordinates [5]. The key idea of our approach is to present a group twist as a kind of q-
deformed transition to another frames. As was shown in [61, q-deformed Minkowski space-time with non-commuting 
coordinates which corresponds to pure twisted Poincare group (i.e. to the q-group obtained from the classical one 
by a twist) can be constructed from a usual Minkowski space with help of appropriate coordinate transformation 
and q-generalization of 4-beins. 

In the present paper we generalize this partial result to twists of non-trivially deformed all simple groups. More 
precisely, we will show that known R-matrices for all simple q-groups have the property which permits to describe 
the twist procedure as a transformation of q-space coordinates. It seems natural to require that reasonable theory 
must be physically equivalent in different coordinate frames. So one can choose a most suitable frame, in particular, 
with most simple commutation relations. 

2.Quantum group twists and quantum coordinates. 

As is shown in [4], multiparametric quantum groups can be obtained from a one-parametric q-group via so 
called twists of a quasi-triangular Ilopf algebra. Consider at first the case of q-deformations of GL(N) groups. 
In this case a twist of R-matrix in fundamental representation 1? is described with help of diagonal matrix F 

diug(fit, f12,•••, 	with fijfii = I so that R-matrix R(F )  of the twisted group Gl,,,i-,; (N) has a form R(F)  = 
F-1 	. here R is (in general, also multiparametric) R-matrix of the initial group GL„,q .,(N) and 

= qiigi  • 	 (I) 

Coordinates of the initial quantum space C, IN[ri] satisfy the commutation relritions (CR) [1, 5] 

(2) 

and coordinates of the twisted space arN [ii] have the CR 

Ei ii = 9iJiJ ii  . 	 (3) 

on leave of absence from Moscow State University, Russia 



A. P. Dernichev 	 321 

Now we introduce the algebra EgN [e i  , gi] with the generators 	 which commute with coordinates and put 

	

e'x' 	(no summation) . 	 (4) 

The elements e' play the role of components of a q-deforrned (diagonal) N-heir. CR for them follows from (1)-(4) 

c i d = gi de' , 

and gi are inverse elements 

yid = 1 . 

The coordinates 	are transformed by a q-matrix 

II = 	j i,-j 

= 1 

Then using (4),(6) one obtains from (7) transformations of the coordinates xi 

N 
X I  = E gi ti;  ei 0 . 

= 
We used in (8) a cross-product sign to stress that the elements from the different sets commute with each other 

(the elements gi in (8) must be considered as the inverse elements to generators e' of another copy of an algebra 

EN  with respect to the elements e' entering the same formula). The relation (8) means that the coordinates x' are 

transformed by the matrix T with the entries 

Tij  = gi 0 714i  0 e' 	(no summation) . 	 ( 9 ) 

Using (6) one can express the matrix T through T 

T'i =e t OT i Ogi 
	

(no summation) . 	 (10) 

One can check straightforwardly that x‘i defined by (8) satisfy the correct CR 

Ij 	 it 
X X — qii x 

The general reason for this is the following property of the R-matrices: if a q-matrix satisfies TT-relation defined 

by the corresponding R-Inatrix, then the T-matrix defined by (9) or (10) satisfies the relation with twisted R-matrix 

R( r). 

To prove this statement let us write 1i-relation (CR. for entries of a matrix T) in explicit form 

E R ..77  r — E r aj, 711F: JCL 

P08 	 a,r 

and substitute 	by their expressions (9) in terms of rj . 'Phis gives the relation for the latter 

	

E R,„;,: gpg. 41 . ev rfru  = E nj Trnr  g 	er  Rrui v  

5,r 

Remind that in this relation the elements gi  must be considered as inverse elements for the generators c' of another 

copy of an algebra E and so they commute with the elements e l  entering the same relation. 
Using explicit form of multipararnetric lt.-matrix for G1.,,, f , i (N) group [1, 5] one can show that 

	

Frp,gpg.e u 	g gr. e Il e V ph') inn 

where /6 /1  is the twisted matrix of the same form but with the twisted parameters qij = 	42i . Analogous 
consideration for the 11,118 of (11) shows that this relation can be rewritten in the form 

E 
	

(12) 

(5)  

(6)  

(7)  

(8)  
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Thus twisted q-matrices can be constructed with the help of q-deformed N-beins (5),(6) and the formula (9) which 

is direct generalization (q-deformation) of a relation between matrices of transformations in different coordinate 

frames. 

In the case of q-deformation of simple groups of the series BN, 	DN there is one more structure, namely 

an invariant length [1] L g  = E i  ti e zi , where = IV + 1 — i. Values of the coefficients can 

he found in [1] and are not essential for our consideration. To preserve LI , components of a q-bein must satisfy 

the additional constraints elee = c e ei = 1, i = 1,...,N/2 for CN, DN series; i = 1, ...,(/V + 1)/2 for BN series. In 

particular; for the series BN: e (1V + 1)12  = 1. These constraints reduce number of twist parameters, which from the 

geometrical point of view define CR for the components of the q-beins, so that the number is equal to k(k — 1)/2, 

where k is rank of a group. 

Explicit form of Ft-matrices [1, 5] again gives that the R-matrices have the property analogous to that of the 

AN groups and the matrices i' defined by (9),(10) satisfy the CR (12) for twisted quantum groups. 

The interpretation of twists as transitions to other q-coordinate frames is extended to differential calculi on 

q-spaces. Indeed, using the CR which define a q-deformed differential calculus in rnultiparametric case [5], one can 

straightforwardly check that the relations 

= ci dz i 	= gia , 

convert differential calculus on a q-space to the one on a twisted q-space. 
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In this work we discuss the effect of quartic self-interacting terms on the dynamically generated mass for the 

photons. This effect should be expected due to the fact that, in (1+1)D, the dynamically generated class has 

its origin in the fermion loop diagram. Here we will solve the vector and chiral gauge models with fermion self-

interacting terms. 

For the vector case we have the Lagrangian density in the topologically trivial sector given by 

L = i► (i709" — e,7,/1")‘1 ►  „Ti  P"' Pp , 	(W7,41) 2  + 4.11° + 	+ 

which after using the identity 

a2 	 1 	 e2 
exp 	id2 x (4)-y,,t1, ) 2 } = 77 DB„ exp { — 	 IP 	, 

2 	 9 

looks like 

e -  
L = xii(i7„0" — eym  (AP + gB")111 — 1 — F F"" ,, + — B B" — 1 — (0

" 
Aw) 2  + sources. 

4 	°' 	2 ° 	2a  

Now, doing the transformation A, E A p  — gr),,, (13 0 , a: g Bo ), the Lagrangian density becomes: 

- 	- 	 - 
L = kis 	– ez 	

1 
,A")Ali – 

4
– P" 	

1 
F„„ – –Bi'tk„ + 

1 
 –F'"' 13 – —

I (0 A")
2 

4 	- 	2 	 2ct 

— l
a 

(0,BP) 2  + 
20  —

1  (0,Ak) (au bP) + J,,(AP — 11")+ 	+ WO. 	 (1) 

In order to decouple this Lagrangian density, we decompose the vector fields AI' and 13" into their transverse and 

longitudinal components through, 

eA" -= (90 /Lt+ Epa exA; el3P  = aon+ E„, 	 ( 5 ) 

and perform the transformation 

‘I'(r)= u5(x)0(x); 'kr) = 0(z)u 5 (x). 	 (6) 

where U5 E exp(—irm TsxA) and Us  7-3 exp (irm + -y5xA), whose non-trivial jacobian in the trivial topological 

sector is given by 

exp 
	

d27  bin OXAI} 

	

(7 ) 

where A is the arbitrary regularization parameter. So, we get the following effective Lagrangian density: 

(1) 

(2)  

(3)  
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e. 
L = ti)(i7„(9 P ) ,/,  + 2—e2 I(OXA)

2 
+ (DXB) 2 1 2g2 1(000)

2 
 + (apX13 )1 + 

1 	 2 	1 
ae2 ,) °VA 

27 
H 	(UOIXA ) 2  — e- 	 zare' 

2ae2  ( 094 2 	PM) + —07IA 07/B+ 

e
J4 [49P ( ,),4 — vie) + EP° oc, (xA — XB)] + OUs  i + 

	
(8) 

Now, in order to decouple the above Lagrangian density we do a further transformation: 

	

XA 

	— 

	a cos(0) asin (0) 	iA 

	

XL; 	— sin (4)) cos (0) ) 	) 

rlA 	 1 	1 

11B ) = 

	
0 1 ) 	rjB ) ' 	 (9)  

where a a. (7r/Ag 2 ) 4 , tan (20) •  = 7/(/3 — a), and a E a2/2e2 ,fl E 1/2e 2 ,7 E —a/2e 2 . From which we obtain the 

decoupled Lagrangian density, 

1r 
L = tki7„ 811 )0 + —292 l(Opi/B) 2  + (O,ARB) 2 + (apX-A)21 	

2C2 
(OXA) (a2  + 1) 	2  + 

„, 	, 	, 	 , 

1, 1:1 .7.4 1 	— (Up TIA -r- ka 2 	1) 1. 	u``„IcA) + f errniOnicsOureeS.• 
2ae 2  

Now, remembering that 

1)" 	
6Z , 	1 , 

(k) 	 1.1 = 0 	— 	[A71,A7 fr iifiA  + (a 2  + 1) E po Ep p 	kP Di .4 1 
6J

2  

	

w5.1, 	e' 

and E„,E,, e= g„„gc, p 	 we obtain the photon propagator: 

(k2 _ rn 2) I kokp  
	 gDou (k) = 	 [1 

	

(k 2  — rn‘) 	 1: 2 	k 2  

with 

err + AO)' 

where we see the effect of the self-interactions through its coupling constant g. So, for a vanishing g one recovers the 
2 

usual Schwinger mass (in this case A = I due to the gauge invariance), and for a very large g one have in2 	(1) 

Showing a kind of screening coming from the fermionic self-interaction. Furthermore it is remarkable that the 

arbitrariness due to the regularization parameter disappears in this limit. 

A similar analysis can be done in the case of the chiral interaction. In this case after similar calculations as 

above, one gets the following dynamical mass: 

2 	a 2 C 2  
rn `h  = [2(a — 1)7r + a 2g 2 1' 

which also has the correct limit, when g 	0, and for large values of g has the same form of the previous case. 

Finally we show that, for example, in the case of the vector model, this self-interaction is in some way equivalent 

to the model with Weds- Zumino term. In this case one has 

ae 2 
L = 	— e -r,AP)11,  — —

1

in' 1„„ + —A
" 

+ Lwz 
4 	 2  

(15) 

IC2  
T71

2 

(10) 

(12)  

(13)  

(14)  
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with 

	

L wz = 00 00°0 + ae00,0 . 	 (16) 

Now performing the transformation A„ = A, — !.a„o, and integrating over the Wess-Zumino field, one obtains the 

effective Lagrangian density: 

l 
eff = (i-y 	— 	A )4 	

4 
 1 — 	P ,„ 	

■la 

	

— 	0(110
2 

, 	 ( 17 ) 

which is a Schwinger model with a Thirring-like self- coupling term, and where the regularization parameter a is 

related to the coupling constant. 
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Supersynirnetric Quantum Mechanics (SQM) has been used to solve Schroedinger equation 

of solvable potentials, (1], partially solvable ones, [2], in the WKB-approximation, [3], and 

it has also been applied in variational method, as recently suggcsted,[4], [5], [6]. 

1 Introduction 

The supersyinmetric formalism has already been used to study some aspects of the Hulthen potential, [7], [8]. Here, 

the exact analytical solution for this potential is reobtained, for I = 0, showing the consistency of the method. 

When I 0 0 we interpret that the supersymmetry is "broken" by the potential barrier terms. Nonetheless, the 

supersyrnmetry gives us eigenfunctions that allow us to compute the eigenvalues of the variational method, [6]. The 

cigenfunctions for 2p and 3d states are evaluated for some values of the parameter delta. Our results are compared 

with direct numerical integration data, [9]. 

2 The Hulthen Potential with I = 0 

The Hamiltonian for the Ilulthen potential (1 = 0) can he written as: 

1 d2 	be-6r 
Hi _

2 2 dr 2  1 - e -6 r 

From the Hamiltonian hierarchy we can obtain its cigenfunctions and eigenvalues for the n-th ground state Hamil-

tonian, [10], [11]. The hierarchy is given by 

Hy, - E, 1" )  = a,;(1,7 	 (2) 

with creation and anihilation operators defined in terms of the superpotential 

1 	d 
an = 7(T 7;  + 14/,,(r)). 	 (3) 

The nth superpotential is given by 

6 r 
/„(r) = 	 

	

ribe - 	1 	/1 6  
14 	 (4) 

1 - e -61- 	n 	2 

that corresponds to the n-th member of the Hamiltonian hierarchy: 

n(n - op c-zar [n o - rob + 216e -ar 
Vr,(r) = W,;(r) T W„(r) = 	

- 61,12 	2(1 - e-ar) 	 (5) 
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The superalgebra allows us to relate these results with the original Hamiltonian by the relations: 

13 1 ) = 	1) , 	tign11 (r) = 
,.+ th (ri-1,1) ( 

 "1"2 — "n r). 

The energy-eigenvalue and eigenfunction, cq.(6), are 

1 	11 	1 
= 

2
( - 

2 
+ )2

ri 

wvon)(r) 
	
- carre-[-!-solr. 

We can verify that the energy-eigenvalues(7) are in fact the ones given in reference [14 

3 The Hulthen Potential with / 0 

The Hamiltonian for the Hulthen potential when 1 0 is written as: 

I d2 	 + 1) 
H 	+ 	 

2 dr 2 	- e-or 	2r2 

The potential barrier term prevent us to build the superfamily as in the 1 = 0 case, since the potential is not 

exactly solvable. Hut based in our results for the case 1 = 0, we introduce a new effective potential whose functional 

form is suggested by eq.(5), 

6 c - 	1(1 + 1)  62  e -26r N = 	 I 	 (10) 
1 - 	 2 	(1 - e 611 2  

We note that, for small values of 6, the second term of (10) give.s us a potential harrier term of (9) in first. 

approximation. As the effective potential given by (10) has the same functional form as (5), we can solve the 

Schroedinger problem by the factorisation method of SQM and find the whole super family. The superpotential of 

the n-th member of the family is given by 

e -br 
Wo ( r) = B n 	+ 

1 - e -4 T 

where 
(45 - 	 -  14.6  

B = -
2

-05 + 162  + 	1( Bn  - 6), Cr, = 
2B„ 

and the energy and wave functions are given by (6), where 

(12) 

45 	 6 B + 2  
/33 =

2
(1 + 	+ 41(1 + 1)), 	- 

2 B i  
Bo  = 0. 	 (13) 

The energy eigenvalues and wave functions given by (6) are 

F,(,,+ t) _ 

2 	
(14) 

N'n+1  

tVol)  = ( 1 — e -611 -71.  

	

e-Ctr 	 (15) 

Notice that B's and G"s depend on 1. Fixing 1 = 0 we recover the original Ilulthim potential, as expected. 

We now look at the Hulthen potential (9) and solve the Schroedingcr problem by the variational method. We 

start. from Veil given by (10) whose cigenfunctions are given by (6) and (15). For the state 2p we use the first 

member of the superfamily (1 = I) as our trial wave function, changing 45 by the variational parameter p, i.e., 

	

%P p  = xy(011(r, 	(1 	e -14r)- 
( 16 ) 

The energy is obtained by minimisation with respect to p. Thus, the equation to he minimised is 

1 	 6r-dr 	104.1) 	

‘11 ],,(r)dr /.(r )[ 2 
c13 

 dr7 	 r +  	2r i 
E = fr  p ( r) 2 dr 

(17) 
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The integration has to be carried out numerically. Our explicit values for thC 2p, (1 = 1) and 3d, (1 = 2) 

energy states for some values of the parameter 6 are listed bellow in Table I. They are shown together with direct 

numerical integration data. 

Table 1. Energy eigenvalues as a function of the screening parameter for the states 2p and 3d, [eq.(17)]. 

Comparison is made with numerical data of Ref.[9]. 

State Delta Variational result Numerical Integration 

2p 0.025 -0.112760 -0.1127605 

0.050 -0.101042 -0.1010425 

0.075 -0.089845 -0.0898478 

0.100 -0.079170 -0.0791794 

0.150 -0.059495 -0.0594415 

0.200 -0.041792 -0.0418860 

3p 0.025 -0.043601 -0.0437069 

0.050 -0.032748 -0.0331645 

0.075 -0.023010 -0.0239397 

0.100 -0.014433 -0.0160537 

4 Conclusions 

We have obtained from the formalism of SQM the exact analytical eigenfunction and energy eigenvalue for the 

[Iu lthen potential for I = 0. When I # 0, we used an effective potential suggested by the case I = 0, to give us a 

variational trial wave function. 'The energies for the 2p and 3d states were obtained for some values of the parameter 

6. 
We note that better results have been obtained for the 2p state, for small values of b. This is expected since for 

small values of 6 the effective potential (10) becomes closer to the original lIulthen potential (9), and for I small 
the contribution of this angular moment term in the potential is also small. The advantage of using the effective 

potential (10) is the fact that we can vary its parameters without changing its functional form. This is reinforced 

by the constructive method of determining wave functions based on supersymmetry. We stress, however that this 
is a variation of the so called shape invariant potential, since it does not change its functional form in the hierarchy 

but does not follow the usual definition of shape invariance, [13]. 
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It is shown how to obtain objects called Eichler integrals in the mathematical literature that 
can be used for calculating scattering amplitudes in String Theory. These Eichler integrals 
are also new examples of Eichler integrals with poles. 

I. Introduction 

The concept, of an Eichler integral is closely related to the concept of automorphic forms. Although automorphic 
forms have a large range of applications in Physics and in particular in String Theory, Eichler integrals remain 
relatively unknown objects to both mathematicians and physicists. One can picture Eichler integrals as a general-
ization of the concept of automorphic forms, and they arc related to the better known Beltrami differentials that 

are used in String Theory in the calculation of multiloop scattering amplitudes of strings. 
We begin with a description of the main properties of automorphic forms with one example that will be useful 

when we describe one of the new Eichler intregrals. The definition of Eichler integrals is given next, with one 
example that can be used in String Theory'. 

Automorphic forms 

An automorphic form of weight q is a function 2  q5(z) that transforms in the following way under a projective 

transformation 

c5 (P,i (z)) = [

0 '"(z)1`7 

95(z) . 
az 

Automorphic forms with just one pole will be more of our interest since the order of the pole is limited in a simple 
way by the Riemann-Roch theorem'. We now give one example of these functions that will be useful for our 
calculation of an Eichler integral that can be used in String Theory. 

A. Example 

In the multiloop case of String Theory, let us consider only projective transformations Pa  with finite fixed points 
n o  and pa  acting on a Rierriann sphere with genus g. We then consider the following series: 

Pu,(z)=- 
E  (z _ ab)(z — 	hob 

(I) 
wb(ab — 	c 

where the sum is over all the elements of the Schottky group formed by these transformations and bwb and e are 

infinitesimals. Performing a projective transformation z Ta(z), a = 1, g, and after a change of variables, we 

obtain 

Since we are summing over all elements of the Schottky group (with the condition that the fixed points are finite) 
we then see that the expression on the right hand side is equivalent to the series we started with so that 

13,„(Ta (z))=7,;(z)P,„(z) , 

( — o„}(z — f.,) hoe  

	

P.,(T.(z)) = '17,(z) 2_, 	 

	

c 	u;,(0, — pc ) 
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i.e. /)„,(z) is an automorphic form with weight one. 

III. Eichler integrals 

An Eichler integral of order q is defined in the following way 1,5 : it is a function f(z) that transforms like 

f (Ta(z)) = [ O
az
a(z) • q  [f(z)+ 1301 (z)1 

where Pq+ i (z) is a polynomial at most of order q + 1. It can be pictured as a generalization of the concept of 
automorphic form. Eichler integrals are related to automorphic forms in the following way 4 : given an Eichler 
integral of order q, we then have 

a 20-1 
cb(Z) = 	 f(z) 	 (2) 

where ¢(z) is an automorphic form of weight q + 1, i.e. 

(T,,(z)) = [ 6roa(7)
]

9+1  ¢(z) 

Here is an example of an Eichler integral that is used in the calculation of the multiloop amplitudes of bosonic 
strings. 

A. Example 

We want a function that transforms like 

aT,„(,) hp. 
./w(Ta(z)) = Mz).fw(z) 	aw.  --c 	 ( 3) 

where 	
Ct a (Z — Pa ) — Wa Pa (Z — Or a ) 

(z — (la ) — w a (z 

for every a = 1, 	, g, i.e. the action of 'fd (z) on this function causes an infinitesimal change in the multipliers w a . 
So, this function must transform like 

fw(Ta(z)) = fa(z)[1.( z) 
+ (z — 	— ha)  5114,1 

wa(cra — Pa) 

In addition to this, we also demand that 

	

h(sa(z)) = h(z) 	 (5) 

where z —0 .5,.,(z) is the transformation that takes z once around the as -loop for a = 1, 	g. 
In order to find the Eichler integral that transforms like this, we shall make analogies between the Eichler integral 

obtained for one loops and the function that we must have for the multiloop case. First we notice that the series 
PP (z) defined in (1), (z 	 a o )(z — Pb)  5tvi, = 

	

wb(ab — Pb) 	e ' 

transforms like 
P„,(T„(z)) = T:,(z)P,„(z) 

so that it is the generalization for the multiloop case of the polynomial (z — a) for the one loop case. 
Now we must try to find an analogue of the WeierstraB (-function suitable to the multiloop case. This can be 

obtained by first generalizing the concept of ap function and of the WeierstraB (-function. This function is given 
by the hyperelliptic ( functions. 6  or best, the ( function'. In our first attempt we attach a (b(v) function to every 
element, of the series P,„(z) so that we have 

fiw (z) = 	6wb  (z  ab)(z  f3b) eb(p) • 
114(04 — 

i.3 ) 

 

(4) 
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This function will not transform the way we want, since the term (2' 01.)(4 	'8`— ' )  and the first abelian integrals ub(z) - 
do not transform in the same way. We then go to the next step which is making e, a function not of the first abelian 
integrals vb(z), but of variables ub(z) (such a change of variables can be jiAtified, as in Baker', §192) such that 

ub(z) = ln (- 11z 	) in ( Oa  
z — fib 	 Oa 

Under a change z - ,T.(z), and after a change of variables, these variables will change like 

u b (To (z))= In w,,, + u c (z) , 

where the coefficient tv,„ is given by 

(1 — wa)/3c — (Na — woad)  
wed 

( 1  — to. )ac — (Pa 	toacva) 

We then redefine the generalized 0 function 0(u) in the following way: 

0(u) = E exp E (n, + 	In wa(nd + bd) E 	+ 	E u,(n, 6.) . 	( 6 ) 
n=—co 	c,d=1 	 c=1 	 c=1 

Defining now 

(6(u)  = ► o(u)
du b 

	 ( 7 ) 

we have 

4 (u(T.(z))) = 4(u ) — bab 

and 

4 (u(sa(z))) = ( b (U) 

We then define the following function: 

(z — o b)(z 130 

	

f(z) = E 	, 	(*)) . 	 (8) 
tvt,(cib — fib) 

This function transforms like 

blvc  (z — cf c )(z —  

fw (T.(z)) = 7:(z)E 	 icc (u(2))  

	

c 	we (cr, /3,) 

ri(z) [v. bu), (z cr e )(z —  10  c ( u(z )) bwa  (z — 

ule(ac — 130 	 c 	wa(

oa)(z —

cva — fl 

flo)  
a) 

and 

ft,(•.(z)) = f.,(z) . 

Since we are summing over all the elements of the Schottky group, we then have: 

btu. (z 	ri a )(z — f3.)1 
iw(T.(z)) = 77)(:)[1.(z) 	

c 	wa(cira — Oa) J ' 
fw(Sa(Z)) 	f,.(z) 

which are the transformation properties we wanted. So we have obtained the Eichler integral that has the effect 
of changing infinitesimally the variables iv a  of a Itiemann surface of genus g. This function can be used in order 
to calculate the measure for the multiloop scattering amplitudes of bosonic strings using the Group Theoretic 
approach6. 
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The scattering operator S in Fock space for quantum electrodynamics in an external time-dependent electro-

magnetic field A p (x) is uniquely determined up to a phaseN. This phase is related to vacuum fluctuations due to 

the presence of the external potential A and, therefore, must depend on it. We can determine the phase A[A] in 

QED3  in lowest order of perturbation theory, by imposing Hogoliubov's local causality condition 121  on S, and show 

that the vacuum-vacuum amplitude is ultraviolet finite. 

The S-matrix S in Fock space exists, if and only if 13+ 513_ is a [filbert-Schmidt operator. In this case it is given 

by 

S 	es+ _5:1 or 	e(s4.-4.1 - obtb e( t-s=1)ddt eS: ILS- +  db 
	 (1) 

where 

Sii = PiSPi 	= +, — 	
(2). 

and 

IC1 2  = det( 1 — 	St + ) 	 ( 3) 

The first factor in (1) describes electron-positron pair creation, the second one electron scattering, the third one 

positron scattering and the last one pair annihilation. 

The differential causality condition for the Fock space S-operator is 

6 	 6S 
 St 

 6,4m(y) 	5A,,(x) 	
= 0, for x °  < y°  . 

As we have said, the S-matrix in Fock space can be uniquely determined up to a phase, 

S = e i v'§ , 

where 8 is unitary, and given by expression (1). Inserting (5) into (4) we obtain 

	 (
SS1, 

SS 	 629, 

4511 0 (y) 	45A,(x)
S1) = i

bAp (y)b.,4,(x) 	bAg
,5

y) l  SS2 ,
bil,,(x) C1  

It can be shown from the unitarity of S that the last term in (6) is purely imaginary. Consequently, the real part 

of the causality condition (4) is automatically satisfied while for the imaginary part we may choose p  conveniently 
such that (4) holds. 

We now turn to the determination of the causal phase in lowest order of perturbation theory. We have 

C(0 +E(S+-)tnabL4Q+ ...) , 	 ( 7 ) 
Inn n 

'Supported by CAPES 

'Partially supported by CNN 
Supported by CAPES 

(4)  

(5) 

(6)  
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where we have put S= 1  equal to the unity in lowest order. Taking the functional derivative of (7) with respect to 

A v (x) and keeping only terms of order 0(A) in the resulting expression, we arrive at 

OSA._  
(§S-1, 

6A,(x)
f2 = iC2 	(St 	 (8 ) 

-+ 45/1(x)) 

In lowest order we may set C 2  = 1. 
The local causality condition (4) together with expressions (6) and (8) yield 

dLir 	62W 
	

+ 0= in  6   A-  (S+- ) t  6::(;) = ° 	 (9) F(r,Y) - A p (06 Ag r) ' 	ciA,(y) 

for x °  < y° . 
Next we calculate the second term in (9). In lowest order of perturbation theory, we have 

,54+1)  = - i( 27r) -1 P+(p)7° e../1 (P+4)P- ( - n) • 	
(10) 

As in reference [3] we use the following representation for the Dirac matrices in (2+1) dimensions: 

-r° 	(13 	 ter , 72  = 	 ( 11) 

where a.' are the Pauli matrices. 
From (10) we obtain 

'Tr6 
?WO 

 (S+_)1 	
4 7) 	

e 2 (270 - 5 	d2p  f (12,1 ei( P+9)(1-Y) tr[P_(-ti)-Y ° 7 °  P+(P)7°71' P-(- (1)] 

- r  d3k e ik( x - Y ) P"(k) , 	( 12 ) 

PPu(k) is not but the tensor of pair creation in (2+1) dimensions, which is given by 131  

	

P"(k)= - e2 (210 -3T"(k) , 	 (13) 

where 

Tfru(k) = 	dap 6 (;)2  - rn2 )0(p° )6[(k p) 2  m2 16)(k °  p° ) t"(k,p) 	 (14) 

with 
1"(k, p) = tr[7"(0 +711) -r P (y -15- en)] • 	 (15) 

It follows from the gauge invariance of (13) that 

P"(k) = 	(k)+ 	(k) 	 (16) 

with 
PS" (k) = 	k' - k2g")B(k2) , P'r (k) = ine" k c,f1 (2)(k2 ) . 	 (17) 

Performing the trace in (15) and the resulting momentum integral in (14) we find that[ 3] 

_ e2 k2 4,132 
	0(k2  — 4m2  ) 

e(ko 
 Nk2). 	 18 

T:2 	
( ) 

2(470 2 	k 2  

fi (2) (k 2 ) = 
-e2

20(k2  - 4m2 )
0(ko)  

(19) 
2(270 

Substituting (12) and (13) in (9), we rewrite the causal function P(x, y) as 

Id (x, y) 	
2 

62W 	- 	.r► z 	d3k e' k(z-Y) T 911 (k) . 	 (20) 
6 ,4,(Y)6A.(x) 	(

p

27r) j  

We can evaluate the imaginary part of the last. term in the above equation taking into account (13) and (16)-(19). 
Thus, we have 

	

T"(k) = 7:; 11 (k)+ T'Ank) , 	 (21) 
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where T.r(k) is real and even in k while rA ll (k) is imaginary and odd in k. Hence, 

17(x  ' Y)  

In order to write 

to ko < 0 

where 

and 

62Ca  
[  ✓ ko>0 

(13k Bill k(a: - y)77 (k) - i jko>0 
 d

3k cos k(x - y)riP(k)] 	. 

a complex Fourier transform we must continue Tvo(k) antisymrnetrically 

62 	 d3 k  e -ik •x-y)friv(k) - riPAY(k)1 , 

(22)  

(23)  

(24)  

(25)  

(26) 

0 (06 Av( x) 	(27) 5  

the last term in (22) as 

F(x ' Y)  = 	A 14) 8  

4'(k)= (k.‘`kP 

B(k2) - 

A v (x) 	2  

- k2gi.,p)B(. 	, 2 
iC 	dP;(k) = irnc 4" k„EI (2) (k 2 ) • 

-e 2 	k 2  + 4m2  
' 	e(k. 2 	4m2 ) Sgli(k0)  

2(47) 2 	k 2 	 Nrk 2- 	' 

-e 	 sgn(ko) 
4 n (2) (k2 ) = 	28(k 2 	m2) . 

2(2r) 	 \fiT2  

The Fourier transform of a causal function vanishing for x 0  - y()  = I < 0 satisfies a dispersion relation. Since 

cesw (k) and d7 (k) are real and purely imaginary, respectively, they cannot be the Fourier transform of a causal 

function. The lacking imaginary part of dr(k) and the lacking ,cal part of d'A" 1 (k) must de supplied by the first 

term containing the phase coiAl, 

67W 	d3 k c -ik(r - Y ) [ir isw (k)- r 1;tv (k)1 , 
SA,(y)6A„(x) - 2 

(27) 

where 

1  j+00 	d's`"(ki) 
rr (k)= - 	di 	  

(t — io) 2  — t + io) 

= °7-(k; I km - k2g1" 	
1 

) — (1 + 7-.   
112  , 	 VIT  4 1 	 T:  ) 

log 
k 2  J 	1 + Tmr 

(28) 

and 

.1+00 	d"(ki) 	 ko  A  r
A
" (k) = 	

-00 
di 

(I - i0)(1 	+ i0)
= 

r 
4irne" 

N./1J 
log 	

v  '\17  

with # = -e 2 /[2(4n) 2 j. 

The causal phase is obtained by two integrations 

9[A] = 2 f d3x f d3y 

where 

A 	+ 	(A 4  ) 

ko ll (1 2) (k)1A„(k)A;(k) , 

A 0,045  is9Av  

d3k 
2 

(x) A p (y) 	,(x) 

(

k

-k2 	g") 11; 1) (k) + 
{ 

(29)  

(30)  

-- v -r;) 
ny 	i3 )(k) 	V172 	2 	

E 
+ 4m log 	4m  + 4m 

k 2  ) 	 vriT 
UP.  

ric2)(k) — 40 log  1  - qm 
11 Al 	I+ 
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If we decompose the electromagnetic fields which appear in the integrand of (30) into the respective real and 

imaginary parts we see that 9[,4] is indeed real. The S-operator in Fock space S[A] is then completely determined. 

By means of (1) and (5) we obtain the vacuum-vacuum amplitude 

(Q, SO) = 	e s+- s:btdt0 ) = 	 (33) 

The absolute square 
1(12,SC2)1 2  = C2  = l — P 

	
(34) 

must he equal to one minus the total probability P of pair creation, 

I' = —27r1 da k P"(k)A 0(k)A:(k) , ( 35 ) 

since the external field can change the vaccum state only into pair states. In order to combine the normalization 

constant C with e"P we write the former in the exponential form 

C = exp [rr J d3 k 	+ 0{11 4 1 

Hence, from (16)-(19) we get 

C = exp.( 	d3 k 	 e v ) fl (21) (k 2 )+ irric" k n I1 (22) (k2 )1.4,(k)A:(k)} , 

where 
Arne 4#0(k2  — 4rn 2 ) 

11 21) (k 2 ) = 	(1 + 1 ) e(k 2  — 4m 2 ) , 11 (22) (k 2 ) = 
1/P.  

Finally, taking into account (30)-(33), (36) and (37), we obtain the vacuum-vacuum amplitude 

kv 
(S2, SSI) = exp{i— 

2 	
d3k  R—

k2 	
g"`) 11 (1)(0) + ime"ka ll (2) (k 2 )] A o (k)A;(k)) , 

where 
11 (1) (0) = 11 (1 1) (k 2 ) — i11 (21) (k 2 ) , I1 (2) (k 2 ) = II (12) (k 2 ) 	ill (22) (k 2 ) 

In contrast with the four-dimensional case, the vacuum-vacuum amplitude is ultraviolet finite and exhibits an 

additional contribution front the antisymmetric part of the vacuum polarization tensor in (2+1)-dimensional space-

tinteN, which emerges from the topological structure of the theory. 
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Recently the Hamilton-Jacobi formulation for first order constrained systems has been deve-
loped. In such formalism the equations of motion are written as total differential equations 
in many variables. We generalize the Hamilton-Jacobi formulation for singular systems with 
second order Lagrangians and apply this new formulation to Podolsky electrodynamics, 
comparing with the results obtained through Dirac's method. 

1 Introduction 

Systems with higher order Lagrangians have been studied with increasing interest because they appear in many 
relevant physical problems. As examples we have the consistent regularization of ultraviolet divergences in gauge-
invariant supersymmetric theories Nor effective Lagrangians in gauge theories [2]. Besides this, the fact that gauge 
theories have singular Lagrangians is in itself a motivation to the study of the formalism for second order singular 
Lagrangians. 

The Lagrangian formulation for constrained systems can be found in references [3] and [4] while the Ilamiltonian 
formulation of singular systems is usually made through a formalism developed by Dirac [5]. In this formalism 
the constraints caused by the Hessian matrix singularity are added to the canonical Hamiltonian and then the 
consistency conditions are worked out, being possible to eliminate some degrees of freedom of the system. Dirac 
also showed that the gauge freedom is caused by the presence of first class constraints. 

The study of new formalisms for singular systems may provide new tools to investigate these systems. In 
classical dynamics, different formalisms (Lagrangian, Hainiltonian, Hamilton-Jacobi) provide different approaches 
to the problems, each formalism having advantages and disadvantages in the study of some features of the systems 
and being equivalent among themselves. In the same way, different formalisms provide different views of the features 
of singular systems, which justify the interest in their study. 

Here we generalize the Hamilton-Jacobi formalism that was recently developed [6] to include singular second 
order Lagrangians. In Sect. 2 we develop the Hamilton-Jacobi formulation for a general second order system and 
apply this formalism to the case of a singular second order system in Sect. 3. An example is solved using Hamilton-
Jacobi formalism in Sect. 4 and compared with Dirac's approach used in ref.(9]. Finally, Sect. 5 is devoted to the 
conclusions. 

2 Hamilton-Jacobi formalism for second order Lagrangians 

Recently a new formalism for singular first order systems was developed by Ciller [6] who obtained a set of Hamilton-
Jacobi partial differential equations for such systems using CaratIniodory's equivalent Lagrangians method and wrote 
the equations of motion as total differential equations. 

In this section we will use Caratheodory's method to develop the Hamilton-Jacobi formalism to a general second 
order Lagrangian. This formalism can be applied to any second order Lagrangian and is not limited to singular 
ones. The singular case will be considered in the next section. 

•Partially supported by CNPq 
Supported by CAPES 
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Caratheodory's equivalent Lagrangians method to second order Lagrangians says that, given a Lagrangian 

L(ci i ,qi,qi,t), we can obtain a completely equivalent one by: 

is 
= L 	

dt 
	

(I ) 

These Lagrangians are equivalent because the action integral given by them have simultaneous extremes. So we 

can choose the function S(qi,cti, 0 in such a way that L' becomes an extreme and then we reduce the variational 

problem of finding extreme for the Lagrangian L to a problem of differential calculus. To do this we must, find a 

set of functions , i3i(qi,t) and S(qi,qi,i) such that 

L' (qi ,A,so ; ,t). 0 	 (2) 

and for all neighborhood of 	/3; (qi ,t) and 4i= soi(cii,ili,t): 

	

(q; ,() ; ,4 ; ,t) > 0 	 (3) 

With these conditions satisfied the Lagrangian L' will have a minimum in 4i= /3; (q; , t) and qi= 	(qi ,qi,t) and 

consequently the action integral will have a minimum. So, the solutions of the differential equations will correspond 

to extremes of the action integral. 

Using condition (2) we have: 

OS 
at 4,0. 

4. = SP. 

[ 
OS (D r il i , l) 	OS (qi ,qi ,t) 	..} 

(4)  L (qi,ili,ii„t) rl: qi 
Oqi 	 0 qi 

Since q1= A and 	If; are minimum 

a v 

points of L' we must 

„ 	as 

have 

a  qi  (5)  q,=13, 	 a  qi  q,=0. 

Analogously: 
0 L' OS 

0 
or, 	d OS 

(6)  ----aqi 

 q i=0 i 4,=v. = 

[ 	

ih I -,; ,4 :: :. 

From these results, using the definitions for the conjugated momenta for second order Lagrangians (see ref.[7] 

and rel[8]) and writing 4 ; =4; , we have from equation (4) that., to obtain an extreme of the action, we must get a 

function S(q; , 4 ; , t) such that: 
as 
at = 	 (7) 

Ho = pi 	4-71- ;  4;  —L 	 ( 8 ) 

as 	as 
pi =—; 7ri = -=" 	 (9) 

aqi 	q ;  

These arc the fundamental equations of the equivalent Lagrangian method, equation (7) being called the 

Hamilton-Jacobi partial differential equation (IIJPDE). 

3 Formulation for singular second order Lagrangians 

We consider now the application of the formalism developed in the previous section to a system with a singular 

second order Lagrangian. When the Hessian matrix has a rank n — R, H < n, the momenta variables will not be 

independent among themselves. In this case we can choose the order of accelerations fh=q; in such a way that the 
minor of rank 11 - R in the bottom right corner has nonvanishing determinant: 

det 

 

02 L 

 

= det 
Orb 

a qr, 
0;a,b=R+ 	 (10) 

 

a tin a Tib 
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Therefore we can solve the n — R. accelerations q a  in terms of the coordinates (q, Fly the momenta 7r a  and the 

unsolved accelerations (l a  (n= 	R) as follows: 

4„.= fa  (qi , 	rb , 4
01 

 

Besides this, we can write for the momenta 7r„ and p c,: 

ira = 	 Pa, 7ra ) 
	

(12) 

Pa = — HP 	 (13) 

Anyway, from a general constraint given by any expression like (1),,„ (p, q, 7r, 4) = 0 we can always obtain expres-

sions like equations (12) and (13) (see ref.[8]). 

The Hamiltonian H o , given by equation (8), becomes 

HU  = Pa q a 	 + 7rafa+ go 70124=— 	 L (qi,qi 	qa =  fa) 
	

(14) 

where a, # = I, ..., R.; a = R.+ 1, 	and will not depend explicitly upon the accelerations qa . 

From this point we will adopt the following notation: the coordinates t and qn  will be called t o  and t,„, respec-

tively, and 4a  will be called to  The monienta pa  and ir c, will be called pf., and Poi , respectively, and the momentum 

Po  will be defined as: 

14 = P0 + Ho  0; Hi.  pg + 	0 ;  Hi: = 	+ 11: = 

were we use pc, =; Ira  = ..s  in the expressions above. 

From the definition above and equation (14) we have 

allo OH: - Ow, 

	

=`"— qr. thr, 	g. thr, arb 

	

ailL 4  . __,Oirr 4  mg + ri 	• oil: 4.  di i g 
= — 	 (18) 

opt, 	aPb 	̀' —OTT, 	b—gb  — qa  a Pb 	Opb 

where a = 1, ..., R; a, b = .1?+ 1, ...,u. 
Remembering that qi=rii and multiplying by di = di o  we have from equations (17) and (18) 

OH
i 

 'S 	oil:  
d ii= 

ori 
ON 

(Bo + 	die, 	
az; 

	

+ 	d in ; i = 1,...,11 	 (19) 
ar  

aiii 	8.11:f 	011 1: 
dq i  = 	° di0  + 	din  + 	d in ; i = 1, ..., a 	 (20) 

OPi 	api 	Op; 

OH() 	all 	OH: 	OH' 
dqo = di = 	dto+ 	di n  + 	d i n = -- )-di o  = dto 	 (21) 

aPo 	OPo 	OPo 	OP0  

noticing that for i = /3 = I, ..., R we have an obvious identity. 

Considering that we have a solution S (qi ,qi, t) of the set of ILIPDE given by equations (16) and using equations 

(19) and (20), we can obtain total diferential equations for the momenta: 

OK , 	iill`1" , 	oil': , 

	

(171i = — --=aio — —at c, 	a t o 	 (22)
0 (I; 	a ii, 	a 4 ;  

	

am, 	ati:„P 	a If ,`.:r 
:i  

	

dP0 = — t dio — ,,.—
a 
 di n, 	- ,—Ti-;-d in 	 (23) 

ol 
01.1( , 	OHT , 	OH': , 7  

	

dp, = — 	 aia — 	ate 	a L(I 	 (24) 

	

ow 	aqi 	NJ 

J'o 
as 

= 	
(15) 

Then, to obtain an extreme of the action integral, we must find a function S (qi,qi,i) that satisfies the following 

set of 11.11 3 DE 
(16)  

(17)  
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These equations together with equations (19), (20), (21) and 

a ti, 
+ 

a H,;) + 7r.  Ls„H`) dia  
(— 	tv. 	rra , 7  -r.  dto + (—Hg + )2,, --s'-`9111P 	P 

dZ = 	No + pa 

,, 	afro,- 	
aPa 	8r„ 

+ (-17 . + Pit- -).  + r„ -1- 42—r cn dic,
a  

where Z = S (qi,4i,t), are the total differential equations for the characteristics curves and, if they form a completely 

integrable set, their simultaneous solutions determine S (qi,4,,t0) uniquely by the initial conditions. 

4 Example: Podolsky generalized electrodynamics 

In this section we will consider a continuous system with Lagrangian density dependent on the dynamical field vari-
ables and its derivatives upon second order: E = , Otb , 02  0) . We adopt the metric q„ = diag(+ , —1, —1,-1) 
with Greek indices running from 0 to 3 while Latin indices run from 1 to 3. As stated previously, the generaliza-
tion of the formalism presented in Sections 2 and 3 is straightforward, being necessary only to consider that the 

a 	a 
momenta, conjugated respectively to tJi and tt , are now given by: 

az„, 	8.0 	 ( OE 
- zeta 	 (JO —=3 p, = 

a 	a (a, 	) 	8 1.1) 

7r„ = OC 
	

(27) 
tt) 

With this modification we consider the case of Podolsky electrodynamics which is based on the following La-
grangian 

1 
C = --

4 
 Fi b  FP' + a28),P"A 8,,F,„ P 	 (28) 

were F„,, = 8„A„ 0„21„. 
An analysis of the Hamiltonian formalism for this theory was carried out in ref.[9] and we compare some of the 

results presented there with the formalism developed here. With our dynamical variables chosen as AP and ;1 4 .-- A P 
 the conjugated momenta, as given by definitions (26) and (27), are: 

= -Fop - 2u 2 	PA 45 k  N — aoa,, ro  A) 	 (29) 

ir„ = 2a 2  (8),17°A 45 °  — OA Fp A ) 	 (30) 

The canonical Hamiltonian is: 

H, =f ex [re al Iii  + pi A '  + 47171  ffilt i  ri8kFik  + riOi  A0 + 741  F„„P” 

1 	 -1 	. 	 -  
± 2  (Ai —ai A o) 	—(7A0) —a 2  (a, A

k 
 -0kO k  Ao) (a; A

, 
	AO)] 

(31) 

Using Hamilton-Jacobi formalism we have: 

14= Hc + Po; Po = OS 
	

(32) 

Ifs = vo; 14= Po — a k Irk 	 (33) 

The total differential equation for A' is 

OH' 	OH; 	8H
2 dA0 aPi 

d.,4 1  = ° dt + —d Ao + 
apt 	apt 

(25)  

(26)  

(34) 
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. 	n , 	n,  
= 	dt dA` =A di 

and simply gives us the definition of A . 

For A ' we have: 

am, 	an; _ 	= + 	di A, d A = di + d Ao 	
— (2a2w 

+a 
") 

For the momenta pi and P o  we have 

at — 

	

dp° , an,; 	ally  
-d A 
 _ an; 

	

0,40 	D-To o — D—A-;dito = [—ai (A' -ai .n o) - 2020' ak (a, A' -aia' A 0 )] dl 

Finally for it' we have: 

, 	an' _ 
o 

an, 
= — —at — 	A — —2  ciAci = 	FC)i — 2a 2 	b."1 di 	 (39) 

a Ai 	 a .A; 

Equations (37), (38) and (39) are completely equivalent to the results obtained in ref.[9]. Espccifically, equations 

(38) and (39) give us the secondary constraint obtained in ref.f9] that isn't present in the total differential equations. 

5 Conclusions 

We obtained a generalization of Hamilton-Jacobi formalism whose results agree with those obtained using Dirac's 

formalism. In this formalism those coordinates whose correspondent accelerations can't be solved in function of the 

momenta are arbitrary variables of the theory. We obtained a set of Hamilton-Jacobi partial differential equations in 

terms of these variables and from this set we obtained the equations of motion of the system as the total differential 

equations for the characteristics. These total differential equations so obtained must satisfy integrability conditions 

and for these conditions to be satisfied the nature of the constraints (first class or second class) will play an essential 

role. The study of these integrability conditions is in progress as well as the generalization of the present formalism 

for Lagrangians of order higher than two. 
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We summarize some properties of the supersymmetric integrable Two Boson equation (sTB). 
We present its nonstandard Lax formulation and tri-Hamiltonian structure, its reduction to 
the supersymmetric nonlinear Schr&linger equation (sNLS) and the local as well as nonlocal 
conserved charges. We discuss the graded cubic algebra of the nonlocal conserved charges. 
We point out that the sTB and sNLS equations can be viewed as a constrained nonstan-
dard supersymmetric Kadomtsev-Petviashvili system (sKP). Finally, we identify the second 
Hamiltonian structure of the sT13 equation with the twisted N = 2 superconformal algebra. 

The study of integrable models has provided for a long time a crossover arena between mathematical and 

theoretical physics [1]. Recently, these models have found a relevant role in the study of strings through the matrix 

models [2]. So, its is natural to study supersymmetric integrable models since they are likely to play an important 

role in the superstrings [3]. The most widely studied supersymmetric integrable system is the supersymmetric KdV 

(sKdV) equation [4]. But, there are other integrable systems, which can be obtained by supersymmetrization of 

other well known bosonic ones and may have an important role in physical applications in the study of the super 

matrix models. We give a description of some of our recent results [5-9] on the supersymmetric Two Boson equation 

[6]. A detailed review of this system and other results can be found in our review paper [10]. 

The Two Boson system (TB) is a dispersive generalization of the long water wave equation [11] and has appeared 

in the literature in the study of bosonic matrix models [12]. The equations for this 1 + I dimensional integrable 

system are 

(2J i  + — JO' 

OJI 

at 
= (2J0.11 + (I) 

The TB equation has a tri-Hamiltonian structure [11] which can be obtained from modified Gelfand-Dikii 

brackets [13]. The second Hamiltonian structure is related to a Virasoro-Kac-Moody algebra for a U(I) current (an 

affirm algebra) (13]. 

A supersymmetric generalization of (1) can be constructed [6] if we introduce the fermionic supethelds 	= 

Vio 	 = 	+ 0,11  and the supercovariant derivative D = E817  O. The most general, local, dynamical 

'This work was supported in part by CNN' (J.C.B.) and the U.S. Department of Energy Grant No. DE-PC-02-91ER40685 (A.D.). 
'Permanent address: Universidade Federal de Santa Catarina, Depto. de Fisica - C•Ail - Campus Universittfirio - 'frmndade - CP 476 

- CEP 88040-900 - Florianopolis- SC, Brazil 

ajo 

at 
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equations in the superspace which are consistent with all the canonical dimensions and which reduce to (1) in the 

bosonic limit are 

&pc, 
at 

ail 

m 

-(D 4 4)0) + 2(D4)0)(D 2 4)0)+ 2(D 2 4) 1 ) 

• aiD(40(D 2410)) + a 2 D(4.0 4) 1 ) 

(D4 4) 1 ) + D(( D2 01)4)o) + 2(D 2 4)1 )(D.()) - b2D(rbi(D 24) 0)) 

+ 2( 04)i )(D 2 41 o) + b3.14)0( D 2 4,0) + b4  D(44 14)0)( D4)o) 

+ b5D(4)0(D4 .0) + b6D( 4)0(D2 c130)( 1)410) (2) 

where ai and bi are arbitrary parameters. However, equations (2) are integrable only for specific choices of a; and 

14. In fact, a consistent Lax representation can be obtained for the system (2) with the Lax operator 

L = D2  - (Dth) + 13- '1)1 	 (3) 

a L 
7)7  = [r„ (0),,i 

where D -1  = 0-1 D. So, the most general supersymmetric extension of the dynamical equations ( l) which is 

integrable is given by 

= -(1)4 (1)0 ) + (D( D4'0) 2 ) + 2 (1)2 (P 1 ) 

= (D 4 4) 1 ) + 2(D2 ((D4)o) (11 1)) 
	

( 5 ) 

These are the supersymmetric Two Boson equations (sTB) [G]. It is straightforward to check that these equations 

arc invariant under the N = 1 supersymmetry transformation 0 — 0+ c and 	x Be. 

Since equations (5) are integrable we have an infinite number of local conserved charges in involution which can 

be obtained from 

Q„ = sTr L" = 	dz sites L" 	n = 1,2,3,... 	 (6) 

They are bosonic and arc invariant under the supersymmetry transformation. 

Defining the Hamiltonians of the sTB system as N n  = 	Qn  we can write the sTli equations (5) as a 

Hamiltonian system [6] 
)

= D3 

	

(44, 	
(6111.)  

( 	
= 	=

41 0) 	 64, 0  

am 	
.11.2 

4)1 ) 611,  

	

Tr.; 	 64,1 

(7 ) 

where the first structure has the local form 

(-.D) 
D I  = 

-D 0 ) 

and the second has the nonlocal form [8] 

-2D - 2D -1 4) 1 D -1  + D-  '(D2 410)D- ' (D2 4)0)D-1  Da  - D(134)0) + 0-1 . 1  D ( 	 ) 

The third structure, which is highly nonlocal, can be written as D3 = R D2 = it2D i  where R.= D2D,-1 . 

and the nonstandard Lax equation 

(4) 

= 

(8)  

(9) 

- - (D410 )D - D(I), D -1  iy2 D24, 1  
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The sTB equation reduces to many other supersymmetric integrable models such as the sKdV and rriKdV 

[6,9,14 Let us show how the supersymmetric nonlinear Schrodinger equation (sNLS) [14,5] can be obtained from 

the sTH system [6,9]. Defining the fermionic superfields Q = + Oq and Q = + O, the invertible transformation 

4)0  = -(1)1n(DQ))+ (D -1  cam) 
4), = -?(DQ) 
	

(10) 

yields, after a slightly involved derivation [6], the following equations from (5) 

OQ 
--517 = -(LY I  Q) + 2 (D((DQ)0)) Q 

azj = (WM — 2  (M(Da)Q)) 

These are the sNLS equations without free parameters obtained in [10] and shown to satisfy various tests of 

integrability [5]. In [7] we have shown that (11) has a nonstandard Lax representation with Lax operator given by 

C = - (D2  + 	- 	I  ( DQ)) 	 (12) 

The hi-Hamiltonian structure for the sN LS system was derived from the s'I'B ones, through the field redefinition in 

(10). This can be found in reference [9]. 

If we rewrite the operator C using the supersymmetric Leibnitz rule we get 

= - (D 2  + E 111,1F") 
n=-I 

(13) 

where 11)_ 1  = 0 and 	= (-1) 1-421  (D"Q), (n > 0). Here, Wen  lei - 2n - 2n-F1) are bosonic (fermionic) superfields. 

In this way G has the form of the Lax operator for the sKP hierarchy and, therefore, we can think of the sNLS 

system as a constrained supersymmetric Kadomtsev-Petviashvili system (sKP) but of the nonstandard kind (even 

the sTB can be viewed as a constrained sKP system). However, the Lax operator Gin this case is an even parity 

operator and not of the usual Manin-Radek form [4]. This is a new system, namely, a nonstandard supersymmetric 

KP hierarchy, and was studied in [7]. It gives a new supersymmetric KP equation and unifies all the KP and rriKP 

flows. 

As we have already pointed out the sTB equation, given by the Lax operator (3), has conserved local charges 

Q, obtained from the integer powers of the Lax operator as In (6). Also, the sTB has a supersymmetric charge 

Q which is local and conserved and implements the supersymmetric transformation. For the sTB equation we also 

have the presence of nonlocal charges [8] and they can be obtained from 

F21.-1 = sTr L 2 	n = 1,2,3,... - 	 (14) 
—3—  

These nonlocal charges are conserved and are fermionic. The nonlocal charges F2....• as well as Q are not super- 
-5— 

symmetric. 

We can now ask about the algebra of these charges Q r,, Q and Faj [8]. First, we obtain 

Qmh = fQn, 	= {Q.,(211= 0 	 (15) 
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which simply implies that these charges are conserved wider any flow of the hierarchy. The fact that Q and 

are not supersymmctric is expressed by 

Q} = -Q2 

F1/2)1 = Q I 

1(2, F3/2)1 

	

(Q, F5/2) t 
	

-
3

Q3
24

Q ■ 

	

(16) 

And the algebra for the lowest order nonlocal charges is 

Fil2)1 = 0 

{F1/2) F3/2) 

V-1/21 F5/211 = Q2 

IF3/2, F3/2)I = 2Q2 

	

IF3/2, P5/211 	
:
- (23 + 24 Q; 

6/2, P5/211 

• 3

Q4 
8

„,
L12 

5 2, 	 (1 7) 

So, the algebra of the conserved charges of the sTB system closes as a graded nonlinear algebra. The cubic terms in 

the algebra above arise from boundary contributions when nonlocal terms are involved. In fact, algebras of nonlocal 

charges showing nonlinearity of the cubic kind are present in various other systems and are related with Yangian 

structures [15,16]. The nonlinearity in (16) and (17) appear to be redelineahle to cubic terms [8]. This is well known 

for the nonlinear sigma model [16]. 

From (16) and (17) we see that 6/ 2  has the same algebra, with the other generators of the algebra, as the 

supersymmetry charge Q. Thus, this can be identified with a second supersymmetry charge and this shows that 

the sTB equation has in fact an N = 2 extended supersymmetry [17]. 

Finally, with the linear change of variables 	- (ri) 10  - tbi) and = IC the second Hamiltonian structure (9), 

in terms of components, gives the following nonvaninshing Poisson brackets [10] 

Jo(x), Jo ( Y ) } 2 

(J0(.0,11(012 

{ Jo( x ), Z(Y))2 

I Jo ( x), 012 

{Ji (x), J1(.0 }2 

(Ji (x), 0) 2 

(Ji (x 	y)) 2 

a(x ), ( y)) 2 

26'(x 	y) 

(J0 6(x - y)) /  6"(x - y) 

45 (x - 

6(x. - y) 

= ..9(x - y) + 2./It5 1 (x y) 

= 461 (x - y) 

y) + 20 1(x - y) 

1 	 1 

4 
-

4
-J15(x - + 4-(Jo(x - 7)) 1  - -611 (x (18) 
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This local algebra is nothing other than the twisted N = 2 superconformal algebra [18] whose bosonic limit is 

the Virasoro-Kac-Moody algebra for the sTB system [10]. 
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We present a constructionn of the q-Deformed Energy-Momentum tensor in terms of 
//Xs-u-(2)) currents. We also find a q-analogue of the classical equivalence theorem, which 
states that for simply laced level one Wine Lie algebras, the total Energy-Momentum tensor 
is proportional only to the Cartan Sub-Algebra part. 

1 Introduction 

In the last decade, it has become well known that conformal synunetries play an important, role in a broad class 
of two dimensional models in field theory and statistical mechanics. The Physical content of these models may be 
extracted by use of representation theory of the Virasoro algebra [1], generated by the Energy-Momentum tensor. 
In special, there are models in two dimensions, such as WZNVV models, in which the Energy-Momentum tensor 
may be written quadratically in terms of currents of an alfine Lie algebra [8], the so called Sugawara construction. 

Quantum groups also appeared as underlying symmetry in many physical systems such as integrable models, 
lattice statistical models with anisotropy, quantum Hall effect and conformal field theories. The algebraic structure 
is characterized by the so called llopf algebras dependent on a deformation parameter q = e(  [4]. When the classical 
limit (q 1) is taken, the features of these symmetries disappear leaving only the usual symmetries. As an example, 
a q-deformed version of Fubini-Veneziano model was proposed by replacing the ordinary oscillators by q-deformed 
ones in the operator formalism, it was shown that this new model lead to non-linear Regge trajectories [3]. 

Many efforts have been made in order to find a q-deformed version of Virasoro algebra [9] [10] [5]. The principal 
motivation is to construct new field theoretical models in two dimensions which posses this q-deformed conformal 
symmetry. This work consists in a construction of the Energy-Momentuin tensor in terms of currents of //9 (rd(2)) 
q-defornied Kac-Moody algebra, this is a q-analogue of Sugawara construction. We also show that the constituent 
parts of this Energy-Momentum tensor satisfy a closed quadratic algebra. 

2 The Classical Case 

The Fu. (2) current algebra is defined by three currents 

E± (z) 	En± z _n_I 

n.—n7 

co 

11 ( z) 	E //„:—"— 1  
n = co 

( I)  

They satisfy the OPE relations (for k=1) 

±NfiE±(w) 
 lzi > H(z)E ±(w) 

(z - w) 

	

11 (z )11(w )   Izi > I wl, 

1 	%fill ( w)  
E÷(z)E- (w) 

- to) 2 	(z 	10) 
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Izi > (2) 
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where the symbol -- means equality up to regular terms. 
It is possible to construct a vertex operator realization for this Kac-Moody algebra at level one (7]. Define the 

Fubini-Veneziano field to be 	
C(z) = Q - iPln z + iE 	z— , 

	

nO0 n 

	 (3) 

where the oscillators a. and modes P and Q satisfy 

[a„ am ] = 126.3+n ,o ; [Q, 	= i . 

The currents (1) are defined in terms of (3) as 

E* (z) = : e± i ‘54(' )  : ; H(z) = itig(z) 

where the dots denote the normal ordering among oscillators 	and Ho = P • 
The classical Energy-Momentum tensor is defined in terms of 611(2) currents as 

T(z) = 6  (;,`11 2 (z) 1:, + x  E+(z)E -  (z) ).` + )„' E+ (z)E -  (z) ),(,) 
	

(4) 

here, the crosses denote normal ordering among the modes defined by expressions (1), this is equivalent to find 
the regular part of the OPE after taking the equal point limit. The classical equivalence theorem states that the 
Energy-Momentum tensor (4), when currents are written in vertex operator realization, is equivalent to 

T(z) - 
2 
- V.1 2 (z)',((  1 	

( 5 ) 

3 The q-Deformed Case 

In order to obtain a q- deformed version of the Energy-Monmentum tensor, we take as starting point the quantum 
affine . Lie algebra ti,(a(2)) at level k=I, we shall be assuming the deformation parameter to be a pure phase, i.e. 
q = e" for ( real. Defining new currents 

E ,Pnz -n  = 	exp 	- q -1 ) E /1„z-. I  , 
n>0 	 ro} 

4)( z) 	E 	= 	exp -%fi(q - 	E H„z' 
	

(6) 
n<0 	 n<0 

Here, the expression 01/(z) - (1)(z))/(1,5z(q - .7' 1 )) is the q-deformed generalization of the classical H(z) current. 
The OPE relations of this algebra are [2] 

wq 3 )(z  - wq -3 ) 
(z - wq )( z  - wq _ 1)  4(t0)41 (z)' 

q±2
(z - wq±1) 

EI  (w) ,k (z) , 

q ±2(z cw)E ± (z) , 
(z - we') 

I 	*(t10) 	4qw(1 -1 )} 

	

w(q - q-1 ) z - wq 	z - wq --1  

( 
(z
z ±2  - (1 	w 

- wq ±2)
) 
 M E 	

Ef (z) lzi > itvi• 	 ( 7 ) 

The vertex operator realization for these operators [6] using the q-deformed oscillators 

12n][a]  
[an , am] = 	2,1  6m+n,0 ; [Q, P] (8) 

4/(z)(1)(w) = 

W(z)E* (w) = 

E± (z)4, (w) = 

E+(z)E -  (w) -.. 

El  (z)E±  (w) = 
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Define a Pubini-Veneziano field 

e(z) = Q - iP In z + iE 2Li-(zqTir" + 	 . 

.<0 Li 	 n>0 L n l 

	 (9 ) 

and the step operators for 1.1q (sii(2)) 

EI (z) =: exp {±v (z)} : , 	 (10) 

and the modes H. = ct n  , Ho = P. Using the Raker-Campbell-Ilaussdorff formula we find the expression for the 

OPE E+(z)E-  (w), and so, expanding the numerator in q-Taylor series, we determine Lhe pole structure in (7) and 

the regular terms which the first order term is given by 

);,` E+ (w)E- (w);<, = 2[2 -1w20 	
1 
 _ (1 _ 1)2  {[q -3 (A 1 (uni2 ) - 1) + (q - q- ')PP(turTh + 

+ 4)(wq - ;')[q 3 (0 1 (wq 2 ) - 1) - (q - q -1 )1} + C)(q - tr i ) 

where the composite fields A' and Da are defined as 

Aa(w) = (1) -1 (ttiq -  ) ■1/(wqi) ; B ° (w) = 4+(wq -5 )* -1 (wqi) 
	

(1 2) 

Note that the regular part depends only on currents related Lo Cartan Sub-Algebra, this enables one to write the 

general expression of the q-deformed Energy-Momentum tensor as a family of operators labeled by two indices 

Ta45(z)  = 2[21.z. 2 (q

1 

 - q -1)2 tir(z40) 	B"(ze) - 2) 	, 	 (13) 

with A' and 11' defined by expressions in (12). The algebra of the q-deformed Energy-Momentum tensor (13) do 

not close, however its components A° and 13' define a quadratic algebra, namely 

/1"(z)All (w) = f(z0 ; wq -4  ) : fr(z). ,1P(w): , 
B*(z)10 (ID) = f(zer; tvq4 ): I3°(z)13 13 (w) : 
A'(z)BP (w) = f-i (ze ; 	4) : A'(z)1.0(w): 

1.1"(z)AP(w) = f-1 (zq 3 ;wq - S) : 13"(z)AP(Til) : 	 (14) 

where the analytic structure is given by: f(z;117) = - 	)( 
93K:

z - tvq-3 
11  The higher order terms in the q-Taylor - 

expansion of the OPE E+(z)E- (u)) lead us to a more general class of q-deformed Energy-Momentum tensors in 

Sugawara form which generalizes the expression (1:1). 
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Primary fields in the framework of a q-deformed conformal field theory are defined. Some 

realizations of q-deformations of the Virasoro algebra and a q-deformed version of the N = 1 

superconformal algebra are also discussed. 

A prirriary field Ow) of conformal weight h is defined by its OPE with the energy momentum tensor T(z)( 
where w e z denote complex variables) 

T(z)0(w) (zitww
)

2  + (t(tvw))  + regular terms. 

A q-deformation of the theory is achieved by replacing (1) by the corresponding q-analogue 

(T(z)cb(w)),1 = 	 45(wq) 	46 (wq - '  

	

w(q - q - 1 ) z u,q h 	z  _ wq _h
)  
 + regular terms. 

An abelian field H(z) can be Laurent expanded in terms of a q-deformed infinite Heisenberg algebra H g (co) 

H(z) = E 	z- " -  1 . 
n = CO 

where the oscillators a n  obey the following commutation relation 

[a„, a m] = [71]6„, +„,0 , 	 (4) 

with [n] = 	- 	- 	• 

Its OPE is given by 

1 

(z wq)(z - wq -1 )' 

where we choose WI = I and the dots denote normal ordering in the sense that the positive oscillator modes are 
moved to the right of those with negative. 

We now evaluate the OPE of T(z) = s : H 2 (z) : with H(w) 

(w) = tuo 	ri)  ( z wq z  _ wq _ i  
H(wq) H(wq -1 )  

T(z)H 	
) 

Therefore one can infer that H(z) is 'a spin 1 primary field and that T(z) can be considered as the energy 

momentum tensor. The shifts in the arguments of H(w) in the r.h.s. require an extra index for the closure of the 
algebra of the energy moment • 

Generalizing we are able to define a family of operators 

	

7'°(z) = 1: H(zqi)11(zq - S") : 	(CI E Z), 	 (7) 
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(1)  

(2)  

(3)  

H(z)H(w) =: H(z)H(w) : + (5 ) 

+ regular terms lzl > lwl. 	 (6) 



In the limit q .---• 1 these I? (z) become 

1 

)
(z - wq - Pt  )(z - wq) 

IzI> lw l- 
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which possesses an OPE algebra 

1 	T-13- °+ 1 (wq -1 ) 
T°(z)V(w) = 	  

z - wq 4ia-EI 	z - wq _ 1 
 

7.-°-  + (wq9±  )  	 
w q=:1 (q 	q'r 1) 	Z ..■ Wq =°-&"  + I 	Z - wq =P--?' 1  

+ 	
1 	( 7,13 + . 4.1 (wq 4.1 ) 	713+a- I ( wy =75-. 1  )) 

 wilF" 	 ±S-• 	  + 
(q - q-1 ) 	z - wq 	z - wq 2  

I 	(T-04-0+1( wir qa) 	T- 0+01 (wq) 
+     + 

Wq =fi-1 -.  (47 	q -1 ) 	z - wq 7-Cfa + 1 	z - wq mPlt  1  

1  

	

4(z - wqF - + 1 )(z - wq - - I)(z - wq  pa  +I)(z - 	-1 ) 

1  
Izi > iwi• 	 (8) 

	

4(z - wq ---&' + 1 )(z - wq me7 1 )(z - wq 2*' ÷ 1 )(z - wq 	-1 ) 

In the limit q — 1, we have fa n , 	= rt454,„0 and the Ta(z) become T(z) = z : H 2 (z) :, which satisfies the 

Virasoro algebra with central charge c = 1. Hence the algebra (8) represents a bosonic- realization of the q-Virasoro 
algebra. 

Other realization can be achieved by means of free fermions. Let tP(z) be a fermionic field with OPE 

tp(z)0(w) 	tp(00(w): + (z 	w) IzI> 

A family of operators can be defined 

	

= iarRq 	
1 	

: tp(ze )0(zq - 	: _ 	)  

satisfying the algebra 

L"(z) g (w) 
1 	(  + 14"i (wqi )  

[ck][ajw(q - q - 1 ) 	q 	(z 	wq -1 ) 

[-cr - ,61)L- " -P(wq -  S) 	fa. - 13W -13 0111) 

q ='7"-=( z  - wq -̀ ) 	q mP-F- ( z  - 

[-a + ML-a+0 (t„q z) 	 1  

(z wq4 	(z - wq  ')(zwq4) 

1 
L(z) 	-

2 
: 31,6(z)0(z) 

which satisfies the Virasoro algebra with central charge c = z. Hence the algebra (11) represents a fermionic 
realization of the q-Virasoro algebra. 

We also note that 1/i(w) is a spin i  primary field since its OPE with the energy momentum tensor L 2 (z) is given 
by 

(9) 

(10)  

(12) 

2  

	

(  (W  9) 	(0 ( W 1  
L  ( Z ) P( W) = 	

1 
 9 - i ) u, 	_ wqi 	z - mg - 

One can also define a family of operators 

G`r(z) = H(zqg')0(zq1), 	 (14) 

+ regular terms. 	 (13) 
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where H(z) is given by (3) and 0(z) is a free fermion. These operators represent a q-deformed version of the 
operator G(z) = 11(z)tb(z). 

The OPE's referring to a q-deformed version of the N = 1 superconformal algebra are 

G° (z)C 43 (w) 
20713 +° (wqg' 

z - we 25+  

[p- or+ llg - a+ 1 (wq72 ) 
,7 47j -1-a( z 	wq A-F-Fi) 

[fl- a - 1]./..0- * -1 (wq 
q 1P+0(z - wqF -1 ) 

(z wqA a )(z - wq4-F+1)(z IzI > 
- wq 3 + I ) 

(15) 

1 
r(z)Gfl(w) = 	

(q- IGS-" I (wq =s12 ) 

(16) 

(17) 

2wq!(q - q -1 ) 	z - wq 

q - IG13- u -1 (wq) 	009 +n+ L (wq 941 ) 

z - wcr Lia  

qt GPI - G -1 (weia )) 

z - wq4a + 1 	
+ 

Izi > lwl, 

Gfl+Q ( wq*))  

z - wqq a-1  

I 
L'(z)G 13 (w) - GA-'01/0) 

[a]wq- §(q - q -1 ) 
Izi > lwl. 

z - .u./ 2", " z - evq —  

In the limit q - I we recover the usual undeformed N = 1 superconformal algebra. Details about the con-
struction of a q-deformed N = 2 superconformal algebra (making use of the vertex operators) may be seen in 
[ 7). 

Bibliography 

[1]C.H.Oh and K. Singh, J. Phys. A: Math. Gen. 27 (1994), 3439. 
[2] Fl. Sato, Nucl. Phys. B 393 (1993), 442. 
[3] A.B. Bougourzi and L. Vinet, A Quantum Analogue of the Boson-Fermion Correspondence - CRM-2181 

preprint (1994). 
[4]P. Goddard and D. Olive, Jul. J. Mod. Phys. A 1 (1986), 303. 
[5]H. Sato, OPE Formulae for Deformed Super- Virasoro Algebras - NBI-HE-95-34 preprint (1995). 
[6]M. Chaichian, P. Presnajder, Phys. Lett. B 277 (1992), 109. 
[7] E. Batista, J.F. Gomes and l.J. Lautenschleguer, Non Abelian Sugawara Construction and the q-Deformed 

N = 2 Superconformal Algebra - IFT preprint (1996). 



XVI Encontro Nacional de Fisica PartIculas e Campos 	 353 

Sphalerons in the presence of a finite 'density of fermions 

D.C. Barcin ) , E.S. Fraga b)  and C.A.A. de Carvaihoc) 
Institute de Fisica. Universidade Federal do Rio de Janeiro 

G.P. 68528, CEP 21945.970, Rio de Janeiro, RJ, Brasil 

Received March, 1996 

In a previous work [2], we have studied a one-dimensional system of interacting fermions and bosons that starts 

in a metastable vacuum and gradually decays to the true one. The process considered was the nucleation of bubbles 

of true vacuum inside the false one via thermal activation. Our main purpose was the analysis of the stability of 

these bubbles and the calculation of the decay rate as a function of time, in the presence of a finite density of 

fermions at finite temperature. The inclusion of fermions proved to be remarkable as it has changed qualitative 

features of the physics of metastability. 

The fact that we were working with a one-dimensional system allowed us to solve the problem exactly by means 

of inverse scattering methods. However, as we climb up to higher dimensions, this mathematical tool is no more 

available. Thus, for higher dimensions, we are compelled to make some kind of approximation for the evaluation of 

the fermionic determinant that encodes the fermion effects on the system. This may be accomplished by the use of 

a funcional gradient expansion for the determinant. 

The model Lagrangian has the following form 

=(Op OOP  – [V(0) – V(02)] + Oa( i7 ° 01, – p — 90) to 	 (1) 

where p is the bare mass of the fermions, g is the coupling constant, iPa (x) is the fermion field, a denotes fermion 

species, cfr(x) is a scalar field and ¢ 2 is a local minimum of the potential 1/(0) = 4(0 – 00 2  (ck + ¢o + 	+ jcb, 
where 00 is a constant and j is an external current, responsible for the asymmetry of the potential even in the 

purely bosonic case. 

Throughout this work, we will he inter ested on the effects of fermions on the bosonic field. Thus, in order 

to construct an effective theory for the bosons, we must integrate over the fermions to obtain an effective action. 

However, integrating over the fermions means calculating the determinant Sy = 	 – p – g0)1 
–ir[1n(i7P0,, –p–g0)]. In one spatial dimension it is possible to perform an exact calculation making use of inverse 

scattering methods (5, 6, 2]. For three spatial dimensions, however, we must make some kind of approximation. 

After the fermionic integration, we may rewrite the effective action as 

S,f1[01= dv z f– 2 ( 9,4)(am o) - [v(o) - v(02)1}- 	 g0)] 
1 	

(2) 

where f 	fo  dt f ex. The field configuration that extremizes (2) must satisfy the Euler-Lagrange equation 

OV 	 1 
= 	— Sp < xl . 	 > 	 (3) 

00 	 i 7ma, - N f gO 

where Sp means trace over the spin degrees of freedom. 

We may calculate this Green function using a functional gradient expansion. This means that we will focus on 

the long distace (small momentum) properties of the theory. For such purpose, -we use the identity [9, 10] 

f (Pp 	1 	 ti a 
< 

i
.
1-0104 M(x) ix >=  	 „ 	  

(27Th)" 7mp i, + M(x)E 
AM(. 	x) 
 dp 	+ /14(x)) 

where 

(4) 

2  h 	1 	 0
ap  Am(-5 —

0 
x) = a,A1(x)-:- 	+ (9p 0.,m(x)( i ) 2  opp y  ap 	2  UPI 1 

(5) 
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Expanding this identity up to second order in the derivatives and explicitly perfoimin the integrals, we obtain 

ate 
(PI-90414

3  (p+0) 	

' 

the equations of motion (after suitable redefinitions of the free parameters) CIO = 	 for v = 2, 
a °  

and 0¢ = -Et., for v = 4. 
We shall note that, in the case of v = 4, the only effect of the fermions is (to this order of approximation) to 

renormalize the free parameters of the theory. We will see later that this situation is completely changed if we 
include a gap and bound states in the fermionic spectrum. 

Based on the results of our previous work, we shall seek for sphaleron-like solutions for the equations of motion 
obtained [1, 2, 4, 7]. 

Defining 99 = ¢ + p/g, we have, in the thin-wall approximation [1], for v = 2, 

woh = so2 + wp[tanhV 	tanh( +6)] 	 (6 ) 
2p 2 	 _ where 'pp 	 50 p E 12 (394 	?)) + — y,p121 11/2 = , 	giOp(Z — X c•m .) and 	may be written in terms of the parameters. 

The parameter z c.„,. reflects the translational invariance of the equation of motion and Co is related to what is 
usually called the radius of the sphaleron, beeing extremely important in the analysis of stability. 

Through the calculations above, we have imposed a bubble-like profile [2] and assumed that pig >> 1, consistent 
with the conditions for the validity of the gradient expansion, in order to obtain a closed form for the function that 
represents the sphaleron. 

For the v = 4 case, with 03 = OF) and assuming a solution with radial symmetry, we have, in the thin-wall 
approximation, 

0,ph(*)= 02 - 0p[tanh(g0Pr +G)] 
	

( 7 ) 

where c-61. 1, = ( 3±V[29•1/2  and 4.0  = icosh -1  

Therefore, we have a true vacuum bubble, of radius E0, centered at the origin. The situation is the same we 
would encounter in a purely bosonic system. 

The last results show us that the calculation of the fermionic determinant performed before does not generate 
the complete effective action. In fact, in order to avoid a naive calculation of this determinant, we must take into 
account the influences of a bubble-like background on the fermionic spectrum. Instead of a simple continuum, we 
have the presence of a gap together with pairs of symmetric bound states [2, 5] (We will consider, for simplicity, 
just one couple). Thus, we have a richer spectum and we must incorporate its effects in the definition of our trace. 

Therefore, the complete effective action has the following form 

= 	x 2 (a„45)(aoi 0) — [v(0) — v(0 2 )1+ 

• I[DO) 	< xl 	 
+ M(r) Ix  > 

• n+ g 

	

ly > OB(Y,[951) 	 ( 8 ) 1 [130] 1 excrytb*B (x,[0])< 	. 	 
ryPd p  + M(z) 

where the first term is the bosonic contribution, the second term represents the "Dirac sea" and the last one is due 
to the bound states. r,bB is the wavefunction of a bound state and n± are their occupation numbers ("doping"). 

The only term that remains to be calculated is the last one. The difficulty of the calculation resides on the form 
of 011 (x, [O]). However, it is already known [3] that the charge associated with a bubble tends to concentrate on 
its surface in a gaussian-like way. For our purposes, we suppose that a delta-like distribution will be a reasonable 
approximation.(We are implicitly assuming that the occupation of the bound states will not affect in an appreciable 
way the form of the bubble. In the one-dimensional case, it is an exact result [2, 5]). Thus, we will assume, for the 
wavefunctions, the form 7GB(E, = - 6)e'wg. Then, the complete effective action, for the v = 2 case, is given 
by 

▪ _ dx  (M 2  
I VO) —  V(515 2))/ 

g 	fix 72°   + n+ g 
- 24r 	(ig+  go) 	e( 2 40p tanh(26) 

542)  eff 
T 

(9) 
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The form of the contribution due to the presence of fermions is in complete agreement with the results previously 
obtained [21, providing a positive check of our method of approximation. The results for the v = 4 case together 
with graphics of the energy as a function of the sphaleron's radius for boil] ca.ses will appear soon in a detailed 
paper. 
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During the last few years many different proposals have been considered to bosonize fermionic theories in 3 

dimensions [1, 2, 3, 4, 5]. In Ref. [2], order-disorder field operators related to a free massless Dirac field were 

defined. Applying canonical quantization methods, a bosonic, non-local and gauge-invariant action for an Abelian 

vector field was constructed, the approximate bosonization rules (in Euclidean spacetime) being 

rG 	- 9F„,(-a2)-112F,„ +
2  o 
	+ nqt 

	

# cp ,A19„A A 	# 0 (-82 ) -112  a,,F,„ + nqt 	 ( 1 ) 

where 1b is a two-component Dirac spinor, A N  is a U(1) gauge field, and nqt means non-quadratic terms in A p  (the 

neglecting of non-quadratic terms is what makes this bosonization approximate). 

In Ref. [4], functional methods were applied to derive bosonization formulae for the free massive Thirring model, 

and in [5], the Abelian and non-Abelian cases in any dimension d > 2 were considered. These 'long distance' 

bosonization rules are reliable for the description of phenomena where the fermionic current is not a strongly 

varying field, with a typical scale of variation much bigger that the inverse of the fermion mass. In this regime, 

either the free massive Dirac field or the Thirring model (in 3 dimensions) can be mapped to Chern-Simons theories 

by using the approximate bosonization rules 

	

ti)( + rn)th 
	

2 

	

t-b-rpo 
	

±iF4r 
	 (2) 

This is valid to leading order in 
1 

 —
m 

, while the inclusion of the next-to-leading order term would lead to a Maxwell- 

Chern-Simons theory instead. 

As it was stressed in [4, 5], the possibility of finding exact bosonization rules (in this functional approach), 

depends on our ability to compute the fermionic determinant in the presence of a background field exactly. Thus 
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in 3 dimensions we must use an approximation scheme. The one presented in [4, 5] amounts to expanding the 

corresponding effective action in powers of 
a

. —
In 

 

The question presents itself about how to extend this approximation in order to include cases where the derivative 

expansion is no longer valid,, as it is indeed the case for massless fermions. 

In this letter we attempt to overcome this kind of limitation by including the full momentum dependence in the 

one-loop quadratic part•of the effective action. Whence the results will also be valid for the massless case, without 

spoiling the proper low-momentum features. As no momentum expansion is performed, there is no instability 

problem. Keeping the full momentum dependence one introduces a non-locality in the bosonized action, a property 

shared with the approach of (2]. This non-locality is unavoidable as soon as the derivative expansion, which always 

produces local terms, is discarded. For massless fermions in particular, one cannot escape the non-locality, since 

there is a branch cut, at zero momentum so the one-loop vacuum-polarization tensor cannot be analytic there. 

We start by constructing a bosonized version of the generating functional of current correlation functions in the 

case of a free fermionic field in three dimensions, reviewing the procedure followed in [5]. This method allows us to 

demonstrate the equivalence between 

Z(s) = j[dtb][dtk] exp [— d3x  0(0 + t oi + 7n)  id
J  

Z(s) = f 	[db] exp [—T(b) — i I d 3z 	A o (e,„),0„bA — c„,,v9„sA)] 

whe re T(b) denotes the fermionic effective action in the presence of an external vector field 

T(b) = —logdet( + a g + m) . 

We now make the approximation of retaining up to quadratic terms in bp  in (5). This is consistent with the 

approaches of ref.'s [2] and [5] 1 . The quadratic part of T(b) may be split as 

T(b) = Tpc(b) + Tpv(b) 

TPc (b) = I d3  x 1 Fp.„(b) F(—a2 ) P,„(b) 

Tpv(b) = i ex 2 by 	G(-02 )E 0„,8,o, 
	 (6) 

where Tpc and Tpv come from the parity-conserving and parity-violating pieces of the vacuum-polarization tensor, 

respectively [6]. The function F in (6) is regularization-independent, and a standard one-loop calculation yields 

(k2) — rn [i 	1 	4m 2  
47rk 2  kz 

(_) i 
4m2  

4m 2  
G(k 2 ) = 	2w 	k  arcsin(1 + 	, 	 (8 ) 

where q can assume any integer value [7, 8], and may be thought of as the effective number of Pauli-Villars regulators, 

namely, the number of regulators with positive mass minus the number of negative mass ones. 

Now, we can integrate out the by  field obtaining: 

3  This is equivalent to introducing a 'coupling constant' e by means of the redefinition b,, 	e b,,, nod working up to order in e 2 . 

and 

(3) 

(4) 

(5) 

where here and in what follows we shall always denote momentum-space representation by putting a tilde over the 

corresponding coordinate-space representation quantity. The function G in (6) is regularization dependent, and can 

be written as 

4m 2  
arcsin(1 + 

k2 
(7) 
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Z(s) = I[dA] exp 	da z[ 71-1  Fii p Fpv  - 2 A, C2 C o pAay  AA 

	

+ 1 ( t8u_
2 	

) 
P 

1 	
" 

F 	
2 

i( u+ 	u-  )spe„,,AO„AA] 
N/97   

1  it4 +1 2(F iG) + it 1 -1 2 (F + iG)  

	

= 2 	_82F2 4_ G2 

i lu + 1 2 (F  -  iG) - lu_1 2 (F  + iG) 

	

- 2 	_a2F2 + G2 

	

Let us discuss now the explicit form adopted by (10) for the cases m 	oo and m 	0, to make contact with 

the results of reference [5] (particularized to the Abelian d = 3 case) and reference [2], respectively. This is achieved 

by evaluating CI and C2 in the corresponding limits, and this is in turn determined by the values of F and G. 

When m oo, C1  tends to a constant which multiplies the Maxwell term. This is neglected to leading order in a 

derivative expansion, since there is also a Chern-Simons term, multiplied by the constant factor C2: 

	

C2 	4n 1u1 2  x (q + i rr-i-221 ) . 	 (11) 

C2 is regularization-dependent, and its ambiguity is reflected here by the undefined constant q. To compare with 

[5], we partially fix q by the condition q + sgn(m) = ±1, and chosing u+  = u_ = u = 2 we see that the 

hosonized action (denoted Sb..,), in the partition function (9) reduces to 

Soo, = 	d3  X 	
2

,

II P" v A 
 c a A - 	s

P  c 
	A,„) 

■  

which agrees with the result of [5]. 

Now we discuss the limit m -0 0. In this case we have for F and C the behaviours 

where 

C2 

(9) 

(10) 

(12) 

F(k 2 ) -+ 
e2 

16 	 G(k 2 ) 
q (13) 

which imply for C, and C2 
1 lul 2

C2 	
4rlu1 2   -0 

Ikl 
By taking then 

	

ti +  = 	= 	ei ' , 
4 

the bosonized action in coordinate space assumes the form 

= i d3x( i  F„ ,./.7511  F,„ - i  74 eppA/1001,AA 

sin a 	By  F,, 	.cos a _ 	s  	1— etwx0i., AA) , 
4 'A  V-82 	4 

thus with the identifications 
7r 	 r 	cos a 

0 = — , a = arctan — , f3 = 	 (17) 
4q 	 4q 	4 ' 

the bosonized action becomes identical with the one of Equation (1), which is the Euclidean version of the one of 

Ref. [2]. 
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A natural extension for the free higher-derivative model studied in Ref. [I] is the introduction of a higher-

derivative mass term in the Lagrangean density - which now reads 

£(x) = i1b(x)(00 t )N  00(x) - rn7(T) (00) N  OW. 
	 (1) 

The chiral symmetry is broken by the mass term and the model exhibts only global gauge symmetry. We consider 

in details the canonical quantization of the third-order generalization (N = 1). Using the light-cone variables, the 

Lagrangian density can be w 

= ifii(00!..11)(1) + itbZ2)8:31-0(2) - "2 0(1) 1:1 0(2) 	1P2) 11:10(1). 
	 (2) 

We take the basic variables as being v1 = 0( t ), v2 = &Ow, v3 = 8_2 1p(1)  + im8+  tk( 2). The nonvanishing 

equal-time anticommutation relations, obtained through the Dirac brackets, are 

• 	i 
{00),0!IPZI ) ) = -{0-00),0-Ko) = 1.- .71 { 0-0(1),49-24q2).)= --- 777{02-0(t),alVo)1 = b. 	(3 ) 

Introducing the Fourier decomposition for the fields, we obtain, from the equations of motion in momenta space, 

the quantum solution 

11'0)(0 = a(k)b(k 2  - m 2 ) + 1)( 2)(k_)6(k + ) + co)(4)45(k_) - 	1-b(i)(k+) 
dk_ 

 6(k_) 
k 2 	

(4) 

The effect of the mass term is the introduction of a massive mode in the mode expansion. Tachyon excitations 

do not appear. In a more general case, taking a nth-order derivative into account, this decomposition will generate 

one massive mode and n - 1 mas 

Introducing the fields 

d 2  k a(k)k T 5(1c 2  - m 2 )e -ik r 

L co dk + co)(4)e -ik-fi +  

dk + b( I )(4)c -ik- i- ' +  
Leo 

(5) 

and defining the operator 

the original field turns out to he 

11 
—0(m)  (x) = - 0+0(m) (x) 	 ( 6) a_ (i) 	m2 	(L) 

, 	ix- 	, 
z 

,(m)„ 	1 	1 	, 
00)(z) 	tx1+ -- (1)1.x • ) + —7/(2)kx - )+ —Nok . ). 	 (7) o_ 	a+ 	a_ 	771 

0+ 
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where the operators va±  acting on the massless modes follow the prescriptions: 

of  I, 2 )(x±)} T = 	1,2 )(x-)• 
ofq  

From the equations of motion we can verify that the field Om )  = (,(()), iir{( 7) ) )T  obeys 

(i0 m) tp ( m ) (z) = O. 

Using the anticommutation laws (3) 

I 	(( r  ) ( ) , tI 4 " 	y ) ) =- —6 (x — 	), { 77(1)(x ) , T6)(11) = 
2i a 	 16 	4 ro)(2),q. ) (0) = 	— 	1(1)(x),q1)(31)} = 	5 (x 	)- 

Since the field tb(m )  is a solution of (9), we conclude, considering the relations above and its dimension and 
Lorentz properties (which can be found from (7)), that Om )  is a Dirac field quantized with negative 

We can diagonalize the structure of anticommutation by introducing two usual massless fermions co l  and co 2 , 
satisfying 

{41)(x +  ),5q0 (Y + )} = — fqi)(x +  ),Ctqi) .  (Y +  )1 = b(r i  Y i  )- 
	 (12) 

In terms of these fields, for an arbitrary integer p, we have 

+1 M - 
TO) = 	Tw o,/ (V(i) troi)) 

I op+i  ( 
2/1/ 	kc°( 1 ) 92C0) (-1)P+1 2,—,—,M4 °3+-P  (41) 41 )) , 

_1  v,on 	( 
a_ ( I )

) 	
2M + 09( 1 ) + W( 1 )) +(-1)P+1 	[(2- rIn 

+ 0=P-I  (9(2 ) — 42 ))1. 

ai_p)rn 
(s0(1 1) 	,p(20) 

(13) .  

(19) 

(15) 

Here Af is an external parameter of dimension dimA1 = dim(mP+ 1 ). Under Lorentz transformations, M 	A -P+I M . 

In spite of being pan arbitrary parameter, it is impossible to describe the original fields locally in terms of free 
The conserved current is given by a product between fields and associated momenta. In terms of the diagonal 

fields we have 

x ) = —("1  )( )7' 0 ( m ) (x) + C0-1 (x)7e so'(x ) e(x) -YP 402 (x). 
	 (16) 

Now, we shall discuss the third-order derivative massive Schwinger model, defined by the Lagrangian density 

1 
C =

4
—(F002  + 	(411,i + irn 	F. 	 (17) 

Fm , = 	a„A p , O= 7P (00  — ieA,), 1 	= -y °  fay°  . 	 (18) 

Following Ref. [2], we go first to the interaction picture, where the fields are free. By a Legendre transformation 
in (17) we obtain 

H =Ho+ HI, 

where Hi comes from the mass term: 

(1.9) 

Hr = —rn [(D_ 4'(1))(D+41(2))+ (D+0(2))'(D-*(1))] (20) 

The operator solution in the interaction picture is 

gs( z ) 	ei7°P, E(r)+.54(x)1 	7:( x ) (21) 

(8) 

(9) 

(10) 
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Here, 2 is a third-order free massless fermion field: 

00)  =. 1 { 1 	m' 	2  
T (T) 4)(x+)+  {-1 	 (x- ) 2  rre — —2 —2 I 4)(z+) + r-X(21)(z+). (22) 

The mass parameter m' is Lorentz variant and x1  are free and canonicaal Dirac field operators. 
The contribution of hamiltonian Hf is evaluated by the point-splitting limit prescription 

e -i[At(r+E)+ii1(r+01 e -lIAtfr)+ 6 4(2/1 :  a+x(2) ( x ) 	h.c.) I-1 1 (x) 	lim{(a_x( 1) (x + 	 (23) 
c-o 

By computing (23), the operator solution III in the Heisenberg picture is immediatly found. The rule of the 
hamiltonian (23) is to modify the dynamics of the scalar fields. So we can get the solution just examining the 
evolution of the scal 
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1 Introduction 

There is an ancient controversy about how temperature transforms under boosts. Traditionally this issue has been 
discussed in the context of thermodynamics, which seemed to be the proper framework to deal with these questions. 
However, thermodynamical variables are not naturally related with space and time coordinates. Consequently, in 
order to use the Lorentz transformations to determine how temperature transforms under boosts, one should intro-
duce extra hypothesis. Unhappily, different hypothesis have lead distinct researchers to reach opposite conclusions 
(see, for example, Ref.[1}). 

here, we analyze this problem from a completely different point of view. Rather than using thermodynamical 
hypothesis we define explicitly a mathematical model of a thermometer in the context of quantum field theory and 
study directly its behavior when it is moving in a background thermal bath. 

2 Detectors as thermometers 

An Unruh-DeWitt detector is a two-level monopole with a very definite energy gap, Lir, between its fundamental 
and excited levels, respectively, in the proper frame of the detector. Such a .detector will be supposed to interact, 
for sake of simplicity, with a thermal bath of scalar particles. The excitation rate of this detector can be associated 
with the number of particles present in the bath. The particle spectrum as measured by an inertial detector moving 
with velocity v with respect to the rest frame of the bath is 

1 	r1 — e7(1+v )Pow 1 
n (w) = 	In  	 (1) 

27r-yvOo 	— 

where To  = flo 1  is the temperature of the bath as measured in its rest frame, and 	— V2 ) -1  is the usual 
Lorentz factor. Notice that in the limit v 	0 this expression reduces to the usual Planckian form 

no (ca) = 	1 	 (2) 
opow — 

while in the limit v 	1 we obtain n (w) — O. The main difficulty in giving a natural prescription to define how 
temperature transforms under boosts is directly connected with the fact that (1) does not have the Planckian form 
for some effective temperature Teff = 	(To, v). 

3 Different procedures, different temperatures 

Next we show that different thermometers measure different temperatures. 
Let us consider first a thermometer modeled by a slow moving detector with a small energy gap, that is, with 

colk <C 1 and u < 1, what transforms the detector in a counter of particles with low frequencies. The particle 
spectrum in this regime can be obtained from (1): 

n Pflo < 1) 	
— v4o 	6 
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This result must be compared with the case in which the detector is at rest (v = 0): 

1 
n o  (w,30 <'1) — 

who 

Hence, it is natural to define in this case the following effective temperature 

Pe, To (1 — — 
v 2 ) 

6 
	 (3) 

Now, let. us consider another thermometer modeled by a detector prepared to count all the particles, giving the 
total density of particles associated with the distribution n (w) 

co 2 
= n (w) 72—

x2
dw 

,repo 

while by using the Planckian spectrum (2) for detectors at rest we obtain 

( 3 ) 
n° = 2 ,83 

where ((x) is the zeta function. Thus, in this case it is natural to define another effective temperature 

7( +) = To  (1 — v 2 ) -1  

In the slow moving regime (v •:.< 1) we obtain 

2 ) 

To. ) 	(I + 
	

(4) 

Notice that T( + ) A 7i_) as anticipated in the very beginning of this section. 

4 Conclusion 

Briefly, there is not a natural way to define how temperature transforms under boosts. In particular, different 
thermometers measure different temperatures as can be explicitly seen by comparing (3) against (4). However, 
this must not be seen as a theoretical challenge, since the whole physics associated with moving observers in a 
background thermal bath is contained in the particle spectrum (1). 

It. is important. to reafirm that this result suggests that the question of how to transform temperature under 
Lorentz transformations is not a simple one, not making sense unless one defines carefully what the considered 
thermometer is. 
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where 22- is a normalization factor. By using equation (1) we obtain 

_= 7C(3 ) 
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We calculated previously the grand-canonical partition function of the Hubbard. model in 
d=2(1+1) up to first order in 13. Now we make an extension of this calculation to include 
the term of order 0 2 . We obtained the exact. coefficient of order /3 2  for the grand-canonical 
partition function of the model. 

1 A Survey on Grassmann's Algebra 

Due to anticommutative nature of the fermions, the Grassmann's algebra is suitable for dealing with these problems. 
For a Grassmann's algebra of dimension 2 2/y , we have 2N generators, that are representated by: rj = ( t, 7)2, •••, rlN) 
and ?I = 112 , TIN). They obey the algebra: 

th} = { ?).,M = 	= O. 	 ( 1 ) 
It's a known result that [1]: 

N 

ridihdrn exp E inAtito = (let& 	 (2) 
1=1 	 11=1 

where the entries of matrix A are commuting quantities. Recently, we showed that gaussian integrals multiplied 
by products of pairs of generators of the form ijirb, can be exactly calculated [2]. These integrals are equal to the 
determinants of a new matrix B, obtained from A by cutting rows and columns. For example: 

ri  Aldrii fit% exp E fllAi.j 	= det B(!, k), 
J  1=1 	 1,1=1 

where, 

k) = 
Ai 	if i 	I and j 	k, 

 
o j 	.oj ,k 	= I or j= k 

and det B(l, k) is the cofactor of matrix A whefi the line I and column k are deleted. In general, for N pairs of the 
form F;  q1 , we have 

N 

H oidg, f11, 17.1 i ni 7 w, - • - 1)1,17.4, 
i=1 

where det B is cofactor of matrix A [2]. 

[N 

exp E q,A,,,„, = det B, 
ir,J=1 

(5) 

(3) 

(4) 
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2 High Temperature Expansion 

The grand-canonical partition function is defined as: 

E = Triexp( — ,OK)], 	 ( 6) 

where /3 = 1/kT and K = H — pN. H is the hamiltonian of the system, N is the total number of particles and it 
is the chemical potential. 	' 

The high temperature expansion of the grand-canonical partition function is: 

Z = Tr[l — (ILK)] + 21
(/3) 2 Tr[K]2  — 1 (#)3 Tr[K] 3  + 0(P)4 . 	 ( 7 ) 

In order to calculate the terms in Z, we need to obtain the trace of the various powers of K. In the context of 
the Grassmann algebra, the trace of the power of an operator (K)" is given by 

N n-1 

Tr[K]n = J Hildiji i cki, explE ilv=1 E7=-01  ri1,(371, — rif, +i )1 x 
i=o 

x 	K N (Ar o mi.). •KN 	 (8) 

where 1 represents the space site and spin index, and, i is the temperature index. K N (Fili , Fn.) means that K is in 

the normal ordered form. 
Using all the above results, we calculate analyticaly the grand canonical partition function of Hubbard model 

in d=2(1+1) up to order fr. 

3 Hubbard Model d=2(1+1) 

The Hubbard model is used in solid state physics to describe the behaviour of itinerant electrons in narrow energy 
bands in metals [4]... 

The Hubbard hamiltonian is: 

1 
= E If 	+ UE aita cioa!,i ai 	— 

2
gABB)--  an;  ai a 	 ( 9 ) pa 	' 

i,j=1 	 i=1 	 1=1 

where N is the number of space sites. The first term in H is the hopping term. The second one represents the 
intra-atomic interaction between electrons of opposite spins. The last one is the interaction between the total 
magnetization and an external magnetic field B. 

We consider the case of a linear chain obeying periodic boundary conditions. 
Generators of the associated Grassmann algebra is: ri o (zi,rj), where cr. is the spin index, z is the site and r is 

the temperature index. 
The functions Kiv (i), ri) given by (8) are combinations of multivariable Grassmann integrals [5]. 

4 Results 

We showed previously [3, 5] that the grand partition function up to order /3 is: 

EN = 22N  [1 N 11(p — E0  — )1, 	 (10) 

where the coeficient of ig in the above expression is proportional to N. Therefore, we take the thermodynamic limit 
of EN,  and obtained well defined results that agree with known results in the literature [6]. 

The /3 2  term of Z, in eq.(7),written in terms of the Gr'assmann algebra generators is: 

4N 
Tr[K] 2  = H dinohn ezp 	f1oAIJrld x

J 1=1 	 1 ,J=1 

XK N  , q; i = 	q; i = 1). 
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The matrix A has a block structure, where the up and down spin sectors decouple [5]. 

where we have 

Art 

[ 0 
(12) 

IN x N 	x N 

x N IN x N 

Using the result (3), the multivariable Grossmann integrals are calcutated for any positive integer value of N, 
and we obtained, 

Tr[K 2] 	—

N

22N  {N (2(E0 — p) 2  U(Eo — p) —
2 	

(Eo — p) 2  
2  

3U 2  
+ U(E0 — p) + — + 2/ 2 ), 

8 
(14) 

where AB = gp B B . 
Using the above result, we obtained the grand-canonical partition function to order 16 2 . The generating functional 

of the connected Green's functions is given by: 

{2/n2 — [3(E0 — p 4)+ 

42 [(E° /1)2 -1- U(E° P) A2B  + 212  ± --3U8 2 ]}' 
fi ( 15) 

It's important to point out that the terms of 2 up tp order 0 2  are exact. The result is valid for any value of 
constants that caracterize the model. 
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We study the Tomonaga-Luttinger model in the presence of magnetic impurities. By us-
ing a recently proposed field-theoretical approach to non-local bosonization we obtain the 
effective action describing the low-energy charge and spin density fluctuations. From this 
action the dispersion relations of the collective modes are readily found. We also compute 
the momentum distribution and show that the electron-impurity scattering allows to have 
restoration of the Fermi liquid behavior.(Contact naon@venus.fisica.unlp.edu.ar ). 

Recent advances in the field of nanofabrication have allowed to build ultranarrow semiconductor structures 

in which the motion of the electrons is confined to one dimension Pi . These developments have triggered an intense 

experimental (2) and theoretical [3] activity in the last few years. Edge states in quantum Ila11 effect devices [4] 

constitute another interesting example of an essentially ID system that can be understood in terms of a chiral 

Luttinger liquid picture. 

One of the main tools for the theoretical study of the one-dimensional (ID) electron system is the Tomonaga-

Luttinger model (TL) f5)-[6] which describes a non-relativistic gas of massless particles with linearized free dispersion 

relation and two-body interactions. This model displays the so called Luttinger liquid (LL) behavior [7) : the jump 

discontinuity in the electron momentum distribution. is washed out as soon as the interaction is switched on, even 

at T = O. Therefore, based on this model one would expect that the experimental results should indicate a clear 

deviation from the normal Fermi liquid behavior (FL). However, the available experimental data are consistent 

with the existence of the edge singularity in the momentum distribution [8] This fact raises an interesting question 

concerning the validity of the TL model as a description of real Ill systems. 

The main purpose of this letter is to show how the TL model can be easily modified in order to have a 

restoration of the Fermi edge singularity. To this end we shall use a recently proposed path-integral approach to 

non-local bosonization [9). In this framework the usual TL action can be expressed as certain limit of a non-local 

QFT in which non-locality allows one to consider general potentials responsible for the two-body interactions. 

What we do here is to add a Kondo-like term to the usual electron-electron scattering term of the TL model and 

show under which conditions the presence of a magnetic impurity can lead to normal FL behavior. The role of 

impurities in ID systems has been intensively explored recently, in connection with a variety of problems ranging 

from Anderson localization [10] to the Kondo problem in the Luttinger liquid [11) [12] [13]. 

On the other hand, it has been shown that the presence of impurities can lead to the reappearence of the 

Fermi surface [14]. But this result was obtained for a model with quadratiC free dispersion relation, including 

non-magnetic impurities and using the random phase approximation. In most of these works local electron-electron 

(e-e) and electron-hnpurity (e-i) interactions were considered, and the attention was paid mainly to the changes in 

the impurity features. 

In the present letter we use the impurity representation introduced by Andrei [15] in order to study a finite 

density of impurities interacting non-locally with electrons through both spin-density and spin-current coupling 

terms. Indeed, as will be shown later, it is the existence of non - zero spin-current fluctuations which opens up the 
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possibility of recovering a Fermi edge in the momentum distribution. 

Following the lines of Ref [9] we consider the action 

d 2 x [k1/0‘11 - 	d7 y .77,(x)1/(7Mx, y)4(y)- 

- id2 y 4(x)Uel,b) (x, y).5,,(y)+ dtiai d), 	 ( 1 ) 

where 4,  and d are the electron and impurity fields with up and down components corresponding to right and 

left movers respectively. Let us recall that according to Andrei's approach [16] the impurities are allowed to move 

with the constraint that they carry zero kinetic energy. (this is reflected in the absence of a dto z d in (1)). We 

have defined .1: = = ci-r„A°d , with Aa(a = 0,1,2,3) the U(2) generators related to charge and spin 

conservation. As shown in [9], the action (1) with Uo,) = 0, describes the zero-temperature TL model when only 

forward scattering diagrams are taken into account. (For simplicity we set op = 1 and pp = 0. The dependence 

on the Fermi momentum pp will be considered later. See eq.(9)). If we disregard spin-flipping processes we can 

restrict our analysis to the maximal Abelian subgroup of U(2), generated by A° and A 1 . The two-body potential 

matrices are diagonal whose elements can be written in terms of the g-functions defined by Solyom [18] as 

u00 
r  (0) 	4 0411 	g41 	g211 + 921), 

V 11 = 	fa (o) 	4 — ‘,411 — gal + 9211 — gzA , 

1 
= 4 ( -gill - gi-L + g211 + 9 21 ) ,  

1 
V( 11 1) = 

4
-(-gill + g4i + g211 - g2i). 

The TL model, with charge-density fluctuations only, corresponds to 1/(°111)  = V( 11 1)  = 0. In a completely analogous 

way we introduce the potentials that couple electron and impurity currents: one has just to replace V by U and g 

by h in the above expressions. The magnetic interaction, i.e. the coupling betwen spin densities and currents only, 

corresponds to the case U(1)0) = tP(31) = ° 0411 = 4211 = —h2i, U(01,1 ) = (h211 f hill )/2). Let us now consider 

the partition function of the system 

Z = J Dci► Dd► DdDdDa exp - [S + d2 x a(d) d - n)], 	 (2) 

where S is given by (1) and a is a Lagrange multiplier that fixes the impurity number to be n. (Please see [16) for 

details concerning the treatment of the impurity). Exactly as we did in (9) for the "clean" system (U( 0 ) = 0), we 

express (2) in terms of fermionic determinants. This can be achieved by introducing auxiliary vector fields Ap, B,. 

After some standard manipulations we get 

Z = DADBe -s1A,B idet(io - %dr 2 41)det(i^roa,- §1), 

with 

S' [A, B) = 	d2x d2 y[1.5B 1:,(x)a(pb ) (x,y).44 (y) 

13;,' GO d2  u d2 v aM(x,u)(cp1) )e d (u, 01'4,6 (v, y)B it (y)], 

where we have defined the inverse potentials a( p ) and No through the identities 

v00 



(4) 

• = 

• = 

A„ = 
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J d2 u V(7,1 (x, u)q pri ) (u, y) = 

f d2ut/(0̀ ) (x, uKod) (u, y) = 

 

54211 452( x  (3) 

The fermignic determinant involving the field A„ can be readily computed by well-known path-integral techniques 

[19] based on the change 

with 4) = 4:0 ,1°,71 = ria,V . 

The result is 

	

det(iz$ - N.5 44) = (detiO)exp 7.1 	d2x 4)041. 

Concerning the determinant associated with the impurity, its evaluation is more subtle. However, we were 

able to extend the standard technique [19] to solve this particular problem. (The details of this calculation will be 

reported elsewhere. An alternative treatment can be found in [16]). We thus get. 

det(17o81 - le) 
	

det(i708 i )exp r 	d 2 	- Li? + 

J 
d2 ye(xo - yo)8z 6(xi - yi ) x 

Bo(x)B1(10 Bi(x)Bo(Y)n• 

Putting all this together and going to momentum space one gets a bosonic action depending on (1) and ri (the 

collective modes) and the impurity variables Bo and B1. These last fields, in turn, can be easily integrated _out. 

Thus, we finally obtain 

with 

Z = f DODri exp- {.5 4,11  + Bel) f } , 	 (5) 

1 
S  l I = 27r. )2  f d2PW(P)A n (P) (Pi ( -P) + 

+ n'(P)B"(P)91  ( -I)) + 41(11) 
Cii(P) 

 711(-P)+ 

. 	 . 
+ 91(P)C"(p).1(-73)i, 	 (6) 

where A", B" and C" depend on the Fourier transforms of the inverse potentials defined in (3). Eqs (5) and (6) 

are our first non-trivial results. Indeed, we have obtained a completely bosonized action describing the dynamics of 

charge density (COW) and spin density (SDW) excitations (associated with the fields 0°, ri° and Si, ql respectively). 

As we can see from (5), these modes remain decoupled as in the impurity free case. Moreover, due to the absence 

of backscattering and spin-flipping the effective action is quadratic and consequently the potentials do not get 

renormaiized. The dispersion relations of the collective modes are given by 

+ 14 	7(11(21:1) 	2U(CI )U(1) ( q ) = w2 	472 	0) 
 2  * 	2  

1+  77 1/( 1 ) Tri U(1) 
(7) 



h( s , t ) = 1 + s --t 1 312 1 I 	f lit ' 
 

21(t - 
(12) 
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where we have omitted 00 (11) superindices in the potentials, corresponding to CDW's (SDW's). We have also 

gone back to real frequencies: po  = ito, p i  = q. The usual forward Kondo interaction corresponds to V( 11 1 = U(11) = 

0, (0) = U" - JzF. In this case Eq.(7) shows that the impurities tend to increase the phase velocity of the SDW's (ti c ) 

irrespectively of the interaction being ferro or antiferromagnetic. On the other hand, if one includes spin-current 

fluctuations (U(11) 0 0) the behavior of u,, depends on the relative sign between U(11) and U(11). For instance, for 

fixed JzF and U(11) >> JzF 1/ 11  (o) one has uc2  oc 2,/zp/U(1) and one sees that large spin-current fluctuations tend to 

reduce tt c . 

From now on we shall specialize the discussion to the TL model with both spin-density (Kondo-like) and 

spin-current electron-impurity interactions. Thus, we set 

00 
(1) 

2 00 
'(0) 

2 
V" (o) 

(U(I01) ) 2  

= Vei) = 0  = U(1)(?) = U(1) ,  

r, 

s,  

- (U(11))2  = 27r2 t. 

where, for simplicity, we have chosen U(oI) = ..,(1)• In this way we reduce the parameter space from 4 to 3 dimensions, 

keeping thus our analysis as simple as possible. 

For repulsive electron-electron interaction one has r > 0 and s > 0, whereas t > 0 for both ferromagnetic and 

antiferromagnetic Kondo coupling. In order to study the momentum distribution we compute the fermionic 2-point 

function. To be specific We consider Gil (similar expressions are obtained for Get, G11  and C21 ), 

Gii 	( x, y) =< i (x)l'i t (Y) > 

G(11.)( r,  y) < e Vii(e (Y) - 0°(r))+i10 ° (Y)-e(x)1) >00 x  

x 
< evri{(4,1y ,-_ 	• 	 1 

() 40 (x))+Iiii
I 
 (V) -71 Gr)11 >11

, 
	 (8 ) 

where we have used (4) to relate G11  with the free propagator G (1°T)  , in which the Fermi momentum pp is easily 

incorporated 19]. The symbol <> ii  means vacuum expectation value with respect to the action (6). 'raking the 

limit zo -, 0 (z = x - y) in (8) and inserting the result in the definition of the momentum distribution NI r  (q), one 

gets 

(9) 

r(r,s,t) = f(r, 0) + f(s,t) - h(s,t). 	 (10) 

In the above equation we have defined the functions 

(i ii_ s _01/2 _1 ....01/2)2 
gs,i) =  	 (11) 

1 +s-t1 1 / 2 1 1-0 1 / 2  

Nii(q) = C(A) dzi  -
e  i(c-P P)Z 

e

_ f  

1 

where C(A) is a normalization constant depending on an ultraviolet cutoff A, and F(pi) depends on p i  through the 

potentials in the form 

with t, = 9/8 - 1/2(s - 1/2) 2 . 

We have now reached the main point of our discussion. We want to determine under which conditions it is 

possible to have r(r,.s,t) = 0, since in this case one immediately has Ni (q) cc 0(q - pp), i.e. normal FL behavior. 
First of all we note that for t = U (impurity free case) 1r(r, s, 0) cannot vanish for any value of r and s other than 
r = s = 0, which corresponds to the non-interacting Fermi gas. On the other hand, the first two terms in (10) are 

positive definite. This means that the only chance to obtain r = 0, in a non-trivial (interacting) situation, is to 
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have t > t e . This necessary condition determines a "critical" parabola in the space of potentials, t(s) = t e , below 

which FL behavior is forbidden. Enforcing also the condition ca./ 2  > 0 in (7), in order to have normal modes with 

real frequencies, one finds two disjoint regions where the FL edge could be, in principle, restored: t > 1 + s and 

t < 1, t > t, . However, one also has to satisfy f(r, 0) > 0, which for I' = 0 yields 

F(s, t) = h(s,t) 	f (a ,t) > O. 	 (13) 

A simple numerical analysis of F(s,t) shows that the above inequality is not fulfilled for 0 < I < 1. The electron-

impurity coupling is not strong enough in this region as to eliminate the LL behavior. On the contrary, fort > 1 + s 

equation (13) can be always satisfied. Moreover, in this region, for 1' = 0 we obtain the following analytical solution 

for r in terms of F(s,t): 

r = F 2 /2 + 2F + (1 + F/2)(F 2  + 4F) 1 / 2 . 	 (14) 

To illustrate this result, it is useful to consider the local case, corresponding to contact interactions (r, s and I 

are constants). From the precedent discussion we conclude that for 0 < t < 1 (region I) one necesarilly has LL 

behavior, whereas fort > s + 1 (region III) FL behavior is admitted. Note that for 1 < t < s + 1 (region II) the 

frequency of the SDW's becomes imaginary. Let us stress that, for t > s +1, Eq(14) defines a surface in the space 

of potentials on which FL behavior takes place. This is our main result. One particular solution belonging to this 

"FL surface" is obt ained by choosing s = 0 in (14), which yields 

r(t) = 
2t(3t — 2) + 2(2t — 1W3t 2  —  2t 

(t _ 1)2 

• This curve corresponds to the case in which the SDW's dispersion relation is given by gd 2  = q 2 . For I large r 

approaches a minimum value r r„,- 7, = 6 + 4.4, a feature that is shared with each curve a = constant on the FL 

surface. 

Let us stress that the extension of our analysis to the case /./ (10) 0 U(11)  is straightforward. In this case one gets 

an expression for r(s, L i , 12) (with ( 11 /2  oc U(',01)  and 1 21 / 2  cc UN) ), similar to (14), that defines a 3D manifold of the 

4D parameter space. What is crucial in our approach is the contribution of the spin-current e-i interactions, which 

has not been considered in recent studies, mainly concerned with the thermodynamical and transport properties of 

the ID Kondo problem [11) [12) [131. Indeed, for t 2 = 0 it can be easily shown that the system behaves as IL in 

the whole parameter space. 

We should also emphasize that we have considered the simplest possible version of the TL model with magnetic 

impurities, in the sense that, having neglected backacattering and spin-flipping processes, no renormalization of the 

couplings takes place. Our result shows how to tune up the initial parameters of the model in order to have a 

Fermi edge in N(q). Qualitatively one sees that the weaker is the e-i interaction strength the stronger must be 

the repulsive e-e interaction, and this behavior is independent of the magnetic couplings being ferromagnetic or 

antiferromagnetic. This result seems to contradict the results of ref.[12] in which two different strong-coupling stable 

fixed points, corresponding to ferromagnetic and antiferromagnetic couplings respectively, are found. However one 

should bear in mind that in contrast to these authors we have neglected backward scattering and at the same time 

we have considered spin-currents e-i interactions. Another interesting aspect of this "tuning" mechanism is that, 

eventhough our FL surface involves large couplings, for I sufficiently large, r becomes stable, i.e. almost independent 

of t and close to its minimum value given above. This behavior resembles the situation encountered in the 3D Kondo 

problem which exhibits a strong coupling fixed point for gk oo [161,117). In summary, we have studied a simple 

modification of the TL model that describes the interaction of electrons with localized magnetic impurities at zero 

temperature. One of the advantages of our technique is that it permits to handle non-local interactions in a very 

practical way. In particular it enabled us to obtain the exact dispersion relations of the collective modes in terms 

of general (momentum-dependent) potentials Eq.(7). We have also computed the electron momentum distribution 

(Eq.(9)). Finally, by analyzing this result we have found one region in the space of potentials in which the FL 
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behavior can be recovered as an effect of the interaction between the electrons and the magnetic impurities. Our 

result suggests that spin-currents interactions could play a central role in edge restoring mechanisms. 
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In this work we obtain the Haniiltoiiian for an SU(N) chain with twisted boundary conditions and find that 
the underlying algebraic structure is the multiparametric deformation of SU(N) enlarged by the introduction of a 
central element. 

We start with the following multiparametric generalization of the SU{N) R-matrix, first introduced by Perk 
and Schultz [1], 

R(z,q.{P)) 
	

a(x,q)Ee" e" + b(x) E Noe" 0 el" 
	

(1 ) 

+ c_(x,q) E eafi 0 eP`' c+ (x,q)E eal3  eP°  , 

ix</3 	 c 

where x is the spectral parameter and 

1
q   

a(x, q) = xq - 
x
— , b(x) = x - -

1 
, c_(x,q)= 	(q - -) , c.f.(x,q)= x(q - 

q
-) • 	 (2) 

q and pap are 1 + 	independent parameters with pap, 	= I, • NO) < )3), pp°  (pc,p) - '. The N x N 
matrices er4  have elements (e°0 )7P = 6"60 P. 

It is easy to check that the R-matrix (1) satisfies the Yang-Baxter equation 

11 12(X121q. {P}) RL3(X13, q, (p))R23(x23, q, fp.)) = R23(z23, q, {P})R13( °13 1 q, {P}) R12 (1.121  q, {P}) 	( 3 ) 

The Lax operator associated to (I) is 

L(x, q, fp)) = z E qw° ri(p.p)wAccia — x 	trw° H(PaP)W°C" L-4 
▪ $0 	 a 	fl$a 

▪ c+(x , q) E Xpa eap  + c_(x, q ) E x, („co , 	 (9) 
op 	 pot 

where in the fundamental representation W a  = e" and Xap = e"(cx t )3); X,"+4,(Xa-p ) has non-zero elements above 
(below) the diagonal. 

The R matrix (1) and the Lax operator (4) obey the Fundamental Commutation Relation (FCR) 

H12(X12, {P})L!(Xi q, (p))1,;,(x 2 , g, {0) = a(x2,q, (13)) 14,(x q (P))Ri2(x mg, (P)) • 	(5) 
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Following the general procedure of Faddeev et al [2], we construct. an  integrable multiparametric version of a 
quantum Hamiltonian for a no length SU(N) chain 

no 

hip,' 	(no + 1 a- 1) 	 (6) 
i=i 

where 

aa OP 
_ 1 	 N 

	

q+q 	q -Fq   	oa 	q 	 .0 par h,,,+ , =  	

N 
e e• t+1 	

q —  	sz9n(a /3)ei ci-Fi 	E pape, ei+i • 	( 7 ) 

	

2 	2 	 2 a=i 	 040 	 (413  

This model is exactly solved by the Algebraic Nested Bethe Ansatz method. This procedure is carried out in 
(N — 1) steps and the Bethe Ansatz equations for the level "1" (1 = 1,• • N — 1) are given by 

N N 	
a(x (I) /z (I-1) ) ni 	(I) /  (i) )  b(X(I) /X(1) ) 	ni+1  b(T (I+1) /X(I)  TT N. 	 k 	i 	H. a(xi , X k 	 _ 	k  )  k n 1r1+1 

a 
 11Ple 	 0+1) (0 )  = 1  h 3.( 1 ) ,( 1– 1 ) 	h ,( 1) ,(I) 	,( 1 ) ,(I) i= i 	 ir=1 	ir ., k 	 irI —1 a(x i „ 	/x4 

k =1,- • ,n, . ( 8 ) 

Here nN = 0 , X((})  = 0 , Ni = 	— ni and n;L 1  is assumed to be one. Therefore, the diagonalization of the 

Hamiltonian (6) is reduced to a system of coupled algebraic equations for the Bethe Ansatz •parameters 41) , (1 = 
1, • I;k = I, • • -ni). We observe that each parameter x(I )  couples just with its neighbour-level parameter 
x (i±1)  (except z (1 )(x(N -1) ), which couples only with x( 2)(x(N -2) )). 

Now we show that the general Hamiltonian (6) describes a SU(N) chain with twisted periodic boundary condi-
tions. For that sake we perform the similarity transformations generated by 

u =  

The coefficients 	are fixed when we impose the conditions 

Ue713 e 1:_r i  U -1  = er 	, a = 1, • • • N — 1 , 

under which (6) particularizes to the Hamiltonian for the SU(N) spin chain with twisted periodic boundary condi-
tions 

ncr•• I q + C.  1 q + q 1 N 	 n-I N 

 =  	" " q 	—
2
' E sign(a — 0)e"e/-5/3  + 

2 	2 	L_.„ ei ei+1 	 . 	1+1 
i=i 	 a=1 	 (40 

no-1 N 	 N 

E E e? fi efz — E(ptc: Lee c,...!fr er + 	eti  
or$13 	 13#* 

The case N = 2 was previously discussed in the literature [3]. 
The multiparametric Hamiltonian (6) is not quantum group invariant. Nevertheless, the quantum group struc-

ture also appears in this context. The underlying algebraic structure is obtained directly from the FCR (7) noting 
that now Wi and X,„0 are considered as abstracts elements of the algebra. Besides, the W c, are now combinations 
of a central element Z and operators 

= — E 	, (Jo z , 	 (12) 
a=1 

that respectively concide with 1 and lio, in the fundamental representation. 
The coproduce is obtained by considering the product of two L i s acting on two internal spaces; we find 

	

LIZ = 	1 + 1 0 Z 

	

A i!a  = 	0 1 + 1 if 

(AX+ ) = qw. n  pw° X+ + X+ qw- n  usi 	utt 
0#1,  

(13) 

(14) 
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E xi„-„ 0 .,y„+, 	 (15) 

P<ki 
- w q p 	 - 	 • (AX;) = 	 padXL,p A,71, q - 	H -w, 

P*P 

E x,-„ 0 X 17f3 	 (16) 

Thus, the introduction of a central element has allowed us to construct a coherent co-product which makes appear 
the underlying algebraic structure of the SU(N) chain with twisted boundary conditions. 
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Cosmologias AnisotrOpicas 

H. Flerningt, R.M. Teixeira Filhot e M.D.R. Sampaiot 
tDeportamento de Fisica Alatemdtica, IFUSP 

1 Department of Physics, University of Durham, England 

July 31, 1996 

Um campo escalar acoplado conformemente a gravitacao possui na lagrangeana urn term° 
proporcional a curvatura escalar que pode funcionar como urn "termo de massa de sinal 
trocado". Se o Universo e o de Friedmann aberto, urn valor esperado nao nulo, variivel 
no tempo, 6 possivel e motivou urn modelo de violacao espontfinea de CP que resiste aos 
efeitos terrnicos do universo primordial. Neste traballio mostramos, numericamente, que 
esse mecanismo nao depende do alto grau de simetria dos modelos de Friedmann, podendo 
ocorrer em varias cosmologias anisotrOpicas. 

1 Introducao 

0 mecanismo de quebra espontanea de simetria (QES) tern-se mostrado [Inuit° importante na construcao de 
modelos ern teoria de campos. A rnaioria dos modelos corn QES sao baseados no modelo de Goldstone que considera 

na Lagrangeana o termo de massa satisfazendo rn 2  < O. Existem outros modelos que prescindem desta hipotese. E 

o caso do modelo de Coleman-Weinberg [1], em que a QES ocorre quando consideramos as correcOes radiativas da 

teoria. 

0 estudo da teoria de campos em espacos curvos tern mostrado que o acoplamento conforme a gravitacao pode 

conduzir a modelos coin quebra espontanea de simetria sem a necessidade da hipotese rn 2  < O. Em particular, a 

teoria A(49•4)) 2  no modelo de Friedmann-Robertson-Walker (FRW) aberto apresenta quebra espontfinea da simetria 

de gauge [2] [3]. Tambern, mecanismos de violacio CP de origem cosmoidgica sem restauracao da simetria a alias 

temperaturas tern sido proposto (9] [5]. No entanto, seria desconfortivel se esta quebra de simetria dependesse do 

alto grau de simetria do modelo de FRW. Neste trabalho mostramos que a QES nao esta restrita a este modelo. 

Analisando a teoria A(4)* ) 2  corn acoplamento conforme a gravitacao em diversos modelos cosmologicos homogeneos 

(espacialmente) e anisotropicos, mostramos que a QES se di para diversos destes modelos. A anilise da teoria 

quantica do campo ¢ e feita na aproximacho de irvore e a temperatura zero. 

2 Teoria A(q*q) 2 corn Acoplamento Conforme a Gravitacao 

A extensao de uma teoria de campos forrnulada no espaco de Minkowski para espacos curvos nao a univoca. Assim, 

teorias distintas em espacos curvos podem conduzir a mesma teoria no espaco de Minkowski. Neste contexto, a 

escolha de um modelo em espacos curvos deve levar em conta outras consideracoes. A preservacio das simetrias da 

teoria 6 urn destes fatores. A teoria A(ct) - ¢) 2  corn massa nula e invariante em relacaoao grupo conforme de quinze 

parametros. Mostra-se que a Lagrangeana para esta teoria em espacos curvos que preserva a invariancia conforme 



378 
	

H. Fleming et al. 

dada por: 
1 

c= VP (Owiraok + 04.000+ TWO) — -6- (0. 0) 2  

onde g" e o tensor metric() do espayo-tempo c R a sua curvatura escalar de Ricci. 

Sendo a acao, S, dada por 

S = jd4z.G (4,3  ), 

onde g = det[gpd, a equacio de movimento para 0, 	= 0, resulta: 

A 
❑0(z) 

R 
 .C6 (x)+ p(x) . 952 (x) = 0 , 

onde 

❑=--9,("a.)- 

Considerando a temperatura zero e numa aproximagio de arvore, o valor esperado no vicuo (VEV) do campo 

< >= v(x) , satisfaz a equacao (2), isto é, 

Ou(x) 
— 6 

— 	
3 

v(z) + — v(x)' 	= 0. 	 ( 3 ) 

Estaremos restritos a espacos hornogeneos. Assim, supomos v(x) translacionalmente invariante (80(z) = 0 , i = 

1,2,3). 

0 tensor energia-rnomento do campo q5  e dado por: 

000-avo+avo-8Po- bt,'L + —
1 

[RI," —VPV,, +6,0]15•4.,, 
3 

A densidade de energia e(t) =< 01710 > na aproximacao em arvore resulta 

c(t) = 9 00 100v1 2  + [RS — + ❑ — v e vo] 1v12-1-  

onde 1...1 indica modulo da funcio. 

Por conveniencia de calculo, reescrevemos as equacaes (3) e (5) em termos da funcio u(z) = ifv(x). 

on(z)— iu(x)+ u(xr112 (x) = 0 

(1(t) E 	?-'3 E(t) 

= 900 pou l 2 + [14 -14 + 	vOvol 1 142 + 1211 11 14 .  

3 Modelos CosmolOgicos Homogeneos e Anisotropicos 

Utilizando o "pacote" MATHTENSOR para o programa MATHEMATICA, obtivemos as equagoes (6) e (7) 

para alguns modelos cosmologicos hornogeneos e anisotrOpicos cujos elementos de linha sir) dados a seguir. 

A) Bianchi Tipo I - Vitcuo (Kasner) 

(18 2  = dt 2  — i 2 P 1  CIX 2  — g 2P7 dy2 	2P3  dZ2 	 (8) 

onde, 

(1) 

(2) 

(4) 

(5) 

(6) 

(7) 

Pi +Pa + P3 = I; + +A = 1;m p2 pa 
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B)Bianchi Tipo VI - Poeira (p=0) (Dun - Tupper (6]) 

ds 2  = dt 2  4t2dx 2  - te-2z dy2 te2rd z 2 
	

(9) 

C)Bianchi Tipo VI - Viten° (Ellis - MacCallum) [6]) 

ds 2  = 	1 / 2 e'' (dt 2  - dx 2 ) - 2te -2'cly2  2te 2'dz 2 
	

(10) 

D)Bianchi Tipo IV - Wicuo (Harvey c Tsoubelis [7]) 

ds2  = dt2  - t'2 dx. 2  ea/s e-2'42  

- t'815  c -2x (In i' 415  - x)(dydz + dzdy) 

- t 1815 c -2x  [1 + (In t1415 ) 2  — 2x In e4/5  + x2 ] dz 2  

onde e = 4 
E)Bianchi Tipo III - p = p (Wainwright et al) [8]) 

ds 2  = (sinh (2t)) 2 (d/ 2  - dx 2 ) e -4x(sinh (21)) 2 dy2  - dz2 	 (12) 

F)Bianchi Tipo V - p = p (Wainwright et al) [8]) 

ds 2  = sinh (2/ )(dt 2  dx2) - 	sinh (21)(dy2  dz 2 ) 	 (13) 

Nossa anilise esta restrita apenas as soluciies complexas da equacao (6) da forma u(t)e‘ 8  (u(t) e real e 9= const.). 

Assim, podemos considerar u(t) real na equacao (6). 

4 Resultados e Conclusoes 

Resolvemos numericamente as equagoes para u(t) nos modelos considerados usando urn algoritmo tipo Runge-

Kutta[9] para diversas condicoes iniciais. 

A anilise de estabilidade da solucao simetrica u(t) = 0 6 feita no sentido do menor valor de densidade de energia, 

isto 6, se o cilculo numeric° indica solucifies corn e(t) < 0 para algum intervalo de t (t > 0), a solucao u(t) = 0 e 

considerada instivel. Nos modelos A, B e D, onde uma mudanca de variiveis elimina a depeadencia na variivel 

temporal dos coeficientes da equacao (6), fizemos tambein a anilise da estabilidade local da solucao simetrica, 

linearizando as equacOes do sistema dinamico equivalente. 

Nos modelos A, D e D, a linearizacao das equacOes do sistema dinamico equivalence em torno da solucao 

simetrica mostrou que esta 6 instivel. A aniiise numerica confirmou estes resultados. Tambern, a analise numerica 

mostrou que a solucao simetrica nos modelos E e F e instivel, isto e, existem solucOes corn densidade de energia 

negativa (c(t) < 0). 

Como podemos ver, a quebra espontanea de simetria numa teoria A(0* 0)2  acoplada conformemente a gravitacao 

nao depende do alto grau de simetria do modelo de PRW. A anilise numerica em diversas cosmologias homogeneas 

e anisotropicas mostrou que a QES ocorre em diversos destes modelos. 
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In this paper we calculate regularized expressions for the bosonic and fermionic partition 
functions for a field theory defined on a hyper-sphere S 3 . We also analyze their behavior 
with the radius I., of this manifold, and see that for specific values of the field's masses, 
closed expressions can be obtained, which present a completly different behavior as we take 
rc, oo, indicating isolated discontinuities of these partition functions with the masses of 
the matter fields. 

1 Introduction 

The path-integral quantization[1] is a very powerful technique to quantize a physical system: By this elegant 
formalism it is possible to investigate several physical phenomena in gauge theories[2], like, for example, quantum 
anomalies(31. 

The study of a quantum field theory, defined by a matter field 4  living on a given manifold with a defined metric 
tensor gp„(x), is conveniently made by the use of the path integral functional 

Z[g] = PdOle1s1"1 , 

where SP, g]  is the classical action for the matter field defined on the manifold. The Euclidean version of this 
expression can be obtained for a static space-time by the changing t it. In this case the functional Z[9], is related 
with the Euclidean "partition function " which given by the following expression 

ZE[g] = irdtMe-s66 . 91 , 

where we have used, in both case, Ii = I. 
In this paper we follow the second approach, in order to study the behavior of a matter field in a finite geometry 

S3 . Specifically, we study the bosonic and fermionic matter fields, on this manifold, and by the explicity calculation 
of the eigenvalues for the Klein-Gordon and Dirac operators defined in this geometry, we calculate their respective 
determinants, and consequently their partition functions. 

The Euclidean action for the matter field in a given compact geometry is given by 

SEP, = dpx,MK 

where K is a non-negative self-adjoint operator, which in our case, represents the Klein-Gordon or Dirac one. 
The partition function is then expressed by the following identity 

ZE[g] = [II A n ] = [(let K] - ° 
n 

where µ = 1/2 or —1 for a neutral scalar or fermionic matter field, respectively, and (A n ) is the real positive 
eigenvalues of K. 

As we shall see by direct computation, this finite geometry, provide us a discrete set of the eigenvalues for these 
operators, but the product of them is formally infinite. So, in order to obtain a finite result for D = nn  an  we shall 
use the well defined (-function regularization procedure. 

Our motivation to determine and study the partition functions for bosonic and fermionic matter fields on S 3 , 
is to investigate how this particular finite geometry can produces a well defined and finite theory, and how the 
partition function depends on the radius of the hyper-sphere and also on the mass of the matter field. 
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This paper is organized as follows. In section 2, we analyze the Klein-Gordon operator for a massive scalar field 

on 53 , and show explicitly its eigenvalues. We also calculate a finite and well defined expression for its determinant, 
and consequently the partition function for this spin 0-particle. Also in this section we complete the analysis 
considering the massless case. In section 3, we compute the Dirac operator determinant, in an indirect way, using 
the relation betwen this operator and the square root of the bosonic one[4], which fortunately, for this geometry 
reduces to our previous analysis as we shall see. In section 4, we give our conclusion and remarks about this paper. 

2 The Scalar Partition Function on S3  

The Klein-Gordon operator for a scalar massive field in a positive defined metric space is given by 

K(s)  = _v2 + m2 3  

where V 2  is the Laplace-Beltrami differential operator, which in a generic metric space is writen as 

V2 = gij mai - 
For our specific case the manifold is the hyper-sphere S 3  and the bosonic partition function is given by 

Z (EB)  = [det(K(s))]-1/2 = (llAn) _.,2, 

where A n  is the positive eigenvalue of the Klein-Gordon operator defined in this geometry. 
The product above is formally divergent. In order to obtain a finite result for it, and then to extract physical 

information about our system, we shall use the well defined (-function regularization procedure for this calculation, 

and get, consequently a trustworthy expression to Z. 
The eigenvalues for this operator defined on S3 , an hyper-sphere of radius r„, is given by[5] 

A„ = n(n 2)1; 2  + M 2 , 	 ( 3) 

which appear with multiplicity 

b(n.) = (n + 	. 

The partition function must be calculated taking into account this fact. The regularized expression for the 
Klein-Gordon determinant is given by 

det(K(s)) = exP[ — T(re ;M 

where we define the (r,,m(z)-function by 

cro 	2 
8 G., m (z)= E 	 ra2 + xi , , 

„=, 

with z = m2, 02 _I .  

Bellow we present our calculation for det(K(5)) in the following cases: 
a) Explicit expression for I x l< 1. 
b) Formal expression for any value of x. 
c)The massless case will be studied at the end of this section, in a separated analysis. 

Now, let us present only our results concerning the product of the eigevalues for the mentioned cases: 
a) For the case of I x 	1, we can obtain an explicit expression for D = 	which is given by 

1 	1 ‘---, xP+ 1  (270 2 P pi  
D = exP[ 2 ,71. (11(3) 	p + 	(2p)! 

B2 j,  

p.o 

where B„ arc the Bernoulli numbers and (R(z),the Riemann zeta-function. 
b) A formal expression for D is presented below, however it cannot be expressed as a finite combination of elementary 
functions. It is given by 

(1)  

(2) 

(4) 

(5) 

(6) 
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D = exp[
22 

 (R(3) - r J 	dzz 2  coth(rz)]. 	 ( 7) 

(One can see that the expression above reproduces (2.6) for the case I x 1C 1[6).) 

Although, for this case, we cannot obtain an explicit expression for D, we can analyze the behavior of Z (E2)  with 
ro , in the limit as ro  is much bigger than M -1 . For this limit, x >> 1, and after some steps we get: 

ite r3 	27rAf 
D = exp[-

22 	

v  1
(R(3) 	° + 

e- 

2r2 

 ro 
	(1 + 27rMro  + 2r2M27.02) 0( e -47mr. )  Cli 	

(8) 
3  

where 'C ' is a finite numerical constant. 
The partition function is given, in this approximation, by 

4131 C' exprM3r 	
c-2"fro 

6 	4.71.2 	( 1  + 21rMro  + 27r2 M 2 r20 ) + 
	

(9 ) 

where, again, C' is a numerical constant. 

As we can see, Z (E°)  presents a divergent behavior as the radius of S 3  goes to infinite, and this divergence, given 
by the exponential of a term proportional to the volume SI of this manifold, reproduce a non-null thermodynamics 
limit. 
c)For the case where the bosonic field presents no mass, the calculation of the Klein-Gordon determinant is a little 
bit different. For this case we have to consider only non-zero eigenvalues, in order to obtain an explicit and well 
defined expression for the partition function. So, we easily can show that 

det(K(s)) = exP[- 1;00), 

where the zeta function for this determinant is, 

	

co 	2 
((Z) 	r o2z  E 	s 

  
(s2 	1)2 	

(11) 
a=2 

It is worthy to mention that in the zeta function above the summation starts at s = 2. This apparent irrelevant 
shift in the infinite spectrum of the operator is responsible for a completely different behavior of the partition 

function compared with the previous one, the massive case. The explicit expression for Z (EB)  can be obtanied in a 
closed form after some calculations, and using properties of the Riemann (-function. The results is 

= 7 -112r; l exp[- ai7r2 <p(3)li 	 (12) 

which evidently goes to zero as r o  tends to infinite. 

3 The Fermionic Partition Function 

The Dirac operator for a massive ferrnionic field in a positive defined metric space, can be written as 

K(F) = 	ON  - In, 	 (13) 

where V,, = 8N  + r„,, being r, the spin connection, and -yo(x) = e ("4) (x)-y ( ° ) ,where e"A ) (x) are the tetradic basis 
vectors. The indices pi, a = 1,2, 3. Because of the positive-definite signature for the metric tensor g„ we shall 
use for the constant 2 x 2 matrices :y ( " )  a representation which obey the algebra t7 ( a ) ,7( 6)) = -26@)(b) with 
4501(b) = diag(±,+,+). 

In a three dimensional space it is possible to define two inequivalent Dirac operators K( E) = i7017„ - m and 

) = ila"7„ + m which can be related by a parity transformation P, that for the Euclidean case can be. defined 
as a reflexion in all axes: Z P  —z + `. It can be shown that these two operators present symetric spectra. Given 
their eigenvalues equations 

K(F)N1r ,,N, = A IDA ,  

and 
K(p) VA  = Ai klex  
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under P transformation, we get A — ■ = —A, as demonstrated in [7] 
Because the fermionic determinants arc also formally the product of their respective eigenvalues A and A', we see 

that they may differ for, at most, a sign. Admiting that for this geometry both determinants coincides f8], we can 

develop an indirect method to obtain them. Instead of calculating explicitly the spectra of these operators, we shall 
adopt another procedure, which as we shall see, for this geometry, reduces to the determination of the spectrum 
for a Klein-Gordon operator, already calculated by us in the previous section. Let us take the product of the Dirac 
operators K(F) and •q p) . Then, we get[4] 

K(I.AF)  = —(—V 2  7417  + m 2 ), 	 (14) 

whereR = R111, is the curvature scalar, which for this manifold is equal to 6r; 2 . 
The Dirac operator determinant is then expressed, up to sign, by the square root of the Klein-Gordon one, where 

the mass term is modifield by the presence of the curvature scalar. So, the fermionic partition function is expressed 
by 

Zit)  = ±tclet(_v 2  m2 31.2; 2  )11/2 . 	 (15) 

As we also can see 4.r )  does not present singularity, however if the bosonic operator present null eigenvalues, 

we get a trivial ferrnionic partition function: ZE(F)  = O. This situation may happen if, for example, the parameter 

M 2  = m2  — is zero . In order to avoid this problem, and get a non-zero value for (15); we have to reduce the 
spectrum of the bosonic operator extracting from the original Hilbert space for the Dirac operator the corresponding 
eigenfunction. In other words, what we are saying is that the fermionic spectrum is related with the bosonic one 

identifying an effective mass for the latter by: r4i) = M 2  = rn2_ 3r2  , and in the case of M 2  = 0, an explit 

calculation to the ferrnionic determinant, gets zero as result. Now defining a new partition function ZIP)  , for thiS 
special situation, we get 

1 d 
Z (F)  = exp[— 

dz
—((0)], 

where the zeta-function above was defined in Eq.(11), giving the following result for Z (EF)  : 

ZEF)  = 	2  7'0 ex P 	( 3 

which is proportional to r e . 
For the positive parameter M 2 , the bosonic eigenvalues are all positives, consequently the fermionic partition 

function cannot vanishes.Using previous results we can write 

z it) _ e 	1 	„ 	 , 
XP[ ----1,R 11,3) — — 	dzz -  cotnk7rd 

472 	2 0  
(18) 

with x = M 2 ro2  — 1. 

4 Concluding Remarks 

In this paper we have analized the model composed by a bosonic matter field on the sphere S 3 . For this system we 
have shown the complete set of discrete eigenvalues, and using the (-function regularization procedure, we calculated . 

 the bosonic partition function 4,B) . Although for the massive bosonic case we could not give a closed expression to 
it, we could analyse the behavior of this partition function as ro , the radius of the sphere, goes to infinite. For the 
massless case, on the other hand, we could obtain an explicit expression for ZLB. ) , and also could see the difference 
between the behavior of both partition functions as r o  tends to infinite. This fact can be explained by the spectrum 
of the bosonic operator taking into account in the calculation of the partition function. What we conclude from 
this analysis is that the main difference between these two partition functions is not only due to the presence of the 
mass itself. The most important fact lies in the number of eigenstates considered in the functional integration. 

In this paper we also have analysed, indirectly, the model composed by a fermionic matter field on S 3 . Although 
we have not found explicitly the spectrum of the Dirac operator in this manifold, we could obtain the Dirac operator 

(16) 

(17) 
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determinant and the respective partition function, by the bosonic one, with the mass term modified by the presence 
of the scalar curvature. The analysis for this model could then be developed by previous results. 
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Strictu sew?, negative dimensions are neither real nor realizable to us who live this side 
of the D+-dimensional universe; they belong to the realm of the immaginary, maybe even 
fictional world that is allowed for theoreticians to play with. Nonetheless, the concept of 
negative dimensions can be introduced in a very simple way, and its uses and consequences 
can be pursued in a methodical manner. As one of the examples of such application is its 
usefulness as a powerful tool to evaluate D+-dimensional integrals, whose typical example in 
Quantum Field Theory is the Feynman integral. As toy examples, we consider a few of the 
one-loop integrals in the special case of a non-covariant gauge, namely, the light-cone gauge 
and shoW how the results' in the principal value (PV) and Mandelstam-Leibbrandt (ML) 
prescriptions can be obtained. We present also an altogether different application such as 
proving fundamental relations among different hypergeometric functions of unity argument 
and some constrained parameters. 

1 INTRODUCTION 

The D- -dimensional integration method, or Negative Dimensional Integration Method (NDIM) to evaluate 

Feynman diagrams was first devised and considered, by Halliday and Ricotta (1) back in the 80's and some sample 

calculations were performed. They have pointed out that the technique can be viewed from several perspectives [1, 

2]. We shall here adopt the NDIM as defined from the result for the familiar D+-dimensional Gaussian integral, 

i .e., 
7r) D/2 

d D ri C A l 2  = (
A 
	 ( 1 ) 

which is notably an analytic function of the dimension D. Projecting out the powers of the exponential function in 

the integrand, we have 

eN"—•')  ( — Ar dp q  ( q2r (1) D/2 

n! 	 A ..o 

which can be satisfied if and only if 

J 	
r(n + 1 ,16-n+D/2,0 (ID  q (q 2 )" = 	2  

Since by assumption n > 0, necessarily D < O. In other words, the usual D+ -dimensional Gaussian integral itself -

is a projection for D -  . This fact leads us to the realization that we are in fact dealing with a fermionic object. Indeed, 

Dunne and Halliday [3] have shown the amazing property that the above q-(bosonic)integral in D-  dimensions 

corresponds to a 0-(fermionic)-integral in D+ dimensions. This correspondence between the Grassmannian D+-
dimensional integral and the bosonic D - -dimensional integral guarantees the property of translation invariance of 

the latter. Of course, direct proof of this translational invariance is possible and proven in 13-  dimensions, though 

somewhat tedious to do [1,2]. 

'e-mail: suzulciOaxp.ift.unesp.br  

(2) 

(3) 
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The last equation enables us to define what we call the negative dimensional integral representation for the 

discrete Kronecker's delta, 

1  )—a  	Aff q  (q2)n 	 (4) _ r(a. 	i) 	LI 

in analogy to the well-known result from the theory of distributions that defines the continuous Dirac delta "func-

tion" in terms of an integral representation of the type 

6(r - r') =(2r)D f dDk erk•fr-r') 	
(5) 

where k and r are (positive) D-dimensionat vectorial objects. 

2 SUM THEOREMS AND OTHER APLICATIONS 

An interesting application can be thought of for NDIM, and this has to do with an original way of proving sum 

theorems for hypergeornetric series. Consider for instance the following hypergeometric function 

2 	b; c; I) = E (—(7)):.( b,).  

n=0 

00 

where m is a positive integer. Note that since (-m), E 0 for n > m, the sum is in fact a truncated sum. 

Using the negative dimensional representation for the Kronecker's delta the above sum can be readily performed, 

yielding [4) 

2F1( -m, b; c; 1) = 
(c)„, 

which is the standard result for the Vandermonde's theorem. [5} 1  

In a similar manner, we can get the Saalschutz [6] theorem for the sum of truncated Saalschutzian hypergeometric 

series 3F2(a, b , c; d, c; 1) 2 . As before, being truncated, means that at least one of the numerator parameters (a, b, c) 

is negative. In order to get this theorem, we restrict ourselves to the case where two of these are negative, so 

that we introduce two negative dimensional integral counterpart for the two Kronecker deltas. Then, supposing 

a < 0, c > b, we have [41 

(c  
3F2(-rn, a, 6; c, 1+a+b-c- rn•1)= 	  

	

(c)„ (c 

„ 

-( a - b)r, 	
(8) 

 

A further novel application in this line has to do with the proof for the fundamental relations among the 3P2'S. 

As an example, let us consider the following 3 F2 (a,b,c; d,e; 1), with b and c negative integers and b < c. As before, 

for each of the negative integer parameters we associate a negative dimensional integral representation for the 

Kronecker's delta together with two constrained summations and after some algebraic manipulations, we arrive at 

r(b  - oromoro - a)  
3F2 (a, b, c; d,e; I) = 

f(b)f(d - c)r(e - c)r(1 + c - a) 

3F2(c, + - d, 1 + c - e; 1 + c - a, I + c b; 1) 

which is one of the fundamental relations among 3F2 with special value for the argument, namely, z = I. One 

notes that the usual relation has in it two similar terms with b and c interchanged. However, since in our case these 

parameters are constrained, the second term vanishes and we are left with only one non-vanishing term. 

3 ONE-LOOP LIGHT-CONE INTEGRALS 

In the covariant case, the basic one-loop integral structure is given by 

isE(i, j; 	= f d°  q (q 2 ) 1  [(q  - 
	

(9) 

IA special case for the Gauss summation formula. 
2 A Saalschutzian hypergeometric function is the one in which the paramenters obey Ihe following constraint: d+e = a+b+c+1. 

(6) 

(c - b),„ 
(7) 



388 	 XVI Encontro Nacional de Fisica Particulas e Campos 

which in NDIM yields 

j; p2 ) = (_7r)D/2(p2)0  (1  + rr)- 2?-D/ 2  

( 1  + 0-0( 1  + j)_, 
(10) 

• 
where we have defined the caracteristic power a Ei+j+ D/2 and the Pochhammer's symbols 

F(a + n) 
(a)n = 

F(a) 

One notes that the usual Feynman integral ensues from the above integral when we analytic continue it to 

positive D and negative values of i and j. 

However, for the light-cone gauge, it is well-known that Feynman integrals in such a gauge are notoriously 

more complex to evaluate than in the covariant case. We shall explore two different approaches: (i) In the first 

case, we shall consider a theory where we have a one-degree violation of covariance (one external light-like vector, 

n 2  = 0); (ii) whereas in the second case, we introduce a two-degree violation of covariance (two light-like vectors, 
nz = n•2 = 0) .  

For the former case, the typical one-loop structure is given by 

j, p; p,n) = f d i)  q (q 2 )i  [(q - p) 2 1)  (q • n)ii 	 (12) 

which yields in NDIM, 

0  (1 - - /.4 - D/2)-i-D/2 
= (-700/2(1'2).7(p n)  (I + i)j+D/z(I+ j) -2j - D12  

In analytic continuing this result, we have two cases to consider, namely, the cases p > 0 and p < 0. In both 

cases, analytic continuation yields the usual PV results. 

For the latter case, we consider only the tadpole-like integral 

/2(i, 	n, n • ) = f d'q [(q — P) 2].1  (q n) P  (q • n•)" 	 (14) 

which yields in NDIM, 

/2 (j, p i b. ; 	n•) = 7D/2 ( -2 p  n • n • i-012 p 

n 	) 

where we have defined 

(p • n) 0 (p n•)" 
p ,  v;19 , /a•) 	4_ j)_zi_D/2(1 + 14 )j+D/2( 1  + v)i+D/2 

Here, one peculiarity is that the exponent v > 0 always. This means that the Pochhammer's symbol containing 

it, i.e., (1+ u)i + D/2 must never be analytic continued. The other Pocchhammer's symbol, namely (1 + /i) j+D/ 2 , is to 

he analytic continued or not according to whether p < 0 or p > 0 respectively. Bearing in mind these restrictions, 

analytic continuation of the above result yields the causal results from the ML prescription in the light-cone gauge 

[7]. This is really quite an amazing result, since no prescription has been called upon to deal with the so-called 

"unphysical" singularities characteristic of the algebraic gauges. The only outstanding property of translational 

invariance displayed by the negative dimensional integrals seems to take care of the causality principle required by 

the ad hoc prescriptions devised to treat positive dimensional light-cone integrals. 
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Aplicamos o formalismo Batalin-Tyutin, que converte os vinculos de segunda classe em 
primeira, na quantizacao dos modos rotacionais dos Skyrmions. Calculamos o Hamiltoniano 
estendido e o gerador funcional no gauge unitario onde reobtemos o Lagrangiano original. 

. Discutimos o espectro da teoria estendida, onde observamos urn termo extra no Hamiltoniano 
quantico usual. 

Devido ao vincula ser do tipo tri-esfera, a quantizacao dos Skyrmions apresenta relacCies nao triviais nos par-
enteses de Dirac que levam a problemas de ordenamento na definicao do operador momento l . Neste trabalho 
vamos aplicar o formalismo Hatalin-Tyutin 2  corn o objetivo de contornar esta ambiguidade. 0 metodo consiste em 
transformar os vinculos de segunda classe em primeira atraves da extensao do espaco de fase corn novas variaveis. 

A expancao do Lagrangiano do modelo de Skyrme em coordenadas coletivasi 6 dada por 

= -M + ATr[00 .400 A -1 ] 	+ 	i = 0,1,2,3 , 	 (1) 

onde as expressoes de M e A podem ser encontradas na referencia[L]. A 6 uma matriz SU(2) a qual pode ser 
expandida como A = a° + a.r. 0 vinculo primario 6 

	

= a l a i  - 1 	O. 	 (2) 

Introduzindo o moment° conjugado 

7 = — = 
air ;  
OL 	

(3) 

podemos reescrever Hamiltoniano na forma 

	

Hc = ri a' -L= 4An i ng -L=M+ 	= M + E ir12 . 	 (4) 

Entao, a quantizacao usual e feita substituindo 7r i  por -io/Oai em (4), corn os autovalores dado por 

E = M + —
1

4/ +2), i = 1,2,... . 	 (5) 8A 
Usando o procedimento usual de Dirac, achamos o vinculo de segunda classe 

T2 = ai ri 0, 	 (6) 

obtido pela conservasao corn o Hamiltoniano total 

	

HT = H, + A C T] , 	 (7) 

onde A, e o multiplicador de Lagrange. Nenhum vinculo adicional 6 gerado pelo procedimento iterativo. Os vinculos 
7), and T2 sio de segunda classes, satisfazendo a algebra de Poisson 

• e-maiLiorgeefi3ics.ufilbr 
I c-maii:wilson©fisica.uljf.br  
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A c,p 	Tp} = —2c,,pai al , n , l3  = 1,2 
	

( 8 ) 

onde c ap e o tensor antisimetrico. Aplicando o formalismo BT 2 , vamos introduzir novas coordenadas b' para 
converter os vinculos de segunda classe, TQ , em primeira, corn a algebra de Poisson dessas novas coordenadas dada 
por 

{b", 	= 4)44 , 	 (9 ) 

onde w" e uma matriz antisimetrica. E possivel mostrar que os vinculos de primeira classe, T, , sao dados pela 
relack 

tor = X cipbP, 	 (10) 

satisfazendo a condicao 

X0A J PP Xp v  = —A00. 	 (11) 

Entk, os novos vinculos de primeira classe sao escritos como 

Tr  = 	b i  

= T2 — a'a'b2 , 	 (12) 

na qual sao fortemente involutivos, isto e, {T,,Tp) = 0. 
0 Hamiltoniano involutivo no espaco de fase estendido a dado por uma serie infinita 

CO 

= tic + E Ho), 	 (13) 
n=l 

onde HO) a escrito como 

fi(n) = — bP w  X v  P G (on —1)  (n > 1). 	 (14) 
n 

A expressao de Gin)  pode ser obtida na referencia 151. Desenvolvendo a expressao (13) o Ilamiltoniano estendido 
pode ser somado numa forma fechada 

I 
 (

a' a ' )2(b2)2 
H = M 	

1 (alai) 
	7f 	

1 (alal)b2 	
+ 

8A alai + 	 ajai + 6 1 	) 	8,1 aiai + b' 
(15) 

Vamos agora calcular o funcional gerador Z, usando o formalismo de Faddeev-Senjanovic 3 . As novas variaveis, 
b", sat) identificadas como urn par canonicarnente conjugado no formalismo Ha.miltoniano, bl 	20,b2 	Ir 
Entao a expressao geral do funcional gerador e 

	

Z = N Pdplexpli di(a .  + cPre, 1:1 ) , 	 (16) 

corn a medida [dp] dada por 

2 

[dp] = [da'](dir,][46][dr4] 	(5 (7'or ) 6 (X0 )idet (to , 	 ( 17) 
oals=1 

A condicao de fixack de gauge xp a escolhida de tal forma que o deterininante na inedida nao se anule. Escolhendo 
o gauge unitario, x i  = a'ai — 1, x2 = e possivel mostrars que o funcional gerador Z reproduz o Lagrangiano 
original 

Z = N Pciallb( a l  a l  — 1) exp{i dt(— M + 	 (18) 

Este resultado indica, sem dilvida nenhurna, a consistencia da teoria. 
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Para obter o espectro da teoria, os vinculos (12) vac: ser considerados como equayoes fortes. Podemos entio 
substituir o par (0,62 ) pelas coordenadas coletivas (at, irk) no Hamiltoniano (15). Se ri descreve o momento de 
urns. particula livre, rrj = os autovalores da Energia sao dados por 

1 
E = + —

8A
V(' + 2) — 2/1 	 (19) 

Comparando a expressOo (19) corn (5), vemos que urn termo extra aparece na ultima equacio. Cabe aqui ressaltar 
que resultados semelhantes foram obtidos por outros autores 4 , usando procedimentos diferentes. Mais detalhes do 
formalismo Batalin-Tyutin aplicado aos Skyrmions podem ser encontrados na referencia(5]. 

Referencias 

1.Jorge Ananias Neto, J.Phys.G21 (1995) 695. 
2.N.Banerjee, S.Ghosh and R.Banerjee, lqucl.Phys.13917 (1999) 257. 
R.Amorim and J.Barcelos-Neto, BFT Quantization of chiral- boson theories, Preprint UFRJ-1F-FPL-013/95. 
3.L.D.Faddeev, Theor.Math.Phys.1 (1970) 1. 
P.Senjanovich, Ann.Phys.(N.Y.) 100 (1976) 277. 
4.K.Fujii, K.I.Sato, N.Toyota and A.P.Kobushkin, 
Phys.Rev.Lett. 58,7 (1987) 651. H. Verschelde, Phys.Lett.B215 (1988) 444. 
5.The Batalin-Tyutin Formalism on the Collective Coordinates Quantization of the SU(2) Skyrme Model, Wilson 
Oliveira and Jorge Ananias Neto, Preprint UHF 1995. 



XVI Encontro Nacional de Fisica Particulas e Campos 	 393 
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Introducito. Nos Ultimos vinte anos urn grande ntimero de trabalhos surgiu explorando a interacio entre geometria 
e topologia e teoria de campos classica e quantica, impulsionando avancos tanto em fisica como em matemitica. 0 
presente trabalho preocupa-se corn os aspectos clissicos desta interacao. 

Comecamos por apresentar o cenirio matemitico em que teorias de campo de gauge sEo bem definidas, assim 
como os objetos matemiticos apropriados. Mostramos como expressar lagrangeanas geometricamente e obter as 
respectivas equacoes de movimento via metodo variational. 

Focamos em especial as equacaes de campo de Yang-Mills e sum versoes acopladas corn a materia (Yang-Mills-
lliggs e Yang-Mills Dirac) e corn o campo gravitacional (Einstein-Yang-Mills). Solusoes para estas equacoes possuem 

urna estrutura geometrica e topologica bastante rica e fornecem subsidies para o entendimento de certos fenomenos 
tisicos interessantes. 

Cenario Matematico. Para modelar o espaco-tempo, usamos uma variedade diferenciivel M compacta, conexa, 
orientivel de dimensito 4, provido de tuna metrica g. Seja P um fibrado principal sobre M corn grupo estrutural 
SU(n)_ 

Uma conexio w e interpretada como sendo o potencial de gauge c a respectiva curvatura SZ = dui + w A w é 
interpretada como sendo o campo de gauge. Urna niudanca de gauge corresponde a uma mudanca de parametrizacio 
de M. Semi-classicamente, F representa o boson vetorial responsivel por intermediar a interacio (fotons, gltions, 

e Z°). Campos de materia (eletrons, quarks) sio representados por seccoes do fibrado vetorial associado a 
P: 

campo cscalar (lliggs) 	: Al 	C 
campo spinorial (Dirac) ti) : Al 	C 4  

A conexio neste fibrado vetorial representa a interacio do campo de gauge corn a materia. Note ainda que todos os 
campos (de calibre e de materia) encontram-se acoplados corn o campo gravitacional representado pela metrica g na 
variedade base; este acoplamento pode ou nao ser levado em cants, dependendo-se de se desejar ou nio considerar 
a gravidade. 

Sobre o cenirio matemitico apresentado acima, veja [3] e [4]. 

Yang-Mills. A acio da teoria de Yang-Mills descrevendo urn boson vetorial propagando livremente no espaco-
tempo M e dada por: 

Gym [w] = 	SI A *ft 
Al 

Tomando uma variacao sobre a conexio w, = w + to obtem-se as Numb-es de campo de Yang-Mills: 

 dt 
Cy M 	= U=' D'S-1 = o 	 (1) 

C=0 

0 acoplamento corn o campo gravitacional esti embutido no operador estrela de llodge * e la° foi levado em 
consideracao. 

'Mantido por urna balsa do CNPQ 
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Atiyah [1] e outros mostraram que Codas as solucOes desta equacio modulo invariancia de gauge, chamadas 
instantons, sada auto-duais (12 = *Q) e formam uma variedade diferenciivel cuja dimensio depende do grupo 
estrutural e da topologia da base; trabalhando sobre este espago de configuracio dos campos de gauge, Donaldson 
[7] demonstrou urn resultado de classificacio de 4-variedades (modelos do espaco-tempo). 

Yang-Mills-Higgs. A acio agora 6 dada por: 

ZYmirku, = 	fl A *12  + (VC6 , 0 06) — m 2  (0, 0) 
M 

representando o acoplamento do campo de calibre corn urn campo escalar ek; a metrica esti escondida no produto 
interno hermitiano <, >. Urn termo de auto-acoplamento do campo escalar A (0,44) tambern pode ser adicionado, 
inserindo uma nao-linearidade pa propagacio do campo de Higgs. 

Variacoes na conexao to t  = c,d+tcr e V t  = V +Jr e no campo escalar ¢r = 0+4 levam as equacoes de movimento 

gi CY M[41-7  h s] t . 0  = 0 	 = J 
L 	 — 0 	WV — TrI 2  = 0 GYM t 	3=0 — 

onde J e a corrente associada ao campo escalar e V•V 6 o anilogo do laplaciano neste contexto. Propriedades das 
solucOes destas equacoes sao discutidas em [5] e [6]. 

Yang- Mills- Dirac. Vamos agora acoplar o campo de Yang-Mills com urn campo spinorial; a acio deste modelo 
e: 

CY M 	tb] = 	n A *0  + (0, 	M (0, 10 

onde 6 denote o operador de Dirac do fibrado spinorial, responsive) pelo acoplamento do campo spinorial corn a 
conexio. Novamente a metrica esti inserida no produto interno <, >. 

Tomando variacoes na conexio to t  = 	to e 

	

liCYmPs,(11, =0  = 0 	D'il = J 

j
e 
i•-•Y MEWIr Oa) i=0  = 0 — = 0 (3) 

onde J e a corrente associada ac, campo spinorial. Propriedades das solucoes destas equacOes sio discutidas em [6). 

Einstein-Yang-Mills. Lembremos primeiramente que a equacio de Einstein para o campo gravitational pode 
ser obtida por principio variational a partir da lagrangeana: 

GE [g] = iif  kV7(7iet.gcr ix 

onde k e a curvatura escalar associada a metrica g, tomando-se uma variack sobre a metrica g :  = g + the 

d 
LE[g, 411 = 0 R — —kg = 0 

di 

	

r = 	 1' 	
kg„

„ o 	 2 

Somando-se a lagrangeana de Yang-Mills Ly m corn a lagrangeana de Einstein LE e tomando-se variac6es tanto 
na metrica (levando cm conta o acoplamento campo gravitacional-campo de gauge) obtemos urn par de equagOes 
acopladas nao-lineares, as equagoes de Einstein-Yang-Mills: 

D' ft = 0, [cdt, g, g=c, = 0 
(4) 

dtG EYM[wt,9,1 ^.=0 = 0 	R„ — pcg m „ =71,, 

onde 	= O o„„11 0° + 1-11-90 ,,Sl opft° 13  e o tensor de energia-momento associado ao campo de calibre fl t,„. 
Nem a equacio de Einstein nem a equacio de Yang-Mills possuem solucoes estiticas nio-singulares e corn 

simetria esferica em suns versifies desacopladas. As equacOes de Einstein - Maxwell (caso abeliano das equagaes de 
Einstein-Yang-Mills) tambern nao possuem este tipo de solucao. Entretanto, a nao-comutatividade do campo de 
calibre mais geral fan corn que existam soluciks deste tip° para o grupo estrutural SU(2) (veja [2]). Tais solucoes 
possuem uma estrutura fisica bastante 

(2) 
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Aeopirunento corn a materia. 0 procedimento para se obter equacoes de movimento de campos de materia 
acoplados a gravidade a analog() ao que utilizamos para obter as equagoes de Einstein-Yang-Mills. 

Tomamos uma lagrangeana que e a soma da lageangeana de Einstein corn a lagrangeana do campo de materia 
(Higgs on Dirac). Fazendo variar o canipo de materia, obtemos simplemente a respectiva equacao de movimento 
livre (sem fontes). Mas a variacao da metrica resulta na equacio de Einstein para o campo gravitacional corn 
urn tensor de energia-momento do lado direito; desta maneira, o campo de materia age coma fonte para o campo 
gravitacional. Como exemplo, tomamos as equacoes de Einstein-Higgs para o acoplamento da gravidade corn urn 
campo escalar, corn lagrangeana dada por: 

LEH[g, 01 = 	(k‘FC1 g + (Vcb, GPO) rn 2  (d, 0)) d 4
x JM 

obtendo as equacoes : ° 
10EII[gtiO3)A=0 	0 

RAY  — iky„ = T„ 
V*V0 — rn 2 0 = 0 (5) 

onde 	e o tensor de energia-momento associado ao campo escalar cb. Claramente, o procedimento a essencialmente 

o mesmo para se obter urn par de equaciies para o acoplamento da gravidade corn urn campo spinorial; seria ainda 

possivel escrever tees equagOes acopladas para o campo gravitacional interagindo corn urn campo de calibre e um 

campo de materia, os dais tiltimos tambern interagentes. 
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0 trabalho consiste no estudo sobre a possibilidade de geracao dinamica de massa no modelo 
de Gross-Neveu na expansio 1/N em (2+1)D, atraves da analise das equac6es de Schwinger-
Dyson (SD). Analisamos as equacoes de SD para o propagador completo do fermion, e estu-
damos dois regimes distintos: para N grande, obtivemos uma solucao de massa constante, 
gerada dinamicamente, que quebra a simetria de paridade quando usamos fermions de dual 
componentes, ja encontrada na literatura [1]; por °aro lado, para N pequeno, a kinica 
possibilidade compativel corn as equacoes de SD corresponde a situacio onde metade dos 
fermions adquirem uma massa positiva e outra metade uma massa igual e negativa sem 
quebra de paridade. Foi encontrada uma solucgio a qual todavia, somente seria realizavel 
para N < 1.5, o que mat) a fisicamente aceitivel. A conclusao c portanto que no modelo 
Gross-Neveu a geracao dinimica de massa so e possivel corn a quebra de paridade, para N 
grande. 

1 Apresentacio do Modelo 

0 modelo Gross-Neveu massivo, corn N campos fermionicos e dado pela seguinte densidade de Lagrangiana, 

- m) 1P -  Ng (" )  • 
	 (1) 

0 campo fermionico kb (e tambem ti)) carrega dois indices: kb,a„, a e o indite de simetria interna (U(N), a 
1, 2, ..., N)e a e o indite de Lorentz. 

Podemos reescrever (1), equivalentemente, da seguinte forma, 

onde a = *011), 6 um campo auxiliar. 

2 Quebra de Paridade 

= 	— M — 
a1 .10+  

%/TV' 	2g 
(2) 

As equacoes de SD silo dadas pela figura 1. Os propagadores representados por linhas simples, continua e tracejada, 
silo os propagadores do fermion e do campo respectivamente. Os propagadores representados por linhas cheias 
sic) os propagadores completos, corn as insercbe-  s de auto-energia, como mostrado na figura 2. 

Na ordem dominante ern 1/N, a fungi° de vertice a dada pela contribuicao trivial 	 Desta forma as 
equagoes de SD relevantes se reduzem as parcelas de auto-energia do fermion e do campo a, como mostradas na 
figura 3. 	. 

Ail expressOes analiticas das figural 3 siio , 

P I (k A„,(p — k) (S(k)).#5 ad + ( — E(P))0fibad = -7 (2 .)3 
 



V. S. Alves et al. 	 397 

d3k 
= (1)tr 	S(k) , ( 1 )00 6ad Ao( ci (2703  

(3) 

cl3 k 
ifl(p) = f (21-05(p + k) S(k) , 	 (4) 

onde a operacio de traco nas expressoes acima sao sobre os indices de Lorentz e S representa o propagador completo 
do fermion. 

Usando as propriedades da operacao de traco das matrizes de Dirac e alguns truques, encontra-se que 11(p) = 
- 

3 
	 P 	\ M), corn G(p, M) 0-2 -11  + 4m2p  ArcSinh( 

4M 2
2 
 -p2 / •  

Deste modo, o propagador completo do campo a se escreve como, 

= 	  
1 /g + n(p) 

2i7r/D 	=  16i/D 

Dg 
G(p, 0) 	41+ Ili 

(5) 

onde D é a dimensionalidade das matrizes de Dirac. 
EscrevemoS a auto-energia do fermion como a."(p) = -0.4(p) + E(p), onde A(p) é a renormalizacao da fungi° de 

onda dos fermions e E(p) a funcao de massa que queremos encontrar. Como o propagador cheio do fermion pole 

ser escrito como 5 -1 (p) = 8,7 1 (p) + iE(p), ternos que S(p) = e 
p i+ 
1P+AV

P 
(P)  e 	apps alguns calculos chega-se 

Akp)) -EA  
a, 

1 	(Pk 	A„(p k)(k) 	 d3 k 	E(k)  

E(P) 	j (2703  k 2 (1 + A(k)) 2  - E2(k) 	
(q - 0) 	

(277) 3  k2(1 + A(k)) 2  - E 2 (k) 
(6) 

Para o regime de N grande, vemos de (6), que em termos de potericias do , a primeira parcela da expressao 
sub-dominance em relacao a segunda. Podemos entao desprezi-la em relacio a segunda. Se considerarinos ainda 

uma situacao onde A(k) = 0 e E(p) = M = de, ent5o M = -DA,(g = 0) 10 T ,  que e a mesma expressao 

obtida por M. Gomes, V. 0. Rivelles e A. J. da Silva [1], para a equacao de "gap" do modelo Gross-Neveu em 
3D (na expans5,o 1/N). Tal como discutido pelos autores acima, a expressao acirna fixa g como uma funcao da 
massa gerada. Conclui-se portanto que no regime de N grande ha geracao dinamica de massa para o campo e 
por consequencia disto ha uma quebra de paridade para a representasao de fermions de duas componentes. 

Para o regime de N pequeno, vamos buscar solucoes para a massa gerada dinamicamente corn as seguintes 
condicoes : A(k) = 0 e Ei(p) = E(p), para i = 1,2, L e Ei(p) = -E(p), para i = L + 1, L + 2, ..., N . Utilizando 
(6) encontramos as seguintes expressoes para i = 1,2, ..., Le i=L+ 1, L + 2, ..., N, respectivamente 

A a (p  k)(k) 	D r 	 cl3 k. 
E(P)  - 	J  (270 3  k2  - ‘-' 2 (k) 	N‘ 2 "' N)A°(9  = (3)  j (27) 3  k2  - E 2 (k) 

e 

I I d3 k Ac (p- k)E(k) 	D f2L 	ngt _ 	(Pk 	E(k)  
E(P) - N 	(27 ):3 k2 _ E.2(k) 	

AA
= 0) (2 703 k2 Ea(k) 

Observando as duas equacees acima notamos que elas sao inconsistentes, a nao ser no caso em que L = P21  , ou 
seja, metade dos ferrnions adquirem urna massa positiva e a outra metade uma massa igual e negativa. Corn isto 
cm mente, vamos dar prosseguimento a analise da equacao (8) (on (9)), sobre a possibilidade de geracao de massa. 
Varnos, por comodidade, trabalhar corn a expressao (8) no espaco euclidiano. Deste modo, 

16 r d3 k 	E(k) 	1  
E(I")  = DN j (270 3  k 2  + E 2 (k) 	kl + 

A equacao integral acima nao é facil de ser tratada. Devemos tentar fazer urna simplificacio . Introduzimos 
inicialmente urn parametro de escala l  a =.R-16  e consideramos apenas a regiao onde p << a (qualquer massa 
nao nula que podera ser gerada sera rnuito menor que esse "cut-off". Assim, a geracao dinamica de rnassa nessa 
situacao , se ocorrer, sera urn fenomeno de pequenos momentos). 0 estudo analitico da equacao acima a facilitada 
se separarmos a integracao em k em duas regioes, e o resultado fornece, ape:* fazermos a integracio nos angulos. 

I Este "cut-off",e urn parirnetro de massa natural da teoria. 

(7) 

(8) 

(9)  
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E(p) = 	dk k2(k) 	1  + 	dk  k2(k) 	 , 	 (10) 
DNTr2 	0 	k2 E2(k) p 	p 	k2 E2(k), k a  / 

corn 2aAp  P-11 
P=o 

 + E(p)I p=c1 = 0, e 0 < E(p)1 P=0 
< 03, que representam as condicifies de contorno ultra-violeta 

d  

(U.V} e infra-vermelha (LV), respectivamente, a qual E(p) deve satisfazer. Se impusermos que a >> E(p), havers 
uma regia° p >> E(p) pertencente ao intervalo 0 < p < a na qual (10) podera ser linearizada, ou seja, 

d r 	dE(1 	8  

P a.)2

p)

] = DAhr2 E(P)  • 

	

dp 	 dp 

Nesse regime linear, a equacao acima a uma equacao diferencial que admite a seguinte solucao , E(p) = 

	

Ai (p + a)°+ + A 2(p a)°- , onde at = 	 — 	corn 1+4 = NT . 
Devemos analisar duas situagies distintas. Para N > Nc , a e real, o que implica em termos a. seguinte solucao 

P 

N 
E(p) -- 	1 a  (p + a)± i(1-7t )  = (p + a) 	, corn 0 < A < 1. A solucao pars a potencia negativa em A nao 

satisfaz a condicao de contorno 1.V, enquanto que para a potencia positiva esse comportamento nao a compativel 
corn a condicao de contorno U.V, e portant° apenas E(p) = 0 e solucao . Por outro lado, para N < Nc , a e complexo 
e admite a seguinte solucao oscilatoria, 

1 	1 	32 

+ 	 P +0) E(P) =.• 	 Sen(
2 DAtr2   

1 Ln[— 
E(

] + 6) , 	 (12) 
E(0) 

onde 6 e uma fase e E(0) e um fator de escala logaritimico. Vemos da expressao acima que no can de N ser menor 
que o valor critico (< 1.5) havers geracao de massa para os fermions, sem no entanto haver quebra de paridade 
neste caso. 

.Entretanto, esta solucao nao reflete uma situacao fisica aceitivel pois N (ou L) deve ser urn niimero inteiro 2 , e 
a solucao encontrada nos leva a termos L = Z. Podemos dizer entao que o modelo Gross-Neveu no regime de N 
pequeno, corn a hipotese de que metade dos fermions adquirem uma massa positiva e a outra metade uma massa 
igual e negativa, nao gera dinamicamente massa para o campo fermionico. 

(11) 
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We give explicit field theoretical representations for the observables in the transverse lattice 
version of 2+1 dimensional Chern-Simons theory in terms of gauge invariant composites of 
2D WZW fields. Wilson loop correlators are evaluated in the path integral framework using 
decoupling techniques, thus confirming previous results. 

Since the pionnering work of Witten [1], the connection between 1+1 conformal field theory and 2+1 Chern-
Simons (CS) theory has been extensively studied [2]. In a recent work [3] a new version of this connection has 
been presented. In fact, using the so-called transverse lattice construction [4] it was shown that the use of left-right 

asymmetric Gk gauged Wess-Zumino-Witten (WZW) action for the link fields leads to a group G pure CS theory . 

in the continuum limit. Using this approach, Wilson loop correlators were evaluated in the lattice version by using 
representation theory of chiral algebras. 

Following this route we give in the present note explicit operator realizations of the Wilson loop operators in 
terms of gauge invariant composites of two dimensional gauged WZW fields. Using decoupling techniques in the 
path integral framework, we show how to factorize both the partition function of the system and the observables. 
To test our construction we evaluate Wilson loop correlators. Our results are in agreement with those presented in 
ref.[1] (and reobtained in ref.[3]). 

For the sake of clarity we first review the transverse lattice construction [3] and then present our approach. The 
transverse lattice geometry consists of a 2D manifold, which is taken as a Minkowski space M2, and a transverse 

discrete dimension, which is taken as a periodic chain of N sites (S I  topology). One introduces a link field 1  

Mx+ ,x - ) governed by a level k WZW action [5] 

kW[g n ] = —
k 	

d 2xTrA i gn omg r7 1 )+ ki[g n ] 	 ( 1 ) 
87r m, 

where g„ takes values in a simple Lie group G and F[g„] is the Wess-Zumino term 

r[g] = 12n
Yd3yeijkTr(g-1aigg-1aigg-tako 

	
(2) 

with OY = M2. The coupling between two-dimensional layers is accomplished through gauge fields Aji,ri; g„ is 

left-coupled to A±, n  and right-coupled to A±,„. F1 . The corresponding interaction term in the action is given by [6] 

l[gn , Af n , A 	= exTr[A_,„ +i g:' 0.0„ - 	g„g; 
27r m, 

1 
+A+,ng,A-

' " 
- 

2 	" 
./4+.+ A+,n+1 11 —,n4-1)]- 	 ( 3 ) 

The action 5,, = kW[g n] + 	A±,„, A±,„ + 1] is not invariant under gauge transformations. Indeed, the change in 
the action S„ reads 

bS„ = —
k 

271. 	
d 2 xTrp„c""apAv,n 0.+1c."49pA,,m+1] 

	
(4) 

•CON10ET, Argentina 
'Our conventions for light cone coordinates are rf c *(zo at  1 
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which is related to the non-Abelian anomaly in. two dimensions [7]. Note that in case the coupling was left-right 
symmetric (A±,. = A±, n+ i) the variation would vanish; this would be equivalent to gauging the anomaly free vector 
subgroup of the left and right global quiral symmetry of the WZW model. 

As we explained above, the entire system consists of a periodic chain of 2D layers. Its action is simply given by 

	

S=Esn. 	 ( 5 ) 
n=1 

This system is gauge invariant because of the cancellation of the second term in (4) with the first term coming from 
the variation corresponding to the following site. We will refer to this interplay as gauge invariance of the junctions. 

In order to make contact with the 2+1 CS theory, we follow ref. [3] and represent the link field g,, as a function 
on the transverse lattice, 

r3 +a 
gn = exp( —

,r 	
A3(x + 	r3 )dx 3 ). 

3  

Here a is the spacing of the lattice and x 3  = na will become a continuous coordinate as a 	0, N 	oo, while 
Na = L remains constant. In this limit the phase exponent in (6) can be written as —aA3, with A3 evaluated in 
x3  = (n +.1/2)a. Using this parametrization in eq.(5) one obtains 

Jim S = 	d3xc ii k Tr[Ai8jAk 2 E Scs, 
a 	

n
k 

0 	 3 

N 00 

(7) 

which corresponds to the level k CS action for the gauge group G. 
Once the connection (7) between classical actions is established, one is naturally led to study the quantization. of 

both theories and the relation between their observables. This study has been performed in ref.[3] in the framework 
of canonical quantization, using the representation theory of the Virasoro algebra for the 1+1-dimensional layers 
and then solving the constraints arising from gauge invariance of S in eq.(5). In this way, the correspondence 
between the physical states of the lattice CS theory and some Wilson loops of the continuum CS theory has been 
proved. In our investigation, we shall instead work'in the path-integral approach using decoupling techniques [6, 8]. 
This will allow us to construct explicit operator expressions for Wilson loops in the lattice CS theory. 

We start from the partition function of the lattice CS theory 

z. 	DA p,„Dg„eis 	 (8) 
✓ n=I 

with S given by eq.(5) and perform the (decoupling) change of variables 

A+,n = f,;18-Ffn, 

A_,,, = h,; 1 8_h,„ 
gn  = 	9{10)hn+1 	

(9) 

After this change the action S takes the form 

S =E(k147 1.4°1— kW[f„h; 1 ]), 	 (10) 
n=1 

where the Polyakov-Wiegmann identity has been used [9].  
Taking into account the Jacobians and fixing the gauge, (we also change f„ 	f„ = Lac' (with unit Jacobian)), 

we obtain the decoupled partition function 

N 	 N 

Z = Z g h nve)e.kwigio»f
J n=1 	 n=1 

(5 ) 

For each site n one has a conformal field theory with vanishing total central charge, built up from the different 
sectors: a ghost sector, a level k WZW sector and a negative level WZW sector. Notice that, although the partition 
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function of the theory is completely decoupled, BRST quantization condition connects the different sectors in order 
to ensure unitarity [8, 10]. 

We will now show that the lattice version observables naturally lead to Wilson loop operators in the continuum 
CS limit. 

The observables in the lattice are constructed from gauge invariant composites of WZW fields, which in turn 
belong to integrable representations of the group G. In order to keep a simple notation we will discuss the specific 
example of SU(2)k, although the extension to 'SU(N)k and more general groups is straightforward. The integrable 
representations of SU(2)k are characterized by the spin j = 0, 1/2, k/2 [11]. 

We consider 

Ri (2 +  x —  ) = Trj fl Aj ) (x+ x -  ) 	 (12) 
n=1 

where Tr.' means matrix trace in the representation of spin j. 
To see the connection of these fields with Wilson loop operators one has to use eq.(6) (now in the representation 

j) obtaining 
N 

Ri(x+ , x - ) 	Trj T7 e—aA3(r+,x",iia-ka/2) 	 (13) 
n=1 

which in the continuum limit gives 

	

Ri(x + 	 TrjP(c-  fc dxP  A "). 	 (14) 

This is the expression for Wilson loop operators winding once around a circle C passing through (x+,x - ) in each 

layer and carrying flux in the representation j. 
The identification (14) is also valid at the quantum level. We checked this statement by evaluating up to three 

point correlators using the decoupled picture (11). In this picture the fields in eq.(12) can he written in terms of 

the decoupled variables gf,°) , if, as 

N 

Mx + 	= 	H ( f(j))-1 (x+, x- )y(o)(j)(x+, x— ). 

 

n=1 

Thus, correlators involving Rj's factorize in the level k and level —(k + 	WZW sectors. 
The conformal dimensions of the primary fields in a level K SU(2) WZW theory are given by Ci/(K + Cu), 

where Ci = j(j + 1) is the Casimir in the spin j representation and the adjoint Casimir is C t, = 2. For the fields 
(W 

9
o)
. 	and fl,j)  we have 

hr  (0.7), = iCi + 1) 
tn 	J 	k 4.2  

= j(i 	1)  k + 2 

and hence the conformal dimension of Rj  vanishes. This implies that the correlators are independent of the 
coordinates 2  (x+, x - ), this being in correspondence with the topological nature of Wilson loop operators. 

The one point correlator vanishes except for the trivial j = 0 representation, in which the fields correspond to 
the identity operator, giving 

(Rj) = 	 (17) 

For the two point correlator one obtains 

(iiii(ri)R.i2(x2)) = 6.11/2 

Finally, for the three point correlator one has 

(R1i(x1)R12(x2)R1s(r3)) = 	i3) 

where 15(j 1 , j2 , j3) means 1 in case that j 1 , j2  and j3  satisfy a triangular condition and 0 otherwise. 

(15)  

(16)  

This fact is a direct consequence of conformal symmetry for the two and three point correlators. hi the four point case the analysis 
is more involved but coordinate independence can be proved following ref.[12] (see section 3.2). 
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Our results (17), (18) and (19) coincide with the expectation value of one, two and three unknotted Wilson 
loops given by Witten [1] in terms of the fusion rules of the symmetry group thus confirming our Ansitze. In 
summary, we have given an explicit operator realization of the Wilson loop operators (winding once around Si 
and carrying flux in the representation j) in terms of gauge invariant products of WZW fields in the transverse 
lattice formulation. We have also shown how to decouple the lattice partition function and within this scheme we 
have explicitly evaluated correlators of up to three unknotted Wilson loops. The results we have obtained are in 
agreement with those found by Witten in [l]. 
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0 efeito Casimir de um campo de Dirac massivo confinado entre duas placas infinitas e 
paralelas e calculado usando-se urn metodo proposto por Schwinger. A condicao de contorno 
usada e a de corrente nula atraves das placas, inspirada no confinamento de quarks do 
modelo de sacola MIT para hadrons. Usamos o metodo de regularizacao de Schwinger, de 
truncamento no tempo proprio seguido do use da formula de soma de Poisson. 

Embora tenha sido originalmente predito[1] e observado[2] no campo eletromagnetico, o efeito Casimir e uma 

propriedade de qualquer campo quantico relativistico. Sua relevancia no caso de campos de Dirac d obvia em 

qualquer problema envolvendo os campos de materia, como ocorre, por exemplo, no modelo de sacola MIT para 

hadrons[3]. lnspirados no confinamento de quarks deste modelo usamos a condicao de contorno de uma fronteira . 

 impermeavel aos fermions, aplicada entretanto a geometria mais simples de duas placers paralelas infinitas ladeando 

o campo. Para urn campo, como o de Dirac, que obedece equacoes difcrenciais de primeira ordem, nao podemos usar 

condicoes de contorno de Dirichlet ou de Neumann, que sax) as adotadas comumente para o campo eletromagnetico 

e demais campos bosonicos; adotamos entao uma que nao somente e compativel corn a equacao de Dirac coma 

tambern descreve de modo bastante natural a impermeabilidade das placas, qual seja, de corrente de fermions nula 

atraves das placas. Se j e a corrente do campo de Dirac e n a normal na fronteira, a restricao descreve-se pela 

equacao: n p,jP. 0. Esta condicao , conhecida como condicao de contorno MIT, e implementada impondo-se ao 

campo de Dirac tb, na fronteira, a seguinte equacio linear: in i,10 0= tG (3). 

Aqui apresentamos o calculo da energia de Casimir do campo de Dirac usando o metodo de Schwinger [4), que 

baseado em uma formula originalmente proposta para calcular awes efetivas ern eletrodinamica quantica [5]. 0 

poder do metodo de Schwinger ja foi verificado para campos bosonicos nos casos sem massa [4,6] e corn massa 

[7], tanto em temperatura nula quanto em temperatura finita estando ja estabelecida sua conexao [9] corn o 

metodo de soma dos modos de energia do ponto zero. Tainbern no caso em consideracao mostramos que o metodo 

de Schwinger leva-nos rapida e diretamente a resposta final, o que o torna especialmente iitil para investigaeOes 

teericas e construcOes de modelos. 

Comesamos entao pela formula de Schwinger para a acao efetiva [4]: 

vvo ( so ) = i  r ds Tre—ii 
2 	s (0 

na qual fl e o hamiltoniano do tempo-prOprio 8, 80  c o truncamento no tempo-proprio, e Tr e o trace, total, funcional 

e matricial (para o campo de Dirac a falta de urn fator 4 sera sentida se este 'Ultimo for esquecido). Para obtermos 

a energia de Casimir £ tomamos a variacao da energia do vicuo do estado I0—), anterior a introducao das placas, 
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para o estado 10+), posterior a introdugao das rnesmas. Urna vez quo ambos os estados sao estacionarios temos que 

(0 +[0-)= exp(-zET), onde T e o tempo gasto na medigao de E. Usando entao a equasao (0 +10-)= exp(iW( 1 )) 

[4], que define a asao efetiva, obtemos: 
Aim 

E _ T  

Consideremos pois o campo rnassivo livre de Dirac confinado entre duas placas infinitas e perpendiculares ao 

eixo OZ, uma em z = 0 e a outra em z = a. Podemos considerar inicialmente que as placas sao quadrados grandes, 

de lado L e depois de calcular a pressio de Casimir tomar o limite L co. Aplicando a condicao de contorno MIT 

a uma solusao da equasao de Dirac do tipo onda plana de momento p, obtemos para a componente z: p,= nar/2a, 

onde nE 2111 - 1 e @Y e o conjunto dos inteiros positivos. Para o caso em consideracio H = (-82  + m2 )11 [5], onde 

m c a massa do campo de Dirac eBea rnatriz unidade 4 x 4. Corn estes dados a facil obter para o trago: 

Tr 	= 4 	
L2T 

e -ism' E  
liTYrs)3  n EMI -1 

Este trago pode ser modificado por mein da formula de soma de Poisson [I0], 

	

E  e_o w „. = _1 	e _ ro„,. /7. 	1 

	

1/7 E 	2,,g 2 
nEes; 	 nEd4 

e ser substituido em (1) para se obter a seguinte expressio para a asao efetiva: 

m4 	 m/2702 w(I)(sQ) T (L 2 a) 	ds s -3  e-1 	
f 

TL2  '
a (am)2 = - 

° 7'
-2- 
 iros„, 

(2) 

X E t2 Jo 	C(arn)2' -(2n) a — 	

ds s e 

nE/N 	 JO 
(am)', -1 _n2,1 

(3) 

onde na primeira integral a variiivel de integracao foi mudada de acordo corn s 	im 2s e na segunda, de acordo 

corn s 1-• a 2 /is. 0 primeiro termo no lado direito desta equasao é proportional ao volume contido entre as placas 

representa pois uma densidade de energia uniforme espalhada ern todo o espaso. Tal densidade independe da 

presensa ou nao das placas c d portanto espriria em nossos calculos; no limite em que o truncarnento no tempo 

proprio desaparece, so  0, ela diverge para a seguinte expressao: -TL 2 am4 F(-2)/87r 2 , na Trak l' é a fungi° gams 

de Euler. Os outros termos no lado direito da equasio (3) dao a dependencia da ask efetiva em relasao a separasio 

a entre as placas; tomando o limite so  -4 0 desta parte obtemos a parte fisicamente significante Substituindo 

W(l)  em (2) obtemos [11] a seguinte expressao para a energia de Casimir: 

E = L 2 ("1/21r)2 	—1., [2K2(2amn) K2(4amn)] , . 
nE/N 

(4) 

onde K2 e a fungi() de Bessel modificada. No limite de massa nula a expressao (4) reduz-se a (cf. formula 9.6.9 

em [12]): 

E = -L2 
2880a3 

que e o mesmo resultado obtido corn outros mitodos [13] e que ieva a seguinte expressao para a pressio de Casimir: 

pc = - 71r 2 /960a4 . Como no caso do campo eletromagnetico, a pressao tende a juntar as placas, mas neste caso de 

campo fermionico sem mama eIa a maior pelo fator 7/4. 

7_2  
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No limite de massa grande a energia de Casimir a dada por (cf. formula 9.7.2 em [12]): 

M2  2  \p—  

	

- 	e 2arla  e —L 
4ir 2 a ma 

que e igual ao limite de massa grande para bosons [14] multiplicado polo fator 4 proveniente do traco espinorial. 

Este e urn resultado a ser esperado uma vez que m oo corresponde ao limite clas.sico no qual bosons e fermions 

tornam-se indistinguiveis. 

E interessante notar que neste caso de campo fermionico a auto-energia de cada placa na.- o aparece no forrnalismo. 

A causa delta ausencia pode ser facilmente rastreada no formalismo e e dada pelo fato de que no caso fermiOnico 

os modos discretos do momentop, sao numerados por 21N — 1 e nao por IN , corno no caso bosonico. Observemos 

finalmente que os mesmos resultados aqui apresentados sao obtidos [15] usando-se a regularizac5o por continuacio 

analitica que foi proposta na referencia [6]. 

Agradecimentos. Agradecemos Arvind N. Vaidya, M. Asorey and A. J. Segui-Santonja por discussoes proveitosas 

neste assunto e ao CNPq pelo auxilio financeiro. 
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A funcao de partici°, Z(,l), de urn sistema quantico unidimensional pode ser expressa em termos de uma integral 
de caminho: 

oo 	r(0)=x0 
Z03) = 	dzo 	(Dx(r)le -914  , 

—00 	fr(0)=s0 

fih 
S = 	

2 
dr [-

1
M i2  V(x)1 

Dado urn potencial arbitrario, V(x), nao e possivel, em geral, calcular essa integral de forma exata. Resultados 
aproximados podem ser obtidos utilizando-se metodos perturbativos[1, 2], variacionais[1, 2] ou numericos[3]. Outro 
metodo, muito popular, 6 a aproximagao semi-classicaK 5]. 0 objetivo do presente trabalho e: i) apresentar uma 
formula geral para Z,(f3) que nao requer urn conhecimento detalhado do movimento classica l  ii) mostrar como o 
tunelamento pode ser relacionado corn a ocorrencia de certas singularidades nessa formula, e iii) fazer urn estudo 
dessas singularidades usando os metodos da Teoria da Catastrofe. 

A aproximacao semi-classica de (1) fornece 

N(z0,P) zso)  = fc° dzo  E  e_s,(.0,fivisA71/2(ror )6)
oo i=1 

(3 ) 

onde .5j(x0,#) 6 a ack da j-esima trajetoria classics , xj(r), satisfazendo as condicoes de contorno xj(0) = xj(8h) = 
xo, j(zo, 	e o determinante do operador de flutuagoes em torno de xj(r), 

(xo  , fl) = Det (—M
d 

 + V"[xi (r)]) , 

e N(x o ,$) e o niimero de trajetOrias classicas que minimizam a acao. 
Em termos dos pontos de retorno do movimento classic°, a acio tern a seguinte expressao: 

Si (xo , 0) = fah V(4) 21 dz Mv(x,xj± ) 
ro 

zj+  
+2n 	dx M 	) , 

onde v(x, y) E 02/MilV(2) — V(y)] c x-'41 	) sac) os pontos de retorno a direita (esquerda) de zo. 0 primeiro 
termo em (5) corresponde ao limite de aka temperatUra de Z(#), no qual as trajetorias classicas colapsam num 

(1) 

(2) 

(4) 

(5) 

I Par movimento classic° queremos dizer movimento satisfazendo a equacio de Euler-Lagrange Ma — V'(z) = 0, clue E a equagiio de 
movimento para uma part lento movendo-se no potencial melts/ V. 
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ponto(1, 2] e, portanto, zi+ 	) 	x o . No caso de movimento em regiOes em que o potencial invertido (isto 6, -V) 
e ilimitado (daqui pra frente chamado de movimento ilimitado), n = O. No caso de movimento periodic°, n e igual 
ao 'imer° de periodos e o segundo Lermo esti ausente. Finalmente, no caso de movimento limitado aperiOdico, 
todos os termos esti() presentes. 

Para trajetorias corn urn Unico ponto de retorno (n = 0), rj ±  sao dados implicitamente por 

r(xo, xj±-  ) = 2 j:: ±1  v(xd, x1-1) = fph 

e o determinante de flutuacOes por 

Arh[V(si) - V(zo)1  roxy., y1y=r, 
,„(x., 0) = 	m v (zjI)  

A fOrmulaacima somente a valida para trajetorias corn urn Unico ponto de retorno. No entanto, como mostraremos 
mais adiante, trajetorias corn doffs ou rnais pontos de retorno sao pontos de sela da acao, e, portanto, nao contrihuem 
para a aproximacao semi-clissica de (1). 

A Unica informacio requerida pelas formulas (5) e (7) sobre as trajetorias classicas sao seus pontos de retorno. 

Para mostrar a simplificacio que isso acarreta no calculo de Z,x (fl), tomemos como exemplo o oscilador harmonic°, 
V(x) = L /iirv 2 z 2 . Nesse caso, dados x o  e /3, existe apenas uma trajetoria classica, cujo (Unico) ponto de retorno 
e dado par x +(x_) = zo/cosh()3/4//2) para xo < 0 (> 0). St e r7 r  tambern podem ser facilmente calculados, o 
resultado final (nesse caso, exato) sendo 

Zoc(13) = dxo 
e-(Alwrg/h)tanh(13h42) 

Mw 

x  2rhsinh(filiw) \I 	 
Urn exemplo menos trivial 6 dodo pelo potencial V(x) = Ax4 . Nesse caso, o use das fOrmulas (5)-(7) fornece como 

resultado2  

I du \ - ir A/33h4 I 21421'2  [ + 	
cn(u, k) 

33 h4  L 	usn(u,k)dn(u,k) .]

1  

Al 2 u3 	sn(u,  k) dn(u,k) 	14 1  
exp 

3433 h4 	cn 3(u, k) 
(9) 

ar /2 corn k = lAfi e It = fo  dip (I - z  sin s  402) -1 / 2  = 1,85407 	e onde cn(u, k), sn(u, k) e dn(u, k) sao funcoes 
elipticas de Jacobi(6). 

Ulna situagao mais interessante ocorre no caso do oscilador anarinanico, V(x) = A(x 2  - a2 ) 2 . Para x 2  > a2 , so 
hi trajetorias corn urn &rico ponto de retorno. Contudo, na regiao x 2  < a 2 , onde o movimento classic° e limitado, 
pode haver mais de uma trajetOria classica para valores dados de x o  e /3. 

Numa regiao de movimento classic° limitado (urn pogo em -V), tal coino x 2  < a2  no caso do oscilador 
anarmonico, o mimero de trajetorias clessicas varia corn a temperatura. Se 0 < < 71- / fawn., (onde w m  = 
V-V"(x r„)/ M e a freqiiencia das pequenas oscilacoes em torno x r„, minim° local de -V), para cada x o  nessa 
regiao existe ulna Unica trajetoria. classica. Se xo < x n, (> x,n ) essa trajetOria vai para a esquerda (dircita) e 
retorna para xo. Se x o  = xm , a particula fica cm repouso no fundo do pogo. E cste regime de trajetOria Unica que 
corresponde ao limite de aka temperatura. 

Quando # = rrituon,, a solucao x(r) 	torna-se instavel. Scu operador .  de flutuacoes e o de urn oscilador 
harmonica corn w 2  = rd,n2  , cujo determinante a 6r(x,,,, )3) = 27rhsin(01iw n )/Mw m . Ele se anula quando /3 = - Aw n, 
e Lorna-se negativo quando )3 > r/hwm . Ao mesmo tempo, surgern duos novas trajetorias classicas, simetricas cm 
relacao a x m , como mostra a Fig. 1. Assim, em xo = x n, nos vamos de urn regime de trajetOria Unica para UM 

regime de tres trajetorias quando passarnos por Q = 71- /hw,,, As duns novas trajetorias sao minimos degenerados, 
ao passo que x n, torna-se urn ponto de sela da acao, apresentando urn link() mod° negativo. 

( 6) 

( 7 ) 

(8) 

7 Detalhes sobre a obtencito deste resultado, been coma outros exemplos e a cleducao da Eq. (7), series apresentados nun' trabalho 
futuro. 
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• 
2 	3 

( 1) 	 (b) 
Figure 1.: (a) 'rrajetOrias classicas com x o  = x„, para 13 < 7r/tx,)„, (I) e > 	(2 and 3); (b) Esboco de como 
os extrernos mudam ao longo da direcio instavel no espaio de funks. 

(14 

Figure 2.: (a) 'TrajetOrias classicas corn xo 	xm  para ,13 < 	( 1 ), 	= i3 (1 and 2&3) e /3 > 0c  (1,2 and 3), 

wihwin < i3c < 27r/trw m ; (b) Esboco de como os extremos mudam ao longo da diregiio instiivel no espago de funcoes. 

Quando cresce alem de 	uma situacao analoga ocorre para outros valores de xo dentro do pow. 
Quando o determinante de flutuacoes em torno da trajetoria clgssica correspondente a um dado xo se anula, surge 
uma nova trajetoria clessica. Seu (Calico) ponto de retorno se encontra do lado oposto, corn relacao a xm, de xo. 
A nova trajetoria pode, portanto, ser interpretada como uma trajetoria tunelante, ja que ela atravessa uma regiao 
classicamente proibida de V. Se 0 cresce aiiida mais, essa trajetoria tunelante desdobra-se em duas, uma das quais 
e urn minimo local da acao, enquanto a outra e urn ponto de sela, corn um tinico modo negativo. A Fig. 2 ilustra 
essa transicao de urn regime de trajetoria unica para urn regime de tres trajetorias. Conforme /3 cresce, aumenta a 
regiao na qual existem tr.& trajetorias classicas corn o mesmo valor de xo. As fronteiras dessa regik sio definidas 
pelos pontos x o  nos quais Pr(x o , y)/Oy] y _ =1 = 0. 

0 feneimeno descrito nos dois paragrafos anteriores a analog° a ocorrencia de causticas em Otica[7], onde o papel 
de trajetorias classicas e desempenhado pelos raios de luz, extremos da distancia Otica. As causticas ocorrem nos 
pontos onde a densidade de raios, e portanto a intensidade luminosa, diverge (dai seu nome). No nosso caso, isso 
se reflete na divergencia do integrando de (3) nas fronteiras que separam as regioes de uma trajetoria das regiiks 
de tees trajetorias classicas, ja que A(x0,13) se anula nesses pontos. 

Ambos os fenomenos sac) exemplos de catestrofes. Elas ocorrem quando dois ou mais extremos de uma funcio 
(no nosso caso, urn funcional) coalescem, ou entio quando extremos surgem onde niio havia•nenhum. A Teoria da 
Catistrofe[7, 8, 9] classifica tais singularidades de acordo corn a sua codimensk no espaco de controle, formado 
pelos par&metros "externos" do sistema. No nosso caso, esse espaco e bidirnensional (xo e 0), e portanto so podem 
ocorrer catistrofes de codimensao 1 (dobra) ou 2 (ctispide). A situacao que estudamos corresponde a uma ctispide. 

Uma seqiiencia de ctispides ocorre quando baixarnos a temperatura. Toda vez que passa par urn valor igual 
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a urn multi* inteiro de ir / luv„„ surgem dims novas solucoes corn valores de x o  nas vizinhancas de x m . No 
entanto, apesar do ntimero cada vez maior de extremos, correspondendo a trajetOrias corn um numero crescente 
de tunelamentos, apenas dois deles minirnizam a acao. puma aproximacao semi-clfissica corn tempo imaginario, 
apenas esses dois extremos devem ser somados. Corn efeito, a aproximagfio semi-clfissica consiste cm expandir a 
acao em torno de urn extrerno e integrar sobre as flutuacoes quadraticas em torno do mesmo. Para que tal integral 
convirja (apps uma eventual regularizacfio) a necessario que todos os modos sejam positivos. 3  (0 mesmo argumento 
nao se aplica quando o tempo a real, pois nesse caso as flutuacoes quadralicas ciao origein a integrais de Fresnel, 
para as quais esse problems de convergencia Liao ocorre.) 

Dos dois minimos da aciio, urn deles so existe para # < 7r/fico m , c somente para certos valores de x o . A transicao 

de uma regiao de urn minimo para uma regiao de dois minimos ocorre nos pontos em que o determinante de flutuacoes 
se anula devido ao surgimento de ulna ca.ustica, levando ao surgimento de uma singularidade no integrando da Eq. 
(3). 'cal singularidade a urn artefato da aproximacio semi-classica. Ela desaparece quando se faz uma aproximacao 
mais refinada[7, 10, 11], na qual se incluem flutuacoes ctibicas e quarticas na direcio do espaco de funcoes na qual 
a instabilidade se desenvolve. De qualquer forma, a presenca dessa singularidade nab a desastrosa, ja, que ela 
integravel. 

Nos gostariamos de agradecer Roberto lengo, por conversas proveitosas, Ildeu de Castro Moreira, por indicar a 
Ref. [9], e Flavia Maximo, por ajudar corn as figuras. Parte deste trabalho foi desenvolvido no ICTP, e teve suporte 
financeiro do CNPq. 
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A computational environment, as a set of MapleV R.3 routines for doing symbolic calcu-
lations in Quantum Field Theory, is presented. The QFT package's routines extend the 
standard MapleV computational domain by introducing representations for anticommuta-
Live and noncommutative objects, tensors, spinors and gauge fields, as well as related ob-
jects and procedures (Dirac matrices, differential operators, functional differentiation w.r.t 
indexed fields, sum rule for repeated indices, etc.). Furthermore, the QFT routines permit 
the user-definition of algebra rules for the commutation/anticommutation of operators, to 
be taken into account during the calculations. 

1 Introduction 

Physics researchers often experience the sensation that performing calculations by hand is still more comfortable 
and simpler than carrying them out in any symbolic computation system. This is due to the lack of computational 
facilities that would allow the user to work with his computer as naturally as he would with paper and pencil. The 
existing packages, having been designed to attain specific purposes, fail to provide the desired flexibility. 

In this work we present our efforts to implement a computational environment for doing calculations in Field 
Theory research, being currently materialized as a package named QFT, written using the MapleV symbolic com-
putation language. This release includes: 

• routines implementing all the basic operations for the required new symbolic objects, such as &* (noncom-
mutative product), inv(erse w.r.t 	Tr(ace), gdiff(erentiation w.r.t Grassmann parameters) etc.; 

• background checkup of the user's input concerning tensor, spinor or gauge indices for consistency; 

• the possibility of introducing algebra rules for quantum operators of any type; 

• most of the basic simplifications and normal forms for algebraic expressions containing the new objects, in 
order to take the most advantage of the standard MapleV Library as a whole. 

In many aspects, the QFT package synthesizes and extends the partials[I] and Grassmann[2] packages', which 
already implemented functional differentiation w.r.t tensor fields and the basic commands for working with anti-
commutative and noncommutative objects. 

We shall not detail here language and programming issues, but restrict ourselves to outlining the main ideas of 
our project. 

2 A Computational Environment 

The construction of a computational environment can be pictured as the mirroring of the "paper and pencil world" 
into the "keyboard and screen world". Calculations in the "paper and pencil" sense involve a number of objects 
with definite properties, among which operations of various degrees of complexity are performed. Hence two steps 
are essential for the solid founding of a computational environment: 

• terrabawmcsa.uerj.br  
ecorreaCtiv-rneaa.uerj.br  

I darnotativrnesa.uerj.br  
1  These packages can be found at http://dft.iluerj.brisyrnbcomp.htm  
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I. The definition of a computational domain, i.e., the representation of all objects that may possibly enter the 
input or output of calculations, together with the characterization of their properties. 

2. The implementation of the basic operations among the elements of the computational domain. 

A careful construction of these elements sets up the base for the future implementation of more complex and 
powerful operations. 

2.1 Defining the extended computational domain 

When doing calculations by hand, an object is usually characterized by the following: 

• Every object has a name of its own. 

• An object may have indices of various natures, such as tensor, spinor or internal (gauge) type. The name of 
an index consists of a root (initial string with purely alphabetical characters) eventually followed by a suffix 
of purely numerical characters; the root identifies its nature. 

• There may exist symmetry properties among the indices of an object. An object may be totally symmetric 
(or antisymmetric) in its indices of one or another type, or it may be symmetric in some of its indices arid 
antisymmetric in some others. 

• Objects may be subject to commutation and anticommutation relations. 

Concerning these points, we define as extended computational domain the computational objects representing ten-
sors, spinors, and objects containing internal group indices; including their symmetry properties and any special 
algebra rules. 

To define an object as belonging to the extended computational domain (a QFT object), a special routine, 
Define was prepared. 

Once an object is defined as a QFT object, each time a command of the package finds such an object, the 
command will operate taking into account all the mathematical properties of these extended objects and of the 
basic operations defined for them (see subsection 2.2). 

An object may also be included in the computational domain through background definition, which consists 
in the automatic application of Define to objects matching a pre-defined pattern, as the package's commands 
processes a mathematical expression. 

Some default QFT objects, automatically loaded with the package are: the Pauli and Dirac matrices, the metric 
and the Levi-Civitta tensors, and differential operators such as Op, the Laplacian and the d'Alembertian. 

2.2 Setting up the basic operations for the extended computational domain 

By setting up the basic operations we mean: the setting of the algebra and differentiation rules for the new objects; 
the, say, first level operations, as the inverse and trace of an object etc.; and the definition of canonical forms and 
simplifications to he applied by default to the returned results. 

The basic algebraic operations and differential operators implemented with the QFT package are: 

• Summation, represented by the operator ( -1-'. 

• The sum rule for repeated indices. In other words, the recognition of dummy indices of any type as such. 

• The noncommutative product, represented by the `8,c 1" operator, according to Maple standard convention (see 
[2] 

• Differentiation. Both ordinary (gdiff) and functional (Miff) differentiation must take into account the partic-
ular properties of anti/noncommutative objects (see El] and [2]), as well as the sum rule for repeated indices. 

As first level operations we introduced command representations for: 

• the trace of an object, represented by the function Tr; 

• the inverse of an object, represented by the function inv. 
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Default simplifications and canonical forms 

We take as a general rule that good mathematical expressions are the "simplest ones", though there is a great deal 
of scope in defining "simplest" from the computational point of view. The manipulations performed by default by 
the package commands were classified into three categories: 

Simplifications related to the & * product 

• the application of the distributive property of noncommutative product with respect to summation; 

• the identity element as the result of the product of an object and its inverse; 

• the vanishing of any product containing 0 as an operand. 

Simplifications with respect to dummy indices 

• recognition of dummy indices as dummy indeed: 

• reduction of expressions involving the metric and Levi-Civitta tensor to expressions that do not involve these 
objects, whenever possible; 

• vanishing of products containing objects symmetric and antisymmetric with respect to the same pair of indices. 

Rewriting of an expression into its 'canonical form" 

It often occurs that mathematical expressions with different syntaxes have the same meaning. From the compu-
tational point of view it is highly advantageous that all those expressions be translated into a unique, simple, and 
equivalent form - which we shall call their "canonical form". 

The careful design of a canonical form for a given class of expressions takes into account not only purely 
mathematical aspects, but also computational efficiency and speed. 

3 Background checking and internal representation 

Extensive and repetitive calculations, even the simplest ones, are quite often plagued by mistakes when performed 
by hand. Sometimes tracing those mistakes itself is such an awkward task that it seems preferable either to start 
everything over again - hoping our attention will not betray us this time - or to find a more pleasant thing to 
dedicate our attention to. For that reason, we took as a principle that a background checking of arguments should 
be performed by every command of the QFT package. In other words, calculations are continuously being monitored 
for inconsistencies; for instance, all the operands in a summation should have the same set of free indices (the same 
applies to both sides of an equation), and repeated indices should not appear more than twice. 

Great care has been employed in writing up clear and specific error messages for the user, to be displayed 
whenever an inconsistency is detected, thus interrupting the calculation. 

The objects belonging to the extended computational domain (see subsection 2.1), have two different representa-
tions: the "external" and "internal" one. The former intends to be as similar as possible to the "paper and pencil" 
way of writing, and is used in every input (by the user) and output (by the QFT commands); the latter is suitable 
for more efficient and quick processing, and is used by the QFT commands in all intermediate calculations. Hence, 
when processing algebraic expressions, the package's commands first convert all the extended objects in a given 
input expression into their internal representations; only then calculations are actually performed and, finally, the 
result is converted back into a user-readable form, and displayed on the screen. 

4 Conclusion 

The QFT package is being designed as a basic calculating tool for physics researchers in Quantum Field Theory'. 
It is divided into five modules, each of them performing different tasks: 

a. QFT- Define, concerned with the definition of the computational domain. 

This work was supported by Universidade do Estado do Rio de Janeiro (UERJ), and the "COnselho Nacional de Desenvolvimento 
Cientffico e Tecnoldgico" (CNPc). 
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b. QFT-general, which deals with the inverse and trace of objects, as well as with noncommutative product 
manipulation. 

c. QFT-representation, related to the translation of objects into their internal representation. 

d. QFT-simplify, where simplification due to dummy indices and rewriting of expressions into their canonical 
form is handled. 

e. QFT-differentiation, which implements Grassmann and functional derivatives for the objects of the computa-
tional domain. 

The implementation of the first three modules has been completed. The remaining modules are still in preparation. 
This package was designed as a basis for future packages related to more complex tasks (functional integration, 

dimensional regularization, building of perturbative series, etc.). We are now designing some of these complex-task 

packages and expect to report related work in the near future. 
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In this work we present three possibilities for the generalization of proper time. Experimental 
tests can distinguish among them and this is a possible test for the reality of Kaluza-Klein 
extra dimensions. 

1 Introduction 

One of the first experimental tests of the 'Theory of Special Relativity was the life time dilatation of high velocity 
muons. Nowadays this is still an exercise or example in many text books. 

The General Relativity proper time is given by 

dr 2  = g„cla: 14 cle 	 (I) 

which sometimes can be written in an appropriated frame as 

dr2  = dt 2  —(dx 1 ) 2  — (dr 2 ) 2  — (dx 3 ) 2 	 (2) 

where we put c = 1 . If the world-line of a particle is parameterized by t, and putting v' = d*, we have 

dr2  = (1 — v 2 )d1 2 	 ( 3 ) 

where v 2  = (v 1 ) 2  -1- (v 2 ) 2  -1- (v3 ) 2 . 
The Lorentz factor is then defined by 

dt = ydr or 7 = (1 — v2 ) 4 	 (4) 

Since dr is an invariant the life time of unstable particles depends linearly on 7, what is verified experimentally. 
We observe however that this is valid only for free particles, in the absence of fields different from the gravitational 
one. 

Now we outline three possible ways of generalizing the concept of proper time when the particle is under the 
action of other fields. We trust that experimental measures of life time could distinguish among them. For the 
sake of simplicity (both, theoretical and experimental) we consider only electromagnetic fields in a gravitational 
background, but generalizations to include other interactions can be done. 

2 The Possibilities 

2.1 General Relativity 

The proper time should be given by eq. (1) but with g p„ determined by Einstein equation 

G„ = arTai, 

where the R.H.S. must include the electromagnetiC stress-energy tensor 1114-T-WI 
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2.2 Apsel's Propose 

D. Apsel [A] started from the Einstein-Maxwell action density and added an extra term to proper time, defined by 
him as 

dr = (g„dxi'dx`li + Apde 
rn 

in order to explain a supposed discrepancy between positive and negative moons life time which he trusts J. Bailey 
et all [B] had measured. Besides the theoretical problems of this approach, we point that Apsel has made use 
of averaged values obtained from different experiments in which muons were under different electromagnetic field 
conditions. 

2.3 Kaluza-Klein Theory 

It is well known that, in Kaluza-Klein context, a "five-dimensional Einstein-Hilbert Lagrangian" 	[A-C-F]) leads 
to field equations which decouple in Einstein equation (with the electromagnetic T„,,) and Maxwell equations. 

Also five-dimensional geodesics project on known four-dimensional particle trajectories, being the momentum 
canonically associated to the fifth coordinate the electric charge q of the particle. 

Then, it sounds natural to give direct physical meaning to the five-dimensional arc length (instead of the four-
dimensional one) and work with' 

dr2  7Afivdx fil dx N 	 ( 8 ) 

The fifth dimension is usually considered periodic with length of some hundred times Planck length (IK1), and 
although we have no direct access to it, we'note that the fifth velocity can be obtained from the cylindrical condition 
assumed ([T]) and from the four-dimensional projection of the trajectory. 

3 Experimental Possibilities 

We trust that particle accelerators working nowadays are able to test if any among these three possibilities is better 
than the others. It is even possible that experimental data already stored be enough, and the only need would be 
to work them out. 

4 Discussion 

Certainly General Relativity is not a complete theory (the last 35 years of Einstein's work show this). Kaluza-Klein 
theories are truth possibilities and hopes toward a unified field theory. In E. Witten's words ([W] ,p.415) 

"This theory [Kaluza-Klein] is surely one of the most remarkable ideas ever advanced for unification 
of electromagnetism and gravitation." 

The experimental test suggested here can show if the extra dimension has physical reality or if it is just a good 
mathematical tool (or toy). 
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The Batalin Vilkovisky (BV) formalismil, 2, 3], also called field antifield quantization, is a Lagrangian BAST 

procedure that generalizes the Faddeev Poppov mechanism. 

It is known that superspace formulations for gauge field theories can be build up in such a way that the BRST 

transformations are realized as translations in a Grasmannian coordinate[5]. 

In the present article we will investigate a superspace version of the field antifield formalism at higher order in 

h. 
Considering a gauge field theory characterized by a classical action S o [c6i] we introduce ghosts, antighosts and 

auxiliary fields associated to the original gauge invariance of So in the usual way. 

60 0A = RA [o] 
	

(1) 

Following [6] let us define the enlarged BRST algebra as : 

NA n. A ; 6ikA 7r A RAN, 46 1T A = 0 ;  6o• A = BA;  4  SBA = 0 	 (2) 

And the total action as: 

S = So 	— 	— (5 (0 . A C6A  ) + Okbilb A i 	 ( 3) 

where 0[49A] is a fermionic functional representing the gauge fixing of the original symmetries (1). Now, the BRST 

superspace formulation is obtained introducing superfields of the general form: 

•(x, 0) = 	+ °SOW. 	 (4) 

We can define a superfield action as: 

0 s = so [ 4 i _ 41 — 
09 (

4,• A cio 	;qv] } 

This object actually has a trivial superspace structure as it's 0 component is zero ( S = S ). 

We remark that the superspace action (5) is physically equivalent to the BV action at classical level. 

The quantum action can be expanded in a power series in h as: 

,,,„ (0 A, 0•. )=5,(0.,,,,•A )+Etetp,,,,, (4,A, o sA )  

P=I 

The BRST transformation for some quantity X in the BV language [7] is: 

SX = (X,W)— ihAX 

(5) 

(6) 

(7)  
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if we choose X = W 

SW = ihAW 
	

( 8 ) 

So, the action has the following superspace structure: 

W = W + OihAW 
	

(9 ) 

Actually the general form for the superfield W of eq. (9) is just formal, in the same way as the master equation 

itself. 

Let us now define the operator 

b y. 	61  E--r (Ix f dO 	d01 
(54)A 	

(10) 
(z  0) 64.- A  (r, ) 

The Pauli Villars regularization procedure is the most suitable for the BV formalism at one loop order(3, 4, 8, 9). 

We will build up a Pauli Villars superfield action corresponding to a collective field version of the standard PV 

action: 

PV 
= I  OcA 	)(TO)AB

(13 
— A B ) 2 — 

	 -; 

° 	• A • -A 
1114  (X A 	) 7'  A B(X E 	) (To ( X X ) 2 

The non extended (without collective fields) BRST algebra for the PV fields reads: 

(50y A = 	B 
ABX 
	

(12) 

Let us assume that a regularized form of the BRST change in the total action (8.57. ) R.  was calculated, such 

that the desired regularized AS: 

i h (AS)
Reg 	

(SST) 
Reg 
	 (13) 

The violation of the master equation is of the form: 

AW  + (W' W) 
= A = ea Acr 

The symmetries associated to the ghosts cc' are said to be broken. 

In the present one loop level superspace formalism this, so called Wess Zumino mechanism, corresponds to 

finding out a superfield: 

	

1Lr 1  = M 1  + 0(iAS) Reg 	 (14) 

one says that the anomalies have been canceled. 

Let us consider W2 gravity theory as an interesting example: 

So = 	d2 x [0400 h(00) 2 1 

The BRST algebra associated 'to this theory is: 

bo cb = c80 ; bo h = do — hac+ahc; bo c = (ac)c . 	 (15) 

The corresponding superfield action at classical level is: 

5' = 	+ + S2 	 (16) 

To realize the Wess Zumino mechanism one includes an extra field p and an additional shift symmetry associated 
to an extra ghost d: 

bo p=ac+cap+d 
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We build up the superfields: 

9) = p(z) + 0711o1(x) 

We define the PV superfield action: 

2pv =Lipvo +5.-PV + S_Af 

Defining now the total action as 

ST = S S PV = ST ± 96ST 

The superfield action at one loop order is: 

Af 1 (a) = 	(a) + 0 (i(AS)R eg  (a ) + A(a)) 

where M I  (a) is the Wess Zumino term. For the a = 0 case: 

= 0) = 	{ 49 (CZ C1)5( 12  — C.2 ) — 	in(a(D- fz)) 2  
+ (ll -10(92(o-t))) 	 (21) 

and 
1 

A = 
127 (

2 
h — 05p + OhOp + hea p) 

We have shown that the (formal) master equation of the BV formalism can be represented as the requirement 

of a (formal) superspace structure for the quantum action. At one loop order, using the collective field approach 

to BV, we have shown that the Pauli Villars regularization procedure can be translated to superspace and that the 

superfied associated to the one loop order term of the action involves the anomalies and Wess Zumino terms. 

The authors would like to thank Ashok Das for very important discussions. This work is supported in part by 

CNPq, FINEP, FAPERJ, FUJB and CAPES (Brazilian Research-Agencies). 
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It is generally believed that nonrelativistic field theories can be obtained from corresponding relativistic ones 
as appropriated limits for low momenta. Nonrelativistic approximations can be constructed by making canonical 
transforinations over the Lagrangians[11 or by amending the nonrelativistic theories with other interaction terms, 
representing the effect of the integration of the relativistic degrees of freedom, inspired in the renormalization group 
spirit[2]. Also, nonrelativistic field theories in (2 + 1) dimensions have been obtained by transforming the matter 
field to eliminate from the Lagrangian rapidly oscillating terms as the mass m of the basic field increases indefinitely 
[3][4]. 

We study the nonrelativistic limit of the theory of a real self-interacting scalar field whose Lagrangian density 
is given by 

c 
 = 2" 

8.04,40 1  _ n1 2 02 _04 + C c  
4! 

A 	
( 1)  

where yb, rn and A arc renormalized quantities. In (2 + 1) dimensions, this theory is super-renorrnalizable and the 
only divergences are those arising from the two loop self-energy diagram. We calculate the 1P1 four-point function . 

 to one loop order in an approximation for low external momenta such that it is possible to know from what part of 
the Hilbert space each contribution comes. 

The approximation procedure consists of the following steps. Firstly, we use the Feynman identity 

—=J dx a bn 	o 	[(b — a)x + ar k  

and make the necessary change of variables, to put the integrand in a symmetric form. We then integrate over k°, 
over the angular part of the k and perform the parametric integral. The remaining integration over I k is then 
divided into two parts, corresponding to the low (L) and high (II) energy contributions of the loop integration, by 

introducing an intermediate cutoff A such that I 1.71<< A << rn and If t. In the low energy sector, 0 <I rc i< A, 

we approximate the integrand by expanding it in powers of TIV-, and rict L. In the high energy part, A <I k l< Ao(• co), 
relativistic virtual modes are involved and only LP-1-ni  can be considered a small quantity. Keeping all contributions up

•to order re , where i) = ( 
— 

) ' we are able to evaluate the amplitude up to order separating the —  
contributions that comer from low and high loop momenta. Notice that, since in our prescription the integration 
over k° is unrestricted, locality in time is guaranteed. 

The contributions of each channel (s, t and u) to the 1-loop scattering amplitude are calculated separating the 
low and high parts and one finds the t and u contribution comes entirely from the high-energy states in the Hilbert 
space and are of subleading order. This is natural since these processes involve virtual pair creation and annihilation 
not allowed in any nonrelativistic theory 'where propagation is only forward in time [41. Adding, separately, all the 
low and high energy contributions, one obtains, in an arbitrary reference frame but for external nonrelativistic 

particles on the mass shell and up to order 1& 

+ 
32rm 

(j5  — 172 ) 2 
 4A2  

( i  (#1 — 172) 2 )  lin 	4A2  
8m2 	(71 - /2) 2 1 

- 	3A 2 	2111 4  
8A4 	2m 2  16m4  (3) 

nx" -1  
(2) 

m 
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A2 
( 1 	(i5 	73.2 ) 2 	( A 2 	(P1 - /3.2 ) 2  

	

327rm 	 8m2 	-11  k4 2 ) 	4A 2  

	

([31 — P2)4 	3A 2 	21A4  
8A4 

+ 
27n 2  16m4 

4 	- 170 2  
24m 2  J 

The nonrelativistic approximation of the 1-loop scattering amplitude obtained, Aid} = Arici-f-A "iti  , is independent 

the exact relativistic 

iv  

amplitude up to order ii-Vm 2 . This indicates that our approximation procedure can be applied with confidence in 

others theories where, eventually, exact analytical calculations can not be done. 

The procedure of symmetrizing the integrand, using (2) and making convenient changes of variables, which 

is independent of space-Lime dimension, can be used to symplify the calculation of the two-point function. It 
disentangles the loop variables, allows the (k°, 1 13 ) integration to be donne exactly and then leads to a much easier 
computation of the "sunset" graph. Introducing the same intermediate cutoff A for both loop variables, one sees 

that both divergent and finite parts of the self-energy come entirely from the high, relativistic, virtual states, as it 
A 

 is expected (the L-L part of E(2) is of order q 2 ). Using dimensional regularization, one gets 

A (dim} 	 iA2 r  1 	 p2 

E ( 2 ) (P ' rri ' A ' d)  = 10270 [3d
- + (In 2 - 7) - E (4 , 	 ( 5 ) ni 	. 

where the function E(z) is defined by 

	

E(z) = 1 
	

d
x 	dyy In (2 [1 - z D(x , y)])  

(6) 
Lir  0 	J0 	 [YC(r, Y)) 3/2  

with C(x , y) = yx(1 - x)+ (1 - y) and D(x , y) = (I - y) (1 - (1 - y)/C(x, y)) . With this result, the mass and wave 
function renormalization program can be implemented . 

The approximation we have introduced not only permits the identification of the origin (in the Hilbert space) of 

each contribution, but it also allows the construction of a nonrelativistic reduction scheme at the level of the Green's 

functions.Notice that, for the purpose of comparison with amplitudes calculated from a nonrelativistic theory (with 

usual normalization), we need to multiply (3) and (4) by 

	

(16wpi  wp2wp ptoo,) -1 / 	1 	1 151 -E-1-231  + 	 ( 7 ) 4m2  

Let us initially analyze the above expressions for the NR amplitude up to the dominant order of the 1-loop 
correction, that is, let us consider 

ANR 
AL 	

(1)1, 	A 
= 

A 2 4A 2  .; 
(8)  4m2 	4m2  1287rm3  [' n 	- g2) 2 ) 	.1r] 

and 

ANR A2 	A2 
(1)11  AH  = = (9)  4m2  128rm3 	4m2  

One can see that equation (8) coincides with the result from the nonrelativistic theory specified by the Lagrangian 
density 

v2 ) 	vo  , 
C„ 	(Jot + 277, - T WO)

2 
 (10)  

with vo  = A/4m 2  (compare with equation (2.13) of ref. [4]), if A is reinterpreted as a genuine (nonrelativistic) 
ultraviolet cutoff. Such an interpretation, however, can only be sustained after performing a nonrelativistic reduc- 

tion procedure as follows. First, notice that, neglecting terms of order n or higher the low energy contribution for 
A "Fr  
E(2)  vanishes identically. This agrees with the nonrelativistic result where there is no correction at all to the propa-

gator. We then fix the large parameter m and promote A to b•the ultraviolet cutoff of the reduced nonrelativistic 
theory. This last step is the fundamental reinterpretation required for our reduction process. 

and 

A1VR 

`‘( 1 ) 11  

(4) 
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The above nonrelativistic reduction of the leading term of the L-contribution to the two particle scattering 
amplitude is equivalent to the us co limit effectuated on the classical Lagrangian [3][4] and it is also reproduced 
by making a Foldy-Wouthuysen transformation in the free part of the Lagrangian (1) [5). An interesting aspect 
of this reduction procedure is that the contribution of high energy states appears providing the necessary counter-
term to make the amplitude finite instead of logarithmic divergent. One can, in this way, better understand the 
renormalization of the nonrelativistic model of ref. [4]. 

Let us now examine the sub-dominant order. Disregarding constant terms which can be absorbed into a coupling 
constant renormalization, the low energy part is 

A 0:1 1 + il2) 2  + 	- 152) 2  

	

4m2  4rn2 	4rn 2  

128irm3  

A z 	[ 
1 	

207, 1  +1- 8 

	

32)2 

m2 

 3( 75-1  _ 	[In  ( 

P-2) 

4A 2 	

2 	
-1- 	. 	 (11) 

To reproduce the new terms appearing in this expression, we add to (10) the effective interaction Lagrangian 

'in: = 4-1-  (Cbt  n7 C"  + 	952) + tl  (O t V : cb t  02  °  7 9 5 t7 )2  02 ) 
TR 	4 	in 	 in 

	

vi 	. v2 	2 	tV,.kt ■ 2 

which is the more general, dimension 6, quadrilinear local nonrelativistic interaction. For the calculation of the 
contributions arising from these new vertices we will have to introduce ultraviolet cutoffs. It is easily verified that the 
polynomial part of the result is cutoff dependent and this freedom can be used to adjust it to match the polynomial 

part of (11). For that reason, we restrict the discussion to the non-polynomial part of the additional contribution 
which, in one loop order and up to 0(ir/m 2 ), is (again, disregarding constant terms) 

_ !..._71  vo  (vi  (A + /3.2) 2  + v2  (FI — /72) 2   ) [in 	 ) 
+ id 

. ( 4A  

8ir 	in2 	 M2 	\ (gi — 0.2) 2  

2  

Comparing with (11) we find v i  = -A/16m 2  and v2  = -3A/32m 2 , which fixes the effective nonrelativistic Lagrangian 

up to the order g2 /rri2 . 
The method we have used provides a systematic way of extracting different orders in Aim in the nonrelativistic 

approximation. The effective Lagrangian obtained is equivalent, in the leading order, to the quantum mechanical 
delta function potential. The new terms arising in the subleading order, however, can not be interpreted in terms 
of a two body potential. 

References 

[1 Supported in part by Conselho Nacional de Desenvolvimento Cientifico c TecnolOgico (CN Pq) e Fundayao de Amparo 
a Pesquisa do Estado de Sao Paulo (FAPESP). 

[**] On leave of absence from Institute de Fisica, Universidade Federal da Bahia, Salvador, 40210-340, Brazil. 

[1] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950); K. M.Case, Phys. Rev. 95, 1323 (1954). 

[2] K. G. Wilson, Phys. Rev. B4, 3174 (1971); G. P. Lepage, proceedings of TASI-89, 1989; T. Kinoshita and G . Lepage 
in "Quantum Electrodynamics", T. Kinoshita ed, World Scientific, Singapore, 1990. 

[3] R. Jackiw and S. Y. Pi, Phys. Rev. D42, 3500 (1990). The m --• co limit of (A' theory in four dimensions was introduced 
by M. A. 13. Beg and R. C. Furlong, Phys. Rev. D31,1370 (1985). 

[4] 0. Bergman, Phys. Rev. D46, 5474 (1992); T. Haugsct and F. Ravndal, Phys. Rev. D49, 4299 (1994). 

[5) .1. D. Bjorken and S. D. Drell, "Relativistic Quantum Mechanics", McGraw—Hill, New York. (1964). 

A r, = 

(12) 

(13)  



422 	 XVI Encontro Nacional de Fisica Particulas e Campos 

A Topological Bound for Electroweak 
Vortices from Supersymmetry 

Jose D. Edelstein* and Carlos I ■liniez 
Departamento de Elsie°, Universidad Nacional de La Plata 

C.C. 67, 900) La Plata, Argentina 

hep-th/9507102 

Received March, 1996 

We study the connection between N = 2 supersymmetry and a topological bound in a 
two-Higgs-doublet system having an SU(2) x U(1)y x U(1)y, gauge group. We derive 
Bogomol'nyi equations from supersymmetry considerations showing that they hold provided 

• certain conditions on the coupling constants, which are a consequence of the huge symmetry 
of the theory, are satisfied. 

Supersymmetric Grand Unified Theories (SUSY GUTs) have attracted much attention in connection with the 
hierarchy problem in possible unified theories of strong and electroweak interactions [1, 2]. In view of the requirement 
of electroweak symmetry breaking, these models necessitate an enrichment of the Higgs sector [3], posing many 
interesting questions both from the classical and quantum point of view. In fact, many authors have explored the 
existence of stable vortex solutions in a variety of multi-Higgs systems [4, 5] which mimic the bosonic sector of 
SUSY GUTs, as it happens in the abelian Higgs model [6]. 

Vortices emerging as finite energy solutions of gauge theories can be usually shown to satisfy a topological bound 
for the energy, the so-called Bogomol'nyi bound [7]. Bogomol'nyi bounds were shown to reflect the presence of an 
extended supersymmetric structure [8]-[l1] - this requiring certain conditions on coupling constants - where the 
central charge coincides with the topological charge. Being originated in the supercharge algebra, the bound is 
expected to be exact quantum mechanically. 

Since multi-Higgs models can be understood to be motivated by SUSY GUTs, Supersymmetry is a natural 
framework to investigate Bogomol'nyi bounds. We shall study, then, the supersymmetric generalization of the 
SU(2) x U(1)y x U(1)y, model with two-Higgs first introduced in Ref.[5]. The theory has the same gauge group 
structure as that of supersymmetric extensions of the Weinberg-Salam Model that arise as low energy limits of 
Eg based Grand Unified or superstring theories. In spite of being a simplified model (in the sense that its Higgs 
structure is not so rich as that of Grand Unified theories), it can be seen as the minimal extension of the Standard 
Model necessary for having Bogornol'nyi equations. We show that the Bogomol'nyi bound of the model, as well as 
the Bogomanyi equations, are straight consequences of the requirement of N = 2 supersymmetry imposed on the 
theory. We also show explicitely that a necessary condition to achieve the N = 2 model implies certain relations 
between coupling constants that equal those found in [5] for the existence of a Bogomol'nyi bound. 

The SU(2) x U(1)y x U(1)y, gauge theory in 2 + 1, introduced in Ref.[5], is described by the action 

2 

S = d3X 	v • W. " — — —1  G„,,C" 
2 

+ E 173(:)4.(9)12 	VeD(1)t<D(2)) 4 	4 	q=1 

where Ow and 0(2)  are a couple of Higgs doublets under the SU(2) factor of the gauge group, A and B are real 
scalar fields and 1,1/ = W°r° is a real scalar in the adjoint representation of SU(2). The specific form of the potential 
will be determined below. The strength fields can be written in terms of the gauge fields A„, B,, and W, . The 
covariant derivative is defined as: 

Liu:7 
a 	 A 	n  D(9) ^(9) = (41lifp p 	ig yr 	+(2r( q),1 .“ 	. p( 41 ) m) W(g), 	g=1,2 	 (2) 

'Consejo Nacional de Investigations Cientlficas y Tecnicas. 

(1) 
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where g is the SU(2) coupling constant while a( y ) and PO) represents the different couplings of 4)( y ) with A, and 

B A . A minimal N = I supersymmetric extension of this model is given by an action which in superspace reads: 

Sp,r= i = 
2 
 J d3  V:1 2  9 1S2 A 2 A + S2BS1B Mk 274, - DADA —DBDB —D—W aDWa + CiA + 

2 	 
-
2 

2_,  [(c(q)T( 4 ))`' (V (9 )T( a))' + iT
(q)   ( 2.1(19)A + 249) B + x/2,k3War°) T(c)11 	( 3) 

c=] 

V(1) T(q) = (D 
+2 	2 

g[14,1 la(9 
	2 
) (r A d + it1( 9 ) 

Er a  1) To). 	 (4) 

TO) a (4)( 9 ), 9( 2 )) are a couple of complex doublet superfields, A E- (A, XA), B (B, X B) and W = (W 9 , 4)79 

 are real scalar superfields and r A  (A m  , pA), rB  (B i„ pa) and r,,, = (Wpa, Aa)r° are three spinor gauge 

superfields in the Wess-Zumino gauge. S2A, 12B and Si 4„ are the corresponding superfield strengths. Concerning 

Ai° , 41) , 31 el and C2, they are real constants whose significance will be clear below. Finally, D is the usual 

supercovariant derivative, D = iO 0, while the 7-matrices are represented by 70  = r3 , 7 1  = ir l  and 7' = —ir e . 

In the sake of simplicity, we shall consider configurations with vanishing A, B and W 1 . Then, the Higgs potential 

in (3) takes the form: 

	

2 	 2 	2 	 2 	2 	 2 

V(4)(1), (1)(2)) = (E A(9)(t (9)  4)( q  ) - 	+ (E A(2q)(Ti(q)(9  . ) - 	+ as 	S(ora,(9)) - 	(5 ) 
1 	 vi  1,t7 

	

q=1 	 9=1 	 9=1 

In order to extend the supersymmetric invariance of the theory to N = 2, we consider transformations with a 

complex parameter [9, 11]. We first combine all the spinors into Dirac fermions as: 

EA xa — iPA , ELI E-  X13 - ipB and E.° --_E fa, — iAa. 	 (6) 

The fermionic contribution to the (non-minimal part of the) interaction lagrangian can be written as 

or(q )+ 8A (1 9) ._. 	. /30) + 8A (29) 	g + V813—  , 
a  	E A 4)(q) + 	 ti(q) E10 (4) + 	4 	41 (q).'" r LFer,ini = 	 4 1  (O 4) (9) 

4 	 4 
q=1 

	

a(g) — 	8a (1 9) T 	., ..r., 
	Q(s) — 	8A(29)  

,1f (9).tB(130) 
g — %/Via  — = 

4 	-'"(q)'-'A'r(.71 	4 	 4 	w(0=a ratl)(q) 	( 7 ) 

where 2-, EA and tD are the charge conjugates of a-  , E A and r.,B respectively. Now, transformations with complex 
parameter n are equivalent to transformations with a real parameter followed by a phase transformation for fermions, 

{E'', EA, ED , 111 (9)) e' {.7°, LA , ED, 41  (q)} . Then, N = 2 supersymmetry requires invariance under this fermion 

rotation. One can easily see from (7) that fermion phase rotation invariance is achieved if and only if: 

A3 = g2 
AO ) = cq

8
q) and 13[9 

2 	8  (8) 

These conditions, imposed by the requirement of extended supersymmetry, fix the coupling constants exactly as they 
appear in [5]. Thus, we have shown that the potential and the coupling constants of the SU(2) x U(1)y x U(1)y ,  
model are simply dictated by N = 2 supersymmetry. This result is analogous to that recently found in the Abelian 

Higgs model [II]. 
We shall now analyse the N = 2 algebra of supercharges for our model. To construct the conserved charges we 

follow the Noether method and obtain Q[q] TIQ + Qv!, with 

= --i. 	 t [ I  'AP . A ,-• 	. Xi' 130) At ,t, I d2  X {E t  —1 ("A F,,m7,1, + E 2•((.4, t( )4). — cil + EB .(" 	"Pv7A -I-  2_, 2  w (q) .E. (9) A 2 	 2 	9  9=1 	 9-41 
2 	 2 

[ - e21 + 2Ia le"  Wiaw7A + ?i E cb( ) ,..1, ( , )  — i E W (q) 7PTAp4}4( a) 

'The SU(2) x U (1) y x U(i)y, theory with its full field content is considered in Ref.j121. 

where 

Q 

(9) 
9=1 	 1=1 
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Since we are interested in connecting the N = 2 supercharge algebra with Bogomol'nyi equations and bound, we 
impose static configurations with A o  = Bo = we = 0, and we restrict ourselves to the bosonic sector of the theory 
after computing the algebra. We obtain, after some calculations 

(2) = 2FryoriP°  + TpiZ 	 (10) 

where 
2 

	

P°  = E = 12 I d2 z1 -1- ( 10  ) 2  + 2 	2 (F-" ) 2  + 1 G ?  +EID g)(15(01 2  V(.(I) ,  4)(01 	(11) 
2 "  q=1 

while the central charge is given by: 
2 

[
2 A  

1 	. 
Z = - 1 d2  x -

2
ei F

'
-
'

• E .i)cr 0t.  0 - i + L'iG, • E r+)0t( ,)0(q)  - 2 

	

2 	(e) (g ) 	2 	I  q=1 	 4= 1  

-F + 

2 	 2 
Lij wo \--' ot 4, 	+ ic ii Em(f).(0 )(7) 9),(0 )" 4` 	li L_, 	(q) 	0) 

	

q=1 	 q=1 

= -
1 	Vid i 	e , 
2 

where lii  is given by 
2 

P i  = el Ai + 4.2Bj + i E01,,,,D00(, )  di. ( (13) 
q=1 

 

Finite energy dictates the following asymptotic behaviour for the Higgs doublets 15] 

( ex 	 ) 4.0)  = co_ 	0 	, 4)(2)c.  = 7.114513 ( 	ci ion(2)(P ) , 	 14 oo v 2 ( expinow ) 

where no) and n( 2 ) are integers that sum up to the topological charge of the configuration m, 

m E n( 1 ) + n( 2 ). 	 (15) 

Then, coming back to eq.(12) for the central charge, after Stokes' theorem, we see that 

Z = 1(6 11i + 6B;)dz i  = -117r0,3m 	 (16) 

that is, the central charge of the N = 2 algebra equals the topological charge of the configuration. It is now easy 
to find the Bogomol'nyi bound from the supersymmetry algebra (10). Indeed, 

2 

{ OP Q) = d2 Z [( 6 =a ) t  (62a ) + ( 6E4 1 (6E4 (6 EB ) 1  ( 6EB)E(6111 (q)) t (611(9))1 	O. 	(17) 
q=1 

the lower bound being saturated if and only if ra'a = 6EA = 6EB = 5*(0 = 0. Non-trivial solutions to these 
equations force us to choose a parameter with definite chirality, say ►7+ . Now, conditions 

	

On, E = 	EA = 45„ + EB = 6,1+ 111( 1) = 0 	 (18) 

are nothing but the Bogomol'nyi equations of the theory: 
2 

E 11(9) t 	 1  • 	2  #(11) 
-T-4)( 04)(q)  - 41  = ° 	 E —.(q )41(11)  — 6  = 0 	

(19) 
q=1 	 q=1 

2 
E l/  Wii. a  g E 01„7-.. ( , )  = 0 and (/ ( q )  - iciiDj q) )0( 9 ) = O. 	 (20) 

q=1 

Note that, for this chiral parameter, eq.(17) implies the Bogomol'nyi bound of our model, 

M > 27rOom. 	 (21) 

Let us remark on the fact that field configurations solving Bogomol'nyi equations break half of the supersymme-
tries (those generated by n....), a common feature in all models presenting Bogomol'nyi bounds with supersymmetric 
extension [14 Were we faced with an antichiral parameter, we would have obtained antieoliton solutions with 
broken of the supersymmetry transformation generated by q... 

The connection of our model with realistic supersymmetric extensions of the Standard model, and its coupling 
with supergravity (the possible existence of string-like solutions in this last theory) remain open problems. We hope 
to report on these issues in a forthcoming work. 
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We calculate the Poisson bracket (g g) of the dressing group element g which generates 
a generic one soliton solution from the vacuum and compare it with the Semenov-Tian-

. Shansky bracket. The last endows the dressing group with a structure of a Lie-Poisson 
group. Our conclusion is that the two brackets do not coincide. We propose two inequivalent 
possibilities to get a relation between them. The first suggests that the Lie-Poisson structure 
on the dressing group has to be modified by including the topological charge. The second 
exploits the fact that the dressing group elements which generate one solitons from the 
vacuum has a specific form. 

The solitons play important role in the modern particle and solid state physics [1]. It became clear (see [2] for 
a review) that many nonlinear integrable equations possess soliton solutions. The study of the solitons contributed 
to the development of the inverse scattering method. The last is a powerful tool in solving the Cauchy problem for 
integrable equations. 

In the present talk we consider soliton solutions of the sinh-Gordon equation 

a+a_ so = 2m 2sh2co 	8± = az±  

r* = z fi 
	

(1) 

which differs from the sine-Gordon model by a trivial renormalization of the field co. We can quote two reasons 
to study the sine-Gordon theory in two dimensions: first, the sine-Gordon model is an integrable field theory 
both at the classical and at the quantum level; second, the quantum sine-Gordon theory is a massive integrable 
perturbation of a conformally invariant model. The conformal invariance plays important role in the study of the 
two dimensional critical phenomena and in the string theory. 

The equation (1) can be equivalently written as integrability condition of the linear system 

(of + A±)T(x+ , x -  , A) = 0 	 (2) 

where A* are components of a connection which takes values in the Lie algebra sl(2) 

A± 

E± 

= ±8I 0 nie.±adibe±  

= A± 1  (E+ + E-)
1 	• 

it) = 
2
-coH 

(3.a)  

(3.b)  

and A is the spectral parameter; If,  , E± are the generators of the 81(2) Lie algebra [H, E*) = f2Ef, E+ , 	= H . 

The 2 x 2 matrix T together with the normalization condition T(0, 0, A) = T(0) = 1 is known as the normalized 
transport matrix. 

'E—mail address gcubacalkbpfsul.cat.cbpf.br  
1 E—mail address paunovelcbpfsuLcat.cbpf.br  
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To introduce the one soliton solution we consider the variable (+(x+,x - ) = e+(x) whose dependence on the 
light cone variables is dictated by the relation 

c+(x) + p 

	

0- (x) - p 
	a exp{2m(px +  + -r-T)) p   

a = 
c+ - 
	, c+ = E+(0) 

	

e -iv(x) 	- c+ (x) 

P 

where p is the soliton rapidity. In what follows we shall also need the variable ( - (x) related to e+ and p by 
c+ (x)c -  (x) = p 2 . 

The dressing group is a symmetry of the nonlinear integrable equations [3] which acts on the connection (3.a) 
by gauge transformations which preserve its form. Alternatively a dressing transformation can be introduced by its 
action on the normalize 

	

T(x, A)) 	T 9 	(x, A) = g(x, A) • T(x, A) • g - 1 (0, A) 	 ( 5 ) 

In the above expression g(x, A) is an unimodular 2 x 2 matrix the elements of which are functions on the spectral 
parameter. 

It was shown in [4], [5] that in order to ensure the covariance of the Poisson brackets under the dressing group 
action, the following bracket 

00) Yrs = -4 [ 7' ,g(A) 9(()] 	 (6.a) 

A2 ± (2 

r = 	
A( 

- ta0 H 4 A2 (2  (E+ 0 E - + E-  0 E+) x2 _ (2 H 	 (G.b) 

on the dressing group has to be postulated. The above matrix Poisson bracket is known as the Semenov-Tian-
Shansky bracket. 

In [6], [7], [8] the dressing group element which generates the one soliton solutions (4.a), (4.b) from the vacuum 
one cP = 0 was explicitly calculated. It reads 

g(x, A) = 	
e)(z )   ( A + c+(x) A + E}  (z) 

2(A - p) L  A + (Ix) A + C(x) 

e.(')  ( A - c+(x) -A + (+(x)) 

To calculate the bracket {g 	g} we recall that according to [2], [9] the phase space of the one solitons is two 
dimensional. Choosing c+ and p (4.a) as independent coordinates one can show that 

{f+,11) = 
	2 ((f + ) 2 	12) 	 (8) 

We shall also use the A-depending representation of s/(2) 

X°(A) = A2 _ 1 2 ((A2 + p 2 )H + 2Ap(E+ - E )) 

X ± (A) = ±
A 2  - 2 

 (H + C-) ±1  E - (
nT
P ) ±1  E - ) 

P  

in which the adjoint action of (7) is diagonal: Ad g(A).,Vk (A) = g(.1),Yk (A)9 -1 (A) = ek,' X k  PO, k = 0, ±. 

Combining (7) with (8) we get the following expression 

{g(A) g(0) 9 -1  ( A) 0 g -1 	= 
P122  - 1 	 A 

p-) 
{lne+,p}

p(A 2  - 
	((p + c - )X+ (A) + (p + c+)X -  (A)) 0 X°(C) 

 

(4.a)  

(4.b)  

2(A  ( 7 ) 

(9) 

(10) 
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where P12 is the operator which permutes the factors in the tensor product and the spectral parameters A and (. 
We also note that in the representation (9) the classical r-matrix (6. b) reads 

r = 2(P12 - AAP  (X+ (A) - 	(A)) O  X ° (() 	 (11) 

where we have omited the terms which do not contribute to the commutator (r, g g]. 

Using (6.a) and (7) we observe that the following relation is valid 

	

{g(A) g(()},, - g -1 (A) 9-1 (0 = 	(1 - Ad h(A) 0 Ad h(()) • r 	 (12) 

provided that 

f+ P  {c+  11}* =  e+ + p 

	

and the element h(A) has the same form as (7) but with c+ 	-c+. Therefore h(A) generates the solution + itr 
from the vacuum. The last suggests that one has to modify the bracket (6.a) by a factor depending on the topological 
charge. On the other hand, the bracket (13) differs from (8). It is known [9] that the Hamiltonians which generate 
the z± flows are 71± = ±rrip±. Due to that, the bracket { , produces the equation 

a+a_ so  = _ rn  2 2 
sh 3  

(14) 

which does not seem to be integrable. 

There is another possible relation between (6.a) and (10). It is discussed in details in [8]. The basic idea is that 
to obtain the expression (7) one has to impose the following constraints 

c i (A) 

CO) 

c3(A) 

te(A) 

= 

= 

= 

= 

9120) + g21(A) = 

gi 1(A) - g22(A) - 

d cr- (A) 
A2 

(MO 

0 
 2 

-= 0 

(15.a) 

(15.b) 

(15.d) 

(15.c)  

2Ap 	
(g12(A) - g21(A)) 

1:Tii (9t2(A) - 921(A)) - 5921(A)) _A2 ) p2 

on the dressing group; 	j = 1,2 are the matrix elements of the matrix g(A) (5). The element (7) is then 
reproduced together with the relation re = el Following the general approach to the Hamiltonian systems with 
constraints we introduce the A-depending "canonical" Hamiltonian Ii(A) =  	 ) where we have 

used the Dirac's notation of weak identity PO. Introducing the total Hamiltonian liT(A) = 71(A) 	ni(A)ci (A) 
we get the identity 

017. (A),K(t)}sTs ss CH(A), is) 	 (16) 

) 2  
for ul (A) = 	 (K+ x - I) and arbitrary values of the other two Lagrange multipliers. This allows us to 

state that the one-soliton brackets (8), (10) arise from (6.a) after a suitable "gauge" fixing. 
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Light-front quantization of Chern-Simons systems 

Leon R. Mansur, CBPF and Pl rem P. Srivastava, IF, UERJ, Rio de Janeiro 

Received March, 3996 

Light-front quantization of the Chern-Simons theory coupled to complex scalar as well as 
fermion field is performed in the local light-cone gauge following the Dirac procedure. The 
light-front Hamiltonian turns out to be simple one and the framework may be useful to 
construct renormalized field theory of anyons. The theory is shown to be relativistic inspite 
of the unconventional transformations of the matter and the gauge fields. 

I. Introduction 

Chern-Simons (CS) gauge theories 1,2  coupled to matter field have been proposed to describe excitations with 
fractional statistics 3 ' 4 , anyons, and suggested to be relevant for describing the quantized Hall effect and possibly the 
high-To  superconductivitys where the dynamics is effectively confined Co a plane. There are however, controversies 
related to the quantized field theoretical formulation. The Lagrangian (path integral) formulation s , for example, 
seems to give result which disagree with the canonical Hamiltonian formulation 7.-10. It is claimed that the theory 
though shown relativistic has angular momentum anomaly" or shows anyonicity only in some nonlocal gauges' ° ' 7

. 

Internal algebraic inconsistencyl° of using two local gauge conditions 12  in the context of the Coulomb gauge has 
also been stressed. The anomaly is also found absent in some recent workst 3,14  and doubts have been raised 
about the anyonicity being gauge artefact 9 . We clarify here some of the points by performing the light-front Op 

quantizationis of the CS theory coupled to the complex scalar field in the Light-cone gauge. The l.f. vacuum -16 .' 7 

 is known to be simpler than the conventional one and the anyonic excitations and possibly some non-perturbative 
effects may be studied more conveniently. In the descripton of the spontaneous symmetry breaking on the l.f, for 
example, it was founded that we do obtain the same physical result as that in the equal-time quantization, although 
achieved through a different mechanism. The conventional description requires additional external constraints in 
the theory based on physical considerations while the analogous ones on the /.1 were shown' 8  to arise from the 
self-consistency requirements in the Hamiltonian theory itself. We conclude from our study that the abovementioned 
rotational anomaly should rather be interpreted as gauge artefact, that even in the present theory the application 
of two local gauge-fixing conditions on the phase space is totally consistent, and that the 1.f. Hamiltonian is simpler 
when compared to that found in the local or nonlocal Coulomb gauge and it may be useful for constructing a 
renormalized theory. 

2. Light-front Quantization of Chern-Simons Theory 

We first discuss the gauge theory based on 

= (DP 0)(15pc6. ) + 4—Nir  c'PA A O„A p  

with 

7)„ = 	+ ied4p) 

73 0, = (0, ieAp) 
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etc. For the coordinates xo, and for all other vector or tensor quantities, we define the light -front ± components by 

x± = (x9 ±x2)/- = x T . We take x+ r to indicate the light -front time coordinate, z -  is the longitudinal space 

coordinate and it is the transverse one. The conjugate momenta are 

7i = 	7r" = 	713' = ac+P"Ap 

where = 47ra. The conserved current 

j P  = je(95. D° 95  - (03P0') 

is gauge invariant and its contravariant vector property must remain intact if the theory constructed is relativistic. 

Local light-cone gauge (I.c.g.), A_ = 0, is accessible in the Lagrangian theory; it will be shown below to be 

accessible also on the phase space of the gauge theory. Since a self- consistent Hamiltonian theory" must not 

contradict the Lagrangian theory we may start by deriving first some boundary conditions from the Lagrange eqs. 

written in the l.c.g.. From 2aO_Ai = j+ we derive that the electric charge is given by 

Q = dz.j+ = 2a f dx 1 [A l (z -  = co,x 1 ) - A ( 	= -oo,x 1 )] 

For nonvanishing charge, Al may thus not satisfy the periodic or the vanishing boundary conditions at infinity 

along x - . We assume the anti-periodic boundary conditions for the gauge fields along x -  while the vanishing ones 

along For the scalar fields we assume vanishing boundary conditions. The canonical Hamiltonian may then be 

written as 

H, = f d2x {(17 1 0)(1510 - )- 4111 

where 

SZ = ic(r0 71:* 0* ) + ac+ ii &Ai 	7ri  

and 	I . We follow the Dirac method° to construct an Hamiltonian for the constrained systems (1). The 

primary constraints arc 

	

7r+ 0, T i  7ri  - ae+ij Aj  0, T E - 73_ cr 0, T* E 	- 73_0 ;LI O. 

The preliminary Hamiltonian is 

H' = H, -F f d2 x[uT u•T* + NT' + u+ 7r+ 

where u,e, u i ,u+  are Lagrange multiplier fields. We postulate initially the standard equal-r Poisson brackets, and 

require the persistency in r of the constraints which leads to a secondary constraint f2 O. The Hamiltonian is 

then extended to include this one as well and the step repeated and we find that no new constraint is generated. 

The ft and 71-+ can be shown to generate gauge transformations and the constraints ir+ 0 and S2 0 are first 

class' 9  while the remaining ones are second class°. From the Hamilton's eqs. of motion we verify that there does 

exist a choice of the Lagrange multiplier fields for which A_ 0 and dA_/dr z 0. The light-cone gauge A_ =7.--.0 is 

thus accessible on the phase space (for a fixed r). We add in the theory this gauge-fixing constraints so that now 

the set of second class constraints may be checked to be: T m , rn = 1,2..6: 

T i  T- , T2 E T i  , T3 T, E 1- , T5 E A_, T6 E Q 

while ir+ 0 stays first class. Next the Poisson brackets are modified to define the Dirac brackets so that we may 

now write T n, = 0 as strong relations. The Dirac brackets are constructed to be 

{f, 	= (f, g} - I d2ud2v  If ,T ,,(u)} C„-„!,(u,v) (  T 
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where C -1 (x, y) is the inverse 20  of the constraint matrix with the elements C. = {Tm, TO. We find that A +  

which is already absent in Tm , drops out also from since Si = 0. The ir+ Rs 0 stays first class even with respect 

to the Dirac brackets and the multiplier u+ is left undetermined. The variable r+ decouples and we may choose 

u+ = 0 so that r+ and A +  are eliminated. The light-front Hamiltonian then simplifies to 

	

H1.1- (r)= 	d2x (13 10)(1310`) 

There is still a U(1) global gauge symmetry generated by Q. The only independent variables left are (I) and cr which 

satisfy the well known equal-r I.f. Dirac brackets 

{0,0D = 0, {sb".0*}D = 0, (c6(x,r), 0'1Y, r))D = K(x, 1/) 

where 

K(x y) = -(1/4)c(x -  - y - )6(x 1  yl ). 

We remark that we could alternatively eliminate ir+ by introducing another local gauge-firing weak condition A +  0 

(and dA + /dr 0) which is shown to be accessible. The additional modification of brackets does not alter the Dirac 

brackets of the scalar field already obtained. There is thus no inconsistency in choosing the two local and weak 

gauge-fixing conditions A± r4-, 0 on the phase space at one fixed time r in the CS gauge theory. Analogous conclusion 

holds also for the local Coulomb gauge in the equal-time formulation where we require A° 0 and divA ti O. 

We check now the self-consistencylg. From the Hamilton's eq. for we derive (e = 1, 	= 0_ 0 :) 

a_ 0+ 0(x , r) = {Tr'(x , r), H(r)) D = D 11 ) 1 0 - iA + 0_0 - -ii(O_A+)cb 

where 

-2aO_A+ = j 1  = -ie(0 - 7,10 - 4)7310")• 

On comparing this with the corresponding Lagrange eq. 

4 	
2

8_0 = -
1
DID' - i 	

2 
- -

i
(0_ A + ),cb 

in the light-cone gauge it is suggested for convenience to rename the expression A +  on the phase space by (the 

above eliminated ) A. We thus obtain agreement also with the other Lagrange eq. 

-2a8_A+  = ji = 	 - Obi )- 

The Gauss' law eq. is seen to correspond to S2 = 0 and the remaining Lagrange eq. is also shown to be recovered. 

The Hamiltonian theory in the light-cone gauge constructed here is thus shown self-consistent. The variable A + 

 has reappeared on the phase space and we have effectively A_ = 0 (and not AI = 0). Similar discussion can 

be made in the Coulomb gauge in relation to A°. That only the nonlocal gauges may describel° the fractional 

statistics consistently for the Lagrangian (1) is not true; it should also arise in the quantum dynamics of the simpler 

Hamiltonian theory on the 1.f, or in the local Coulomb gauge. In the latter case or in the nonlocal gauges the 

Hamiltonian is complicated and renormalized theory seems difficult to construct. A dual description 7 . 1 ° may also 

be constructed on the 1.1. We can rewrite the Hamiltonian density as H = (Oi ci)(aii;') if we use Al = al A where 

8a A(x - , x i ) = 	d2ye(x -  - y)c(x l  - y l ) j+(y) 

and define 
= e  i A 



Leon R. Mansur and Prem P. Srivastava 	 433 

The field clearly does not have the vanishing Dirac bracket (or commutator) with itself and it gives rise to the 

manifest fractional statistics. The theory is quantized via the correspondence of i{f,g}D with the commutator 

[f , g] of the corresponding field operators. Any ambiguity in the operator ordering is resolved by the Weyl ordering. 

3. Relativistic Covariance and Absence of Anomaly 

The relativistic invariance of the theory above is shown 20  by checking the Poincare algebra of the field theory 

space time symmetry generators. The canonical energy-momentum tensor is given by 

oe. .(730, 0-)(avo)+(vP0)(a.0-)+.(-0P A u a- A r  — riPv 

where ap0, 1" = 0 by construction. The Lorentz generators are 

f dz x [x -0_ r i oc +- — 	M+ 1  x+Pl 	(ex x 1 0,++, it1+-  = x+P -  — d 2  z z -  c ++  

The expressions of the generators as obtained on using the symmetric Belinfante tensor 

OB" = 	+ ack Pi9  0),(A# A P  )] 

or the symmetric gauge invariant one 7  differ from 0," only by a surface term whose contribuition to the Lorentz 

genertors vanishes. We remind that Al is now a dependent variable and the extra term in M' is sometimes 

called 11,7,9 anomalous spin induced on the scalar field due to the constrained dynamics generated by the C.S. term. 

A direct veritication 20  of the closure of the Poincare algebra on the mass shell is straightforward. The anomalous 

spin term does not break the relativistic invariance. We do find 

{q(x, r), M -1 (r).  } D = [z -  0 1  — z 1 0- 10(x , r) 

r) 	d2iic(x - 	)6(x .1 	y l  ) A i  (y, r), 

Igr,r),M +1 ( 7)}D = ix"' — x 149+ 149(x, 

(0(x,r),M+- (r))D = [x+o- 

The unusual term containing A I  on the right hand side has been called't' 7  a rotational anomaly arising from the 

anomalous spin. Our discussion, however, shows that we may rather interpret the anomalous transformation of the 

scalar field in the 1.c.g. (or in the Coulomb gauge 11,7 ) as gauge artifacts. For example, the unusual commutators 

{Mov ,A_}D = 0 or 1PP, = 0 originate from the construction of the Dirac bracket on working in the 1.c.g.. 

As a matter of fact A l  also satisfies an unusual transformation, 

M -1 (r)}D = (z - 01  — x 1 0 - )Ai — A+ + (1/(9_4(9iiti 

but 

{8_)1 1 (x, r), M -1 (7)}D 

_-= (z - 19 1  — x 1 8-  )(a_ A i ) — (a_A+ ). 

Since j+ 	a_A, and 	a_A, it follows that the gauge invariant current 	does preserve the property of a 

contravatiant vector in the l.c.g. as it should. The onyonicity seems not to be related to the unusual behavior 

under rotations of the scalar or the gauge field in non-covariant gauges but rather to the (renormalized) quantum 

dynamics of CS system which is described, for example, on the 1.f. by 11 1 . 1  and the canonical 1.f commutators 

above or alternatively by the dual description above which is more difficult for constructing a renormalized theory. 

A parallel discussion in the Coulomb gauge can be clearly made. A parallel discussion of the CS theory coupled to 

fermions can also be given 21. 
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Urn Modelo BCS Generalizado corn 
dois Campos Fermionicos 

L. C. Malacarne, R. S. Mendes e P. R. Veroneze 
Universidade Estadual de Maringd - PR 

July 31, 1996 

Os materials supercondutores tern despertado urn grande interesse na ciencia pura e aplicada. Em particular, 
silo conhecidos varios tipos de supercondutores corn uma grande variedade de propriedades peculiares Por 
outro lado, do ponto de vista te6rico, a descricao da supercondutividade atraves do modelo BCS [2] detem o 
papel principal. Isto aliado ao fato de que os supercondutores a alts temperatura exibem uma estrutura planar, 
conduzem naturalmente a generalizacOes do modelo BCS [3]. A exemplo destas referencias, trataremos de um modelo 
que contempla interacoes entre os pianos. Neste trabalho, empregaremos o formalismo da integral de trajetoria, 
comumente usado em teoria de carnpos, para obter as equagoes de Landau-Ginsburg [4]. Anaiisaremos, ainda, estes 
equacoes corn apenas dois campos interagentes. 

O modelo para dois campos tern sua dinamica regida pela Ilamiltoniana 

2 
= E ./A/ E 	— pi) — 	 + 	 (1) 

j=1 	 2mi 

— f dV[93 14-1 1511,11-  012 15612 + 9;42.11111-2 111 11 

O primeiro termo representa a Ilamiltoniana para dois modelos DCS e o Ultimo termo dita a interacao entre 
eles. Os campos dizem respeito aos fermions; pi Ergo os potenciais quimicos que fixam o numero dos fermions; 
9 1 , 92 e ga  silo as constantes que regem as interacoes. 

No caso da teoria BCS usual, urn campo auxiliar d introduzido [5] representando os pares de Cooper do modelo. 
Neste trabalho, generalizamos este procedimento introduzindo mais de urn campo auxiliar. A funcio de particao 
usando estes novos pares de Cooper generalizados 

b = E(Cr; Ec47, T,Tii )(ao — Ec„ ,,bothi) • 	 (3) 

Na expressio para Logn = 91, 912 = g3 etc. Os coeficientes cij silo escoihidos de trio& a eliminar os termos 
quirticos. Alem disso, e conveniente definirmos novos campos auxiliares, 

, 
que nos possibilitam 

expressar a funcio de partici() numa forma mais simplificada, 

z = jilDTbi i Dtb,j Dx;Dxj  exp I dr dV(Co  + Z ► )1 
• J 

corn 

(4) 

c ►  = 	 xiTbTiTbio-F Ex7cui-gLin i xi. 	 (5) 
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U e a matriz unitaria que diagonaliza g, e gp e composta pelos autovalores de g, isto e, gp = U + gU Observemos 

que as expressoes acima ja fornecem a generalizaciTio imediata para o caso de N campos. 

Na expressio (4) podemos efetuar as integracees nos campos >G e k,b, resultando ern 

= 	 (6) 
J 

sendo que S, a menos de termos independentes de XJ  e xi, pode ser escrita, forrnalrnente, como 

S I dr I dV C c ' = — E &In M; + 

i,j 

	 ( 7 ) 

onde 

MI = e5(T — T r )o(i — 0 	AH — 2r± j ‘2  — Pj) 	 —X.i 	 (8) 
9 _ 7m1 , 12  	- 

— X; 

0 calculo de tr In Mi e feito usando o procedimento padritc) (5], que previlegia campos fracos corn variacOes 

espaciais suficientemente pequenas. Portant°, podemos escrever, no espaco das coordenadas, uma forma aproximada 

para L ei], 

'Cell = E[—aiX;V 2 xi + biX; + 	EA1(u+gz.inix.,, 	 (9) 

a; = 
02tLiPi(0) ((3,  1/2) , b; = —p,(0) In( 

2713ton ' ) c;  = 
p;(0)132 

 ((3, 1 / 2 ) • 
247r 2 m 	 7T 	 8.7/.2 

Notemos que a ac,;ack S corn a aproxirnacio (9) e a prOpria acio efetiva na aproximacio classica de ordem mais 

baixa, portanto as equaciies para os campos x's, que &do as equacoes de Landau-Ginsburg do modelo, veal a ser 

6S 
= —a1V 2 xi + biX; +ci(X;Xi)Xi + E(U+ 	U)iixi = 0 . 

6X; 

No caso homogeneo, xi independente da posicao, ternos 

bixi+ci(x;xi)x, +E(u+gLiu)„,, = 0 . 

Vamos analisar as equacoes de Landau-Ginsburg homogenias corn dois campos, 

;X1)X1 	
g22  x 	../g12921  

blX1CI(X 
det(g) I 	det(g)  X2 = 0 

+ 
 gri 
det(g) 	

...197.97 	
= b2x2 + c2(X2X2)X2 -r 	2X 	det(g)

71 	
— • 

Observemos primeiramente que, g 1 2= g1 1  = 0 reduz o modelo a dues teorias BCS desacopladas. Neste caso, o 

modelo tern uma simetria global U(1) x U(1) e dai duas temperatures criticas de transicao de fase de segunda ordem 

Te , = 	exp  

Se g 12  = g; 1  0 0, vemos de (12) que XIX2 = xIX;, into e, as fases de Xi e X2 sac) iguais a menos de urn sinal. 

Este fato faz corn que a simetria continua do modelo seja reduzida de U(1) x U(1) para U(1). Consequentemente, 

quebra desta Ultima sirnetria leva a existencia de uma Unica temperature critica para a transicao de fase de segunda 

ordem. De fato, se um dos parametros de ordem, xr  ou  X2,  for nulo, as equacoes (12) implicam que o outro tambem 

sera. 

As solliceie.s analiticas gerais para as equagOes de Landau-Ginsburg hornoge'nea.s sac) muito grandes, obscurecfendo 

a alkalise do minim() de S. Desta forma, somos conduzidos a dois tipos de alkalises: um estudo numeric° ou uma 

abordagem analitica para casos especiais dos parametros. Nos nos restringirernos ao Ultimo caso pois, como veremos, 

este nos possibilita visualizar as caracteristicas principais do modelo. 

onde 

(10) 

(12) 
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Quando os parametros correspondentes aos dois campos forem iguais, podemos obter, depots de alguma anahse, 
que a temperatura critica 

27WD 	[ 1 ( 91 	93 =  exp — 
p(0) det(g) I  det(9) 

Por outro lado, quando os coeficientes das equacoes (12) forem distintos e usarmos que os parametros de ordem 
devem it a zero, conjuntamente, na transicao de fase de segunda ordem, obtemos urn vincula entre os coeficientes. 
Esta conclusao pode ser facilmente verificada quando tomamos a constante de acoplamento mtitua pequena. 

Vamos, agora, expor os principals resultados de nossa analise. Dois inodelos BCS desacoplados exibern urna 
simetria U(1) x U(1), porem quando a interacio quartica d incorporada a simetria d reduzida para U(1). Este fato 
faz corn que a teoria corn dois campos, para urn dado conjunto de par5,metros, nao tenha mais que uma temperatura 
critica para transicao de fase de segunda ordem. Por outro lado, o fato da simetria ter sido reduzida de U(1) x U(1) 
para U(1) impoe urn viculo sobre os parametros do modelo. 
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Causalidade e leis de conservagio 

Manoelito M. de Souza, Gilmar de Souza Dias 
Universidade Federal do Espirito Santo - Departamento de Fisica 

29065.900 - Vitdria-ES-Brasil' 

Received March, 1996 

Problemas relacionados corn infinitos e divergencias sao comuns em teoria de campo; sao 
sinais de que o formalismo nao e de todo satisfatorio. Estes e outrs problemas, permitem 
concluir, que o formalismo usado para descreve-los nao e de todo satisfatOrio. Estes prob-
lemas tern origem numa insuficiente implementacao da causalidade e nao aparecem em urn 
formalismo, baseado em uma implementacao geometrica e local (ponto a ponto) da causali-
dade. Este formalismos sao desenvolvidos nas chamadas Variedades corn Preservagao Local 
da Causalidade ou VPLC. 
Estudamos o formalismo lagrangiano e o teorema de Noether definidos nestas variedades 

(VPLC). Obtemos as equacoes de Euler-Lagrange, as correntes de Noether associadas as 
simetrias continuas do lagrangiano, e suas cargas conservadas. 0 significado fisico das leis 
de conservacao na VPLC a discutido. 
As transformacOes do grupo de Poincare, o qual esti contido no grupo de isometria da 
VPLC, sao consideradas para obter o tensor moment() energia e a equacao da continuidade 
associada. E urn tensor simetrico, como no formalismo usual. Estes resultados sao usados 
para definir o momento angular e o momento linear na VPLC. 
No contexto de Teoria Quantica dos Campos, obtemos os operadores momento angular e mo-
ment° linear na VPLC, a partir de uma Ka° funcional par urn campo vetorial generico; eles 
sao os geradores do grupo de Poincare na VPLC. A algebra deste geradores e determinada, 
hem como suas relacoes de comutacao corn o campo. 

e-mail:manoelitecce.ufes.br 
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Fcitons em eletrOdinamica classica 

Manoelito M de Souza, Jair Valadares Costa 
Universidade Federal do Espirito Santo - Departamento de Fisica 

29065.900 - Vit6ria - ES - Brasil' 

Received March, 1996 

Em urn formalism° corn preservacao local de causalidade, as equacoes de Maxwell, o tensor 

campo eletromagnetico, seu tensor momento-energia e as equacoes de continuidade (con-

servagao) sao escritos em termos de futons classicos, que sao campos classicos, localizados, 

de natureza granular como os Totons da teoria quintica. 0 sistema d consistente e lire de 

singularidades. 

•e-mail:manoelitOcce.ufes.br 
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Quantizacao do "Edon. classico" 

Manoelito M. de Souza, Adriano Sant'ana Pedra 
Universidade Federal do Espirito Santo - Departamento de Fisica 

29065.900 - VitOria- ES- Brasil' 
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A Eletrodinamica clissica se Lorna uma teoria consistente quando expressa, covariantemente, 
em termos de fotons clessicos, isto e, interacoes vetoriais de massa nula, discretas e de na-
tureza granular (localizada). Problemas corn singularidades e corn a equacio de movimento 
do eletron desaparecem. A quantizacio, manifestamente covariantemente e canonica, 
destes carnpos a feita. Mostra-se que os problemas usuais, comuns a metodos de quantizack 
manifestamente covariantes, nao aparecem: a condicao de calibre e implementada a nivel de 
operadores e n5."o de estados; nao ha fOtons escalates e temporais, so fotons fisicos; nao ha 
estados de norma negativa ou nula (salvo o vacuo). Caracteristica deste formalismo, embora 
manifestamente covariante, e a ausencia de grails de liberdade nao fisicos. 

e-rnaiLmanoelitacce.ufes.br  
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Inconsistencies in Classical Electrodynamics 
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The problems of Classical Electrodynamics with the electron equation of motion and with 
non-integrable singularity of its self-field stress tensor are well known. They are conse-
quences, we show, of neglecting terms that are null of the charge world-line but that gives 
a non null contribution on its world-line. The self-field stress tensor of a point classical elec-
tron is integrable without using any kind of renormalization; there is no causality violation 
and no conflict with energy conservation in the electron equation of motion. 

The motion [1-3] of a point classical electron is described by the Lorentz-Dirac equation (LDE), ma = F„ t .V + 

—a 2 V), where m, a and V are, respectively, the electron mass, 4-vector acceleration and 4-vector velocity. F ezt  is 

an external electromagnetic field; a:= dT; r is the electron proper time. The electron charge and the speed of light 
are put equal to 1. The Schott term, 3  a is the source of problems in the LDE. 

The LDE can be obtained from energy-momentum conservation in the Lienard - Wiechert solution [1,3,5-7], . 
A(x) = El , for p > 0, in the limit of p O. V is tangent to the particle world-line, z = z(r), parameterized 

by its proper time r, (V = dzIctr, and V 2  = —1). p = —V. .R, where r7 is the Minkowski metric tensor with 

noo = —1, and R x z(r). p is the invariant distance (in the charge rest frame) between z(r„,), the position 

of the charge at the retarded time, and x, the point where its self field is observed. See figure 1. The constraints" 
R2  = 0, R° > 0, and dr + K.dx = 0 (or K m = — 38*„) must be satisfied. K, defined by K := p, is a null 4-vector, 

K 2  = 0, and represents a light-cone generator, or the electromagnetic wave-front 4-vector. 
The retarded Maxwell field, 	:= BS A ,, — a„A„, is given [1-3,5-7] by Ft,„ re , = 4,1 [K„, 	+ p(a, + 	vi,)] 

where, for notational simplicity, we are using [A, B] := AB — BA , al(  := a.K . 
The electron self-field stress tensor, 470 = Frer .F„i  — 71-Fr2e „ or 

4irp4 6 = [K, pa+ V(1 + paK)J.[K ,pa+ V(1 + paid] — 141 [K , pa + V(1 + pax)] 2 	( 1 ) 

may be written as 6 = 62 + 63 + 64, with 

47rp2 82 = [K, a + vaid.[K, a+ Vai ] — "i[K, a + VaK] 2 , 

4ap3 03  = [K, v].[K, a+ vaid + [K, a+ vaK).[K i v] — T Tr[K,Ii].[K , 

47P4 e4 = [K, 	— 721 [K, 11 2 . 

The important difference among these expressions for 82 , e3 , and 04, and the corresponding ones found, for example 
in [1,2,5-7] is that while the first ones are complete , in the sense that they keep the terms proportional to K 2 , 
which are null (as K 2  = 0), in the last ones they have been dropped off. But these K 2 -terms, even with K 2  = 0, 
should not be dropped from the above equations, since they are necessary for producing the correct limits when 
p O. The presence of non-integrable singularities in the electron's self-field stress tensor is a major problem. 
02, although singular at p = 0, is nonetheless integrable. By that it is meant that f d4 re2 exist [6], while for 
83  and 64  this is not true. Previous attempts, based on distribution theory, for taming these singularities have 
relied on modifications of the Maxwell theory with addition of extra terms to 6 on the electron world-line (ace for 
example the reviews [5-7]). They redefine e3 and 04 at the electron world-line in order to make them integrable 
without changing them at p > 0 and so preserving the standard results of Classical Electrodynamics. But this is 
always an introduction of something strange to the theory and in an ad hoc way. Another unsatisfactory aspect of 

and 
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this procedure is that it regularizes the above integral but leaves an unexplained and unphysical discontinuity in 
the flux of 4-momentum, f dx 4 03°',9,p b(p — e), through a cylindrical hypersurface p = const enclosing the charge 
world-line. It is particularly interesting that, as we will show now, instead of adding anything we should actually 
not drop out the null K 2-terms. Their contribution (not null, in an appropriate limit) cancel the infinities. The 
same problem happens in the derivations of the electron equation of motion from these incomplete field expressions. 
The Schott term in the Lorentz-Dirac equation is its consequence; it does not appear in the equation when the full 
field expression is correctly used. 

The constraint R 2  = 0 requires that x and z(rr es ) belong to a same light-cone; its differentiation generates 
dr + K .ds = 0, which defines a family of hyperplane tangent to the light-cone. x + dx and z(rrel  + dr) must also 
belong to a same light-cone. Together, these two constraints require that x and z(r„,) belong to a same straight 
line, the light-cone generator, tangent to K. See figure 1 and 3. As discussed in (9), the limit p 0 is a critical 
point in the determination of the LDE; as x and z must belong to a same light-cone generator, this limit necessarily 
implies also on xo zo or Ro 0. 
As K° := SI, in this limit we have a 0/0-type of indeterminacy, which can be evaluated by the L'Hospital rule and 

177 . This results in limp_ o  K = V, and line It K"' = —1, as P= —(1 + a.R) and :R= —V. Classical 
electrodynamics alone with its picture of a continuous emission or radiation does not give room for a comprehension 
of these limiting processes. But we know that this is just an approximative description of an actually discrete 
quantum process. 

Figure 2 portrays a classical picture of such a fundamental quantum process; it helps in the understanding of 
these two limiting results. In the limit of p 0 at r = r„ g  there are 3 distinct velocities: K, the photon 4-velocity, 
and V1  and V2, the electron initial and final 4-velocities. This is the reason for this indeterminacy at r•= 7,. e ,. At 
7 = rr , i  + dr there is only V2, and only V1  at r = r„, — dr. The role of 4. in this use of the L'Hospital rule is of 
changing the evaluation of the limit to a neighboring point after or before r re . Actually, we are working with 2 
simultaneous limiting processes: p 0 ( or x z(rret )) and r rrel. See figure 3. It is remarkable that we can 
find vestiges of these traits of the quantum nature of the radiation emission process in a classical (Lienard-Wiechert) 
solution. This is food for thinking on the real physical meaning of a classical field. We repeat that in the classical 
picture with its idea of a continuous interaction this indeterminacy cannot be resolved as r reg  f dr, like rr,,, are also 
singular points. The lesson one should learn from this is that even in a classical context, it is necessary to take into 
account the discrete and localized (quantum) character of the fundamental electromagnetic interaction in order to 
have a clear and consistent physical picture. To find the limit of something when p 0 will be done so many times 
in this letter that it is better to do it in a more systematic way. We want to find 

N(R) 
lira N(R)  
p-0 p" 

where N(R) is a homogeneous function of R, N(R)I R=0  = 0. Then, we have to apply the L'Hospital rule consecu-

tively until the indeterminacy is resolved. As = —(1 + a.R), the denominator of (2) at R = 0 will be different 
of zero only after the n th-application of the L'Hospital rule, and then, its value will be (— E)nn! 
If p is the smallest integer such that N(R)r In=o 0 0, w here N ( R )P 	a--  drc N(R), then 

lim N(R) 
p_.0 pn 

oo, 	if p < (_ on  Ar ir4.2.,  if p  = n  

0, 	 if p > n 
( 3 ) 

Let us find the integral of the stress tensor of the electron self-field at its world-line: limp_0 f dx 48, or limp-0 f drp 2 dpd 
in terms of retarded coordinates [5,6,13,14), xo = 	+ pKA . This can be made easier with two helpful expressions, 

Np  = 	(P 
a 
 )  A B P LI • 	(I (4) 

and 

Np E E Pa  ( a  Ap_a.Bp-C•cc 	 (5) C a=0 c=0 
valid when N(R) has, respectively, the forms N0 = Ao.B0, or N 0  = A0.B0.0O 3  where A, B and C represent possibly 
distinct functions of R, and the subindices indicate the order of 	So, for using (3-5), we just have to find the 
r-derivatives of A, B and C ,that produce the first non- null term at the limit of R 	0. Besides, for finding 
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limp_o  f cli 4e we just have to consider the first term of the RHS of (1) because, as the second one is the trace of 
the first, its behaviour under this limit can easily be inferred. So, as K = 

	

lim
p2[K,pa+V(1+paK)].[K,pa+V(1+p aK)]  — 	

[R,  pa + V(1 + a.R)]. [R, pa+ V(1 + a.  RA 
p■ O 	 p4 

As, Ao = Bo = [R, p a+ V(1 + pa.R)] 	A2 = 132 = [a, V]+O(R). Therefore, according to (4), for producing 
a non null Np , a and p must be given by p — a = a = 2 	p .= 4 = n 	N4 = 6(a, V].[a, V] + 0(R). Then, we 
conclude from (3), that 

lim 
P2 [K, Pa + V(1 + pax )]V(' Pa + V( 1 + Pax)]  = 1 [a, V].[a, V]. p4 	 4 

We have, therefore, from (1), that 

pia Idx 4  = Ich-{[a, V].(a, V] - 2 [a, V) 2 ) -o 	 4 
	

(6 ) 

The integrand of the RHS of (6) is the flux of 4-momentum irradiated from the electron, which is finite and depends 
only on the electron instantaneous velocity and acceleration. It is interesting that (6) comes entirely from the 

r V velocity term of 	 as limp_o f dx 4 (3 = limp_o f dx4 134 . The contribution from the other two terms just 

cancel to zero, limp-0  f dx 4 192 = — limp_o f dzlea, as can be easily verified. 

The electron equation of motion 

The LDE is the greatest paradox of classical field theory as it cannot simultaneously preserve both the causality and 
the energy conservation [1-3]. The presence of the Schott term, 3e 2  is the cause of all of its pathological features, 
like microscopic non-causality, runaway solutions, preacceleration, and other bizarre effects [4). On the other hand 
its presence is necessary for the energy-momentum conservation; without it it would be required a contradictory 
null radiance for an accelerated charge, as a .V + a 2  = 0. 

The LDE can be obtained from 

= — lim dx 4 8„0" 0(p — c) = lim dx 4 49P" 49„p 6(p — E), 	 (7) 

where the last term represents the impulse carried out by the emitted electromagnetic field in the Bhabha tube 
surrounding the electron world-line, which is defined by the Heaviside function, 9(p—c). With the divergence theorem 
this middle term is transformed into the RHS, which represents the flux of 4-momentum through the cylindrical 
hypersurface p = e. Let us denote it by PP: = limc _o f dx 48P" p 6(p— e). As 8„p = pax K t, + K" — V,,, and 
(3 = 02 e3 + 	we can write 	:= P + P + , with 

2 
= lirn clz 4 04"(K - tip 6(p - 

 (-13 

= lim dr 4  {er K p 	+Or (K - V),) 6(E - p), 

Plf; lim dx 4 {Or 	+ 	(K — V)„} 6(p — E), 
c 

Pr and /344  are both null, as we discover applying (3) with (5). The complete calculation is shown in [10,11]. For 
example, we see from e2 that the integrand of P2 produces (again, we do not need to consider the trace term) 

lira 
p2 [K,V].[K,V].(K — V) — lim IR, V1.[R,V].(R— pV) 

0 	 P4 	 PS 

or, schematically limp_o ^ 	with Ao = Bo = [R, V], and Co = (R — V p). Then, A2 = [a, V) + O(R), 
C2 = a + 0 (R) , and we have, from (5), the following restrictions on a and c for producing a N (R = 0) p  0 0 : 
c = 2; a — c = 2; and p — a2 or p = 6 > n = 5. Therefore, according to (3) .1= O. 
IV is distinguished from pr  and TV for not being p-dependent, and not affected, consequently, by the limit of 

0.Therefore, it is not necessary to use the L'Hospital rule on its determination. The physical meaning of this is 
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that the flux of 9-momentum through the cylindrical surface p = c comes entirely from the radiated (photon) field. 
But, or K, = 0 for p > O. From e2  with K 2  = 0, we have 

47rp2 6'2"(K — V), = (alc  — a2 )K"), 

which, gives [1,5] 
2 

= limo  exer(K — V), = I dr
3
-a2vP, 

the Larrnor term. 
With this result in equation (7) we could write the electron equation of motion, obtained from the Lienard-Wiechert 
solution, as 

2 

	

 
ma" — 	V, — 5 a2vP, 	 ( 8 ) 

but it is well known that this could not be a correct equation because it is not self-consistent: its LIIS is orthogonal 
to V, naa.V = V.F, x ,.V = 0, while its RHS is not, -0,2  v.v = 3a2. This seems to be paradoxical until we have a 
clearer idea of what is happening. We must return to equation (7). There is a subtle and very important distinction 
between its LHS and its RHS. Its LHS is entirely determined by the electron's instantaneous position, z(r), while its 
RHS is determined by the sum of contributions from the electron self-field at all points of a cylindrical hypersurface 
p = E. In other words, the LIIS is a description of some electron attributes (the electron is a point particle!) while the 
RHS is a description of some electron-self-field attributes. This distinction is missing in equation (8); it was deleted 
by the integration and limiting processes. When we multiply the LIIS of (8) by V, we know that (ma — V.Fcri ).V, 
represents the net power of the system electron-external force, that is, the work realized by a force ma — V.Feri  
which is being displaced with a velocity V. This does not work with the RHS of (8) multiplied by V because we 
know that the flux of radiated energy is through the cylindrical wall p = e; in order to make sense we have to use 
at each point x of this wall the electromagnetic wave-vector K, and not V. The contributions from the electron self 
field must always be calculated, like in PP, from the flux of electromagnetic energy-momentum through the walls 
of a Bhabha tube around the charge world-line, in the limit of p 0: 

rn f a. Vdr = V.Fc, t .Vdr — lim f dr 4Kp a„8"'0(p — c). 
e--0 

Its LIIS and the first term of its RHS are, of course, null. Observe that in the last term,V, the speed of the electron, 
is replaced by K the speed of the electromagnetic interaction; only in the limit of p — 0 is that K V. We use 
again (3) and (5) for showing that: 

lim dx 4 K „0„09P'0(p — E) = 0. 

The explicit calculation is shown in the appendix of [11]. So, there is no contradiction anymore. 
The equation (8), in this sense, can be regarded as an effective equation that would be better represented as 

2 

	

ma" P 	< -
3 

az >, 	 (9) 

where the bracketed term represents the contribution from the electron self field and must always be calculated as 
explained above, < 3a2 vP >= PP = iime _ a  f dx 4 eP"8„p o(p — E). 

So, there is no contradiction anymore. Thus, we have eliminated two old problems of Classical Electrodynamics: 
the non integrability of the stress tensor of a point electron and the causality violation in its equation of motion. 
And all that is softly required is an indirect recognition that an actually quantum process hides behind the classical 
picture described by the Lienard-Wiechert solution. Nothing else is added to the standard theory. But there are 
still two remaining inconsistencies in Classical Electrodynamics: the discontinuity in the flux of 4-momentum from 
the charge world-line, f dx 49P'f 0,p b(p — e), and the divergence of the charge self field at p = 0. To overcome them 
requires a re-evaluation of the physical meaning of the Faraday-Maxwell concept of field with a deeper consideration 
of the "classical photon" concept. This is discussed in [10,12], from which we have presented here a simplified version. 
The complete version with its extended concept of causality and its discussion on the meaning of the Maxwell fields 
and its relevance to Quantum Field Theory would be too long to be included in a letter. The related immediate 
difference in the outcomes of these two versions appears in the equation of motion for a point electron, 

ma" — < a2a" >=. Fe", - < —2a2 vP >, 

	

3 	
(10) 

where the second term in the RHS corresponds to the energy associated to the curvature of the the electron 
trajectory and it is not present in its simplified counterpart (9). The ekistence or not of this curvature term must 
be determined by experimental means and also evaluated by its theoretical implications. 
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We investigate the linear classical stability of static solitons for a system of three coupled 
real scalar fields in 1+1 dimensions. We consider a general positive potential with a square 
form and show that the associated three-component normal modes are non-negatives. 

1 Introduction 

The soliton solutions have been investigated for field equations defined in a space-Lime of dimension equal or bigger 

than 1+1. The kink of a field theory is an example of a soliton in 1+1 dimensions [1, 2, 3, 4, 5). It is a static, 
non-singular, classically slablc and of finite localized energy solution of the motion equation. For solitons of three 

coupled scalar fields in 1+1 dimensions exist no general rules for finding analytic solutions, due to the fact the 
nonlinearity in potential leads to enlarging of difficulties to solve the field equations. 

2 SoMons from three coupled scalar field 

We consider the classical soliton solutions of three coupled real scalar fields in 1+1 dimensions. They are static, 
nonsingular classically stable and of finite localized energy solutions of the field equations. 

The Lagrangian density for such nonlinear system in the natural system of units (c = h = 1), in (1+1)dimensional 
space-time with Lorentz invariance is written as 

1 3 

C 	 069i AJPi 	( 00 2  -1-  V(Pi ), 	= 	1  ° 
2 	 0 -1 

(1) 

where a„= 	xP = (i, x) with N = 0,1, pi = pi(z,1), i = 1, 2,3 are real scalar fields and re.' is the metric 
tensor. Here the potential V(pi) = V (p i  , p2 , p3) is any positive sernidefinite function of pi. The general classical 
configurations obey the equation bellow: 

02 	02 	8 
(v); - 8,2  pi upi  V = u , 

which, for static soliton solutions, becomes the following system of nonlinear differential equations 

— V, (i = 1, 2, 3), 
aPi 

(2)  

(3)  

where primes represent differentiations with respect to space variable. There is in literature a trial orbit method, 
for finding static solutions for certain positive potentials, which constitutes a "trial and error" thecnique [21. 
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3 Linear Stability 

Since the potential V(pi) is positive it can be written in the following square form, analogous to the case with only 
single field [6] 

3 

 V(P1 P21 P3) = 	
2 E (ph p2,p3). 
	 (4) 

In this case we have the following Bogomol'nyi condition: 

Pi = -U (Pi, P2, P3), (i = 1,2,3). 	 (5) 

Now let us analyze the classical stability of the soliton solutions in this nonlinear system, which is ensured by 
considering small perturbations around p(x) and cr(x): 

pi(r,t) = /Mx) + 37,; (x,t), (i = 1,2,3). 	 (6) 

We expand the fluctuations 	t) in terms of the normal modes, 

'Mx, t) = E 	 W2,n = W3,ra • 	 ( 7 ) 

Thus the stability equation for the field becomes a Schrodinger-like equation to three-component wave functions 

41 n, 

where 

'H = 

Note that 

then 7i is Hermitian. 
We will now show 

we find a bilinear form 

where 

film = 	= 0,1,2, ..., 

d2 	82v 	82 	
03 

v 	
v 

I'n = 

(A) 1.  , 

ql,n(Z) 

T12,n(X) 	- 
/73,n(x) 

(8) 

(9) - 

(10)' 

(11)   

(12)   

(13)  

— 	 --A-- 
..-1  + TR. 	1575; 	 ,, .01 ,4,3 

1----A-82  7 V 	 , 
,,P2 	

V 	—
.•Pi 	

g 	+ d2 	E772  V 	— 82 	34 

82 	y 	 — V 	d2  + 87  V 
) .1---A— 	A---A—„°7  

u.P3•Pi 	 vP3- P7 	 Z"r 	FA 	IP; =Pi(z) 

82 	 82 

V 	 V = 
8pj0p; Opiapj. 

Hence the eigenvalues w n2  of 71 are real. 
that con 2  are non-negative. Indeed, since . 

IT1  1-   

	

p x 0 = a, 	= 	U2  
U3 

of 7{  given by 
71 = A+ A -  , 

_ 

	

a l 	—4,7u, 
(32- 	

13 	I  

	

el 	 — .v.,• U2 A-  = 	-e  

	

( 
—ku3 --U3  —:-8: 	

A+ = 

with the following first order diferential operators that appear in analysis of classical stability associated at only 
one single field [6] 

01 	0p;  
_ _ 	d 	8 u. 	

(14) 

Since at = (c0t, we find 
2  

(A+ 	) = 
d2 	(3 	

(15) 
" 	dx 2  Opt 

which are exactly the diagonal element of 71. Therefore, it is easy to show that the linear stability is satisfied i.e. 
wn2  =< 7l >=< A+ A -  >=.(A -  „)t (A -  „) > 0, as was affirmed. 

The ground state 71 is given by 
4,(0) (r)  —0 	

(16) 

which represents the three-component zero mode. 
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4 Conclusion 

In this paper, we consider the classical stability analysis for three coupled real scalar fields. We have shown that 

the positive potentials with a square form leads the three-component normal modes to be non-negative (to„ 2  > 0, 

analogous to the case with only single field [6]) so that the linear stability of the Schrodinger-like equations is 

ensured. 
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ANA PAULA MOURA REIS MICELI - UFRJ 
ANDERSON CAMPOS FAUTH - UNICAMP 
ANDRE BESSADAS PENNA-FIRME - CBPF 
ANDRE LUIZ MOTA - UFMG 
ANDRE TENORIO LEITE - UFRJ 
ANDREA DE AZEVEDO MOREGULA - UFRJ 
ANDFtEI DEMITCHEV - CHPF 
ANDREI VICTOROVICH SOMOV - UNB 
ANGELA FOERSTER - UFRGS 
ANTONIO EDSON GONCALVES - UEL 
ANTONIO R. PERISSINOTTO BIRAL - UNICAMP 
ANTONIO ROBERTO DA SILVA - UFRJ 
ANTONIO TAVARES DA COSTA JUNIOR - UFF 
ARMANDO BERNUI LEO - CBPF 
ARMANDO TURTELLI JUNIOR - UNICAMP 
ARVIND NARAYAN VAIDYA - UFRJ 
ARY ARMANDO PEREZ JUNIOR - UNICAMP 
BERT SCHROER - UFES 
BRUNO CARMINE CASSINO - UFJF 
BRUNO G. CARNE1RO DA CUNHA - IFUSP 
CARLA GOBEL BURLAMAQU1 DE MELLO - CBPF 
CARLOS A. A DE CARVALHO FILHO - UFRJ 
CARLOS A. SANTOS DE ALMEIDA - UFCE 
CARLOS ANTONIO DE SOUSA PIRES - IFT 
CARLOS ENRIQUE NAVIA OJEDA - UFF 
CARLOS FARINA DE SOUZA - UFRJ 
CARLOS JAVIER SOLANO - CHPF 
CARLOS MARIA NAON - LA PLATA 
CARLOS OURIVIO ESCOBAR - IFUSP 
CAROLA DOBRIGKEIT CHINELLATO - UNICAMP 
CESAR PINHEIRO NATIVIDADE - UNESP-GUAR 
CLAUDIO ANAEL COMES SASAKI - CBPF 
CLAUDIO GONCALVES CARVALHAES - UFF 
CLAUDIO MANOEL GOMES DE SOUSA - UNB 
CLISTENIS PONCE CONSTANTINIDIS - IFT 
CRISTIANE GRALA ROLDAO - IFT 
CR]STIANE MOURA LIMA DE ARAGAO - IFUSP 
DANIEL ALBERTO GOMEZ DUMM - LA PLATA 
DANIEL CARLOS CABRA - LA PLATA 
DANIEL GUILHERME GOMES SASAKI - CHPF 
DANIEL GUSTAVO BARCI - UFRJ 
DANIEL HEBER THEODORO FRANCO - UFMG 
DANIEL MULLER - IFUSP 
DANIELLE MAGALHAES MORAES - UFRJ 
DENIS DALMAZI - UNESP-GUAR 
DENIS G. CREASOR MCKEON - U.ONTARIO 

DICKSON CAPORE GOULART - UFRGS 
DIONISIO BAZEIA FILHO - UFPB 
DMITRI MAKSIMOVITCH GITMAN IFUSP 
EDISON I-IIROYUKI SI-IIBUYA - UNICAMP 
EDUARDO CANTERA MARINO - PUC/RJ 
EDUARDO GUERON UNICAMP 
EDUARDO SILVA MOREIRA LIMA - UFCE 
EDUARDO SOUZA FRAGA - 
EDUARDO VALENTINO TONINI - UFES 
EDUARDO VASQUEZ CORREA SILVA - CBPF 
ELJFZER BATISTA - IFT 
EMMANUEL ARAUJO PEREIRA - UFMG 
ERASMO MADUREIRA FERREIRA - UFRJ 
ERICA RIBEIRO POLYCARPO - UFRJ 
EUGENE LEVIN - CBPF 
EUGENIO RAMOS BEZERRA DE MELLO - UFPB 
EVERTON M. CARVALHO DE ABREU UFRJ 
FERNANDO M. L. DE A. JUNIOR - UFRJ 
FERNANDO SILVEIRA NAVARRA - IFUSP 
FERNANDO TADEU CALDEIRA BRANDT - IFUSP 
FILADELFO CARDOSO SANTOS - UFRJ 
FLAVIA CIRAUDO MAXIMO - PUC/RJ 
FLAVIO GIMENEZ ALVARENGA - UFES 
FLAVIO IMBERT DOMINGOS - UCP 
FRANCISCO CARLOS PINHEIRO NUNES - UFES 
FRANCISCO EUGENIO M DA SILVEIRA - IFT 
FRANCISCUS JOZEF VANHECKE - UFRJ 
FRANZ PETER ALVES FARIAS - UFBA 
GALEN MIHAYLOV SOTKOV - UFRJ 
GASTAO INACIO KREIN - IFT 
GERARDO HERRERA - CBPF 
GIL DA COSTA MARQUES - IFUSP 
GILMAR DE SOUZA DIAS - UFES 
GILVAN AUGUSTO ALVES - CBPF 
GINO NOVALIS JANAMPA ANANOS - CBPF 
GUILHERME DE BERREDO PEIXOTO - CBPF 
GUILLERMO GONZALEZ - UNICAMP 
HEBE QUEIROZ PLACID° - UFBA 
HELLO MANOEL PORTELLA - UFF 
HELLO NOGIMA - UNICAMP 
HENRIQUE BOSCHI FILHO UFRJ 
HERMAN JULIO MOSQUERA CUESTA - INPE 
HERMES ALVES FILHO - UFRJ 
HERON CARLOS DE GODOY CALDAS - UFMG 
HUGH ELLIOT MONTGOMERY - FERMILAB 
HUGO R. CHRISTIANSEN - LA PLATA 
HUMBERTO DE MENEZES FRANCA - IFUSP 
I. C. MOREIRA - UFRJ 
IRAZIET DA CUNHA CHARRET - UFF 
IVAN JOSE LAUTENSCHLEGUER - IFT 
JAIR LUCINDA - UFPR 
JAIR VALADARES COSTA - 
JANILO SANTOS - UFRN 
JOAO CARLOS ALVES BARATA - 1FUSP 
JOAO CARLOS COSTA DOS ANJOS - CBPF 
JOAO JOSE CALUZI - UFES 
JOAO RAMOS TORRES DE MELLO NETO - CBPF 
JORGE ABEL ESPICI-IAN CARRILLO - UNICAMP 
JORGE ANANIAS NETO - UFJF 
JORGE EDUARDO CIEZA MONTALVO - UERJ 
JORGE H. COLONIA BARTRA - UNICAMP 
JORGE M. CARVALHO MALBOUISSON - IFUSP 



JOSE ABDALLA H:ELAYEL-NETO - CBPF 
JOSE ALEXANDRE NOGUEIRA - UFES 
JOSE AUGUSTO CHINELLATO - UNICAMP 
JOSE CARLOS BRUNELLI - IFUSP 
JOSE DANIEL EDELSTEIN - LA PLATA 
JOSE DE SA BORGES FILHO - UFRJ 
JOSE FRANCISCO COMES - IFT 
JOSE HELDER LOPES - UFRJ 
JOSE LUIS BOLDO - EFT 
JOSE LUIZ ACEBAL FERNANDES - UFMG 
JOSE LUIZ MATHEUS VALLE - CBPF 
JOSE MANOEL DE SEIXAS - UFRJ 
JOSE MARIANO GRACIA-BONDIA - U. C. RICA 
JOSE MONTANHA NETO - UNICAMP 
JOSE NOGALES - UFF 
JOSE ROBERTO MARINHO - LIV_USP 
JOSE R. SOARES DO NASCIMENTO - IFUSP 
JOSE TADEU DE SOUZA PAES - UFPA 
JUAREZ CAETANO DA SILVA - CEFET/BA 
JULIANA RITA FLEITAS - UNICAMP 
JULIO CESAR FABRIS - UFES 
JULIO MIRANDA PUREZA - UDESC 
JUSSARA M. DE MIRANDA - CBPF 
KALED DECHOUM - IFUSP 
LEANDRO SALAZAR DE PAULA - UFRJ 
LEON RICARDO URURAHY MANSSUR - CBPF 
LEONARDO FOGEL - UCP 
LEONIDAS SANDOVAL JUNIOR - EXTERIOR 
LOURDES(BRADESCO) - BRADESCO 
LUCIENE PONTES FREITAS -EFT 
LUIS ALFREDO ANCHORDOQUI - LA PLATA 
LUIS ANTONIO C PEREIRA DA MOTA - CBPF 
LUIS ANTONIO CABRAL - IFUSP 
LUIS CARLOS MALACARNE - FUEM 
LUIS EDUARDO SALTINI - IFUSP 
LUIZ AMERICO DE CARVALHO - UNICAMP 
LUIZ C. MARQUES DE ALBUQUERQUE - IFUSP 
LUIZ CLAUDIO QUEIROZ VELAR - CBPF 
LUIZ EDUARDO SILVA SOUZA - UFRJ 
LUIZ FERNANDO BLOOMFIELD TORRES - UFRJ 
LUIZ VIcTORIO BELVEDERE - UFF 
M. SCHIFFER - UNICAMP 
MANOEL F. BORGES NETO - UNESP-SJRP 
MANOEL M. FEFtREIRA JUNIOR - UNICAMP 
MANOELITO MARTINS DE SOUZA - UFES 
MANUEL MAXIMO B M DE OLIVEIRA - UFF 
MARCE0 A. LEIGUI DE OLIVEIRA - UNICAMP 
MARCELO BATISTA HOTT - UNESP-GUAR 
MARCELO BYRRO RIBEIRO - CNPQ 
MARCELO COSTA DE LIMA - CBPF 
MARCELO DE MOURA LEITE - IFUSP 
MARCELO DE O. TERRA CUNHA - UNICAMP 
MARCELO DE OLIVEIRA SOUZA - UENF 
MARCELO EVANGELISTA DE ARAUJO - UNB 
MARCELO GLEISER - D. COLLEGE 
MARCELO JOSE REBOUCAS - CBPF 
MARCELO MARIA DE FRANCIA - LA PLATA 
MARCELO MORAES GUZZO - UNICAMP 
MARCELO OTAVIO CAMINHA COMES - IFUSP 
MARCELO SAMUEL BERMAN - INPE 
MARCIA GONCALVES DO AMARAL - UFF 
MARCIO JOSE MENON - UNICAMP 
MARCIO LIMA DE SOUZA - IFUSP 

MARCO ANTONIO DE ANDRADE - CBPF 
MARCONY SILVA CUNHA - CBPF 
MARCOS BENEVENUTO JARDEM - UNICAMP 
MARCUS VENICIUS COUGO PINTO - UFRJ 
MARGARIDA M. RODRIGUES NEGRAO UFRJ 
MARIA ALINE BARROS DO VALE - UFRJ 
MARIA APARECIDA B. P. GENNARI - SBF 
MARIA B. DE LEONE GAY DUCATTI - UFRGS 
MARIA DE FATIMA ALVES DA SILVA - UFF 
MARIA LUIZA BEDRAN UFRJ 
MARIA TERESA C DOS SANTOS THOMAZ - UFF 
MARINA NIELSEN - IFUSP 
MARIO EVERALDO DE SOUZA - UFSE 
MARIO NOVELLO - CBPF 
MARTA LILIANA TROBO - LA PLATA 
MARTHA CHRISTINA MOTTA DA SILVA - CBPF 
MARTIN FLECK - UFRGS 
MAURO SERGIO GOES NEGRAO - CBPF 
MAXWEL GAMA MONTEIRO - UCP 
MIKAEL BERGGREN - UFRJ 
MIRIAM GANDELMAN - CBPF 
MIFtIAN BATISTA - UNICAMP 
MOACYR HENRIQUE COMES E. SOUZA - CBPF 
N. SANTOS - ON 
NATHAN BERKOVITS - IFUSP 
NAZIRA ABACHE TOMIMURA - UFF 
NELSON RICARDO DE FREITAS BRAGA - UFRJ 
NEUSA LUCAS MARTIN - SBF 
NIKOLAI KUROPATKIN - IFUSP 
NOZIMAR DO COUTO - UFRJ 
ODYLIO DENYS DE AGUIAR - INPE 
OSCAR JOSE PINTO EBOLI - IFUSP 
OSWALDO MONTEIRO DEL CIMA - CBPF 
OZEMAR SOUTO VENTURA - CBPF 
PATRICIO A. L. SOTOMAYOR - UNICAMP 
PAULO ALEX DA SILVA CARVALHO - UNICAMP 
PAULO CESAR BEGGIO - UNICAMP 
PAULO CESAR DA ROCHA - UFRJ 
PAULO DE FARIA BORGES - UFRJ 
PAULO JOSE SENA DOS SANTOS - UFRJ 
PAULO ROBERTO DE ALMEIDA SACOM - UFRJ 
PAULO ROBERTO VERONEZE - FUEM 
PAULO SERGIO KUHN - UFRGS 
PAULO SERGIO RODRIGUES DA SILVA - IFT 
PEDRO CUNHA DE HOLANDA - UN1CAMP 
PEDRO PACHECO DE QUEIROZ FILHO - UFRJ 
PREM PRAKASH SRIVASTAVA - CBPF 
R. JACKIW - MIT 
RAFAEL DE LIMA RODRIGUES - UFPB 
RAFAEL NUNES THESS - UCP 
RAIMUNDO MUNIZ TEIXEIRA FILHO - IFUSP 
RANDALL GUEDES TEIXEIRA - IFT 
REGINA CELIA ARCURI - CBPF 
REGINA HELENA CEZAR MALDONADO - UFF 
REGINA MARIA RICOTTA - UNESP 
REINALDO LUIZ CAVASSO FILHO - UFPR 
RENATA ZUKANOVICH FUNCHAL - IFUSP 
RENATO KLIPPERT BARCELLOS - CBPF 
RENATO MELCHIADES DORIA - UCP 
RENATO PORTUGAL - CBPF 
RENIO DOS SANTOS MENDES - FUEM 
RICARDO MORITZ CAVALCANTI - PUCIRJ 
RICARDO It LANDIM DE CARVALHO - CBPF 



RITA LAVINIA TOFtRIANI - SBF 
ROBERTO COLISTETE JUNIOR - UFES 
ROBERTO PEREIRA ORTIZ - UFES 
ROBERVAL WALSH BASTOS RANGEL - UFRJ 
ROBSON NASCIMENTO SILVEIRA - UFES 
RODOLFO ALVAN CASANA SIFUENTES - CBPF 
ROGERIO DOS SANTOS GOMES - UFRJ 
ROGERIO ROSENFELD - IFT 
ROMAN PAUNOV - CBPF 
RONALD CINTRA SHELLARD - CBPF 
RONALDO SILVA THIBES - UFRJ 
RUBENS FREIRE RIBERO - UFPB 
RUBENS L. PINTO GURGEL DO AMARAL - UFF 
RUDNEI DE OLIVEIRA RAMOS - UERJ 
SAMUEL MACDOWELL - UFRJ 
SAMUEL ROCHA DE OLIVEIRA - UNB 
SANDRA LILIANA SAUTU - CBPF 
SANDRO SILVA E COSTA - EFT 
SANTIAGO E. PEREZ BERGLIAFFA - LA PLATA 
SEBASTIAO CASSEMIRO DE F. NETO - IFUSP 
SERGIO JOFFILY - CBPF 
SERGIO LUIZ CARMELO BARROSO - UNICAMP 
SERGIO MARTINS DE SOUZA - UFRJ 
SERGIO MORALS LIETT1 - IFT 
SERGIO V. DE BORBA GONCALVES - UFES 
SERGUEI GAVZILOV - IFUSP 

SIDINEY DE ANDRADE LEONEL - UFJF 
SILVESTRE RAGUSA - IFQSC 
SILVIO JOSE RABELLO - UFRJ 
SILVIO PAOLO SORELLA - CBPF 
SOLANGE DA FONSECA RUTZ - LNCC 
SONIA GAONA JURADO - UFMG 
STENIO WULCK ALVES DE MELO - UFRJ 
STOIAN IVANOV ZLATEV - UFSE 
TANIA GLAUCIA DARGAM - UFRJ 
TATIANA DA SILVA - UFRJ 
UBIRAJARA FERRAIOLO WICHOSKI - 1FUSP 
VAN SERGIO ALVES - UFPA 
VERISSIMO MANOEL DE AQUINO - UEL 
VICTOR PAULO BARROS GONCALVES UFRGS 
VITOR EMANUEL RODINO LEMES - CBPF 
VITORIO ALBERTO DE LORENCI - CBPF 
VLADMER KOPENKIN - UNICAMP 
WALDEMAR M. DA SILVA JUNIOR - UFF 
WELLINGTON DA CRUZ - UNICAMP 
WILSON OLIVEIRA - UFJF 
WINDER ALEXANDER DE MOURA MELO - CBPF 
WLADIMIR SEIXAS - UNESP 
XIN-HENG GUO - CBPF 
XUN XUE - UNB 
YARA DO AMARAL COUTINHO - UFRJ 
ZIELI DUTRA 'THOME F[LHO - UFRJ 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389
	Page 390
	Page 391
	Page 392
	Page 393
	Page 394
	Page 395
	Page 396
	Page 397
	Page 398
	Page 399
	Page 400
	Page 401
	Page 402
	Page 403
	Page 404
	Page 405
	Page 406
	Page 407
	Page 408
	Page 409
	Page 410
	Page 411
	Page 412
	Page 413
	Page 414
	Page 415
	Page 416
	Page 417
	Page 418
	Page 419
	Page 420
	Page 421
	Page 422
	Page 423
	Page 424
	Page 425
	Page 426
	Page 427
	Page 428
	Page 429
	Page 430
	Page 431
	Page 432
	Page 433
	Page 434
	Page 435
	Page 436
	Page 437
	Page 438
	Page 439
	Page 440
	Page 441
	Page 442
	Page 443
	Page 444
	Page 445
	Page 446
	Page 447
	Page 448
	Page 449
	Page 450
	Page 451
	Page 452
	Page 453
	Page 454
	Page 455
	Page 456
	Page 457
	Page 458
	Page 459

