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Genetic transcriptional regulatory model driven by the time-correlated noises
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Steady state properties of a kinetic model of Smolen-Baxter-Byrne [P. Smolen, D. A. Baxter, J. H. Byrne,
Amer. J. Physiol. Cell. Physiol. 274, 531 (1998)] are investigated in presence of two time-correlated noises.
The steady state probability distribution can be obtained by solving the Fokker-Planck equation. It is found that
both the correlated-time between the white noise and the colored noise and that between the colored noises can
convert the bistability to monostability while the former activates the transcription and the latter suppresses it.
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1. INTRODUCTION

Recently, nonlinear stochastic systems with noise term
have been the subject of extensive investigations. Noise can
induce many significant phenomena such as phase transition
and stochastic resonance. The concept of noise-induced tran-
sition has many applications in the fields of physics, chem-
istry and biology [1–27]. Especially in biologic system, it is
very important to explore the effects caused by noise in non-
linear system and to find the condition, causation and appli-
cation, which can give a strong impulse on the development
and the intercross of subjects.

Gene expression and regulation processes is the core prob-
lem of molecular biology and a hot subject in biology study.
Genetic transcriptional regulatory mechanism is a simulation
of the biologic gene regulatory system in which the transcrip-
tion factor accelerates the transcription process. There are
some studies about this simulation [28, 39, 40]. Neverthe-
less, in the previous work, they took the correlation-time as
zero. Actually, the real correlation-time is very small, but it
is not equal to zero exactly. So taking finite correlation-time
into consideration may be more reasonable. Generally, ana-
lyzing the evolvement of a system with nonzero correlation-
time may reflect the dynamic effects of a noise on a sys-
tem more completely. So it may make some exploring sense
to study the effects of the correlation-time on the gene tran-
scription regulatory mechanism.

In this paper, based on the kinetic model of Smolen-
Baxter-Byrne [29], the effects of two time-correlated noises
(the fluctuations in the transcription rate and basal rate
of synthesis of transcription factor) have been investigated
through the numerical computation and the analysis theory.
It is found that the additive colored noise reduces the tran-
scription efficiency. Remarkably, the correlated-time be-
tween the additive colored noises as well as the multiplicative
white noise can convert the bistability to monostability and
can suppress the transcription while the correlation-time be-
tween the multiplicative white noise and the additive colored
noise can convert the bistability to monostability and can ac-
tivate the transcription, which has not been found before.
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2. THE MODEL OF GENE TRANSCRIPTION

Now there are mainly two kinds of theoretical models
of gene transcriptional regulatory mechanism: positive tran-
scription control and negative transcription control. Smolen
et al. have proposed a model simulation about the transcrip-
tion factor facilitating the gene transcription in 1998 [29],
which contains dimer, positive feedback of transcription fac-
tor and nonlinear reciprocity. The model considers a single
transcriptional activator (TF-A) as part of a pathway mediat-
ing a cellular response to a stimulus. The TF forms a homod-
imer that can bind to responsive elements (TF-REs). The tf-a
gene incorporates a TF-RE, and when homodimers bind to
this element TF-A transcription is increased. Binding to the
TF-REs is independent of dimer phosphorylation. However,
only phosphorylated dimers can activate transcription. The
fraction of phosphorylated dimers depends on the activity
of kinases and phosphatases whose activity can be regulated
by external signals. Therefore, this model incorporates both
signal-activated transcription and positive feedback on the
rate of TF synthesis. In order to capture the salient features
of TF dimerization, binding, and phosphorylation-dependent
regulation of transcription and to make the model appreci-
ated intuitively, some simplifications were made [30]. It is
assumed that the transcription rate saturates with TF-A dimer
concentration to maximal rate α, which is proportional to
TF-A phospholation. The synthesis rate is β at negligible
dimer concentration. TF-A is eliminated with a rate constant
κ2. The basic mechanism is shown in Fig. 1 [29].

According to several biologic and chemical reactions of
this model, a differential equation about the evolvement of
concentration of transcription factor with time can be ac-
quired [28]:

ẋ =
αx2

x2 +κ1
−κ2x+β, (1)

where x is the concentration of transcription factor (TF-A),
κ1 is the concentration of dimer which is not adhering to the
responsive elements (termed as TF-REs). For certain values
of α ( α < 5.45 or α > 6.68 ) there is one unique steady
solution of [TF-A] (the concentration of transcription factor)
[28]. For other values of α, there are three steady solutions
with one unstable state and the other two stable states.

But this model is a deterministic model. Many experi-
ments indicated that gene transcription is a stochastic pro-
cess. So it is necessary to revise it. Liu and co-workers
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FIG. 1: The schematic description of positive autoregulatory model
[29]. TF-A denotes transcription factor, TF-RE responsive element,
α transcription rate, β the basal rate of synthesis, P phosphorylated,
κ2 the degradation rate.

have studied the effects of two Gaussian white noises on the
steady state distribution of protein concentration [28]. But
they did not consider the correlation time. In this paper, we
just study it. In order to introduce these effects, we rewrite
the Eq. (1) as follows,

ẋ =
αx2

x2 +κ1
−κ2x+β+

x2

x2 +κ1
ξ(t)+η(t), (2)

where ξ(t) is a white noise and η(t) is a colored noise with
the following properties [31]:

〈η(t)〉= 〈ξ(t)〉= 0, (3)

〈ξ(t)ξ(t ′)〉= 2D1δ(t− t ′), (4)

〈η(t)η(t ′)〉= D2

τ1
exp
[
−|t− t ′|

τ1

]
, (5)

〈η(t)ξ(t ′)〉= 〈ξ(t)η(t ′)〉= λ
√

D1D2

τ2
exp
[
−|t− t ′|

τ2

]
, (6)

here D1 is the intensity of white noise, τ1 and D2 are the
correlation time and intensity of the multiplicative colored
noise, and τ2 is the noise correlation time of the coupling
betweem the multiplicative and additive noise. In the limit

τ1→ 0, the additive noise tends to white noise, while the cou-
pling between the multiplicative and additive noise is colored
correlated.

In this paper, we emphasize on finding how the correla-
tion time affects the genetic transcriptional regulatory model.
In the following part we give a steady state analysis of the
model.

3. STEADY STATE ANALYSIS OF THE MODEL

If a nonlinear system contains a colored noise, it is a non-
Markov stochastic process. It is necessary to develop some
approximate methods to transform the non-Markov process
to the Markov process in order to get analytic results. The
functional analysis and the unified colored noise approxima-
tion (UCNA) are the methods commonly used in the analysis
[19, 32–37]. According to the stochastic Liouville equation,
Eq. (2) satisfies

∂P(x, t)
∂t

=− ∂

∂x
h(x)P(x, t)

− ∂

∂x
g1(x)〈ξ(x)δ(x(t)− x)〉− ∂

∂x
g2(x)〈η(t)δ(x(t)− x)〉,

(7)

where

h(x) =
αx2

x2 +κ1
−κ2x+β, (8)

g1(x) =
x2

x2 +κ1
, (9)

g2(x) = 1, (10)

here the probability distribution function can be expressed as
P(x, t) = 〈δ(x(t)− x)〉.

By applying the Novikov theorem [38] and Fox’s approach
[19, 32, 34, 35], the approximate Fokker-Planck equation
corresponding to Eq. (7) can be written as

∂P(x, t)
∂t

=− ∂

∂x
h(x)P(x, t)+

D1
∂

∂x
g1(x)

∂

∂x
g1(x)P(x, t)+D2

∂

∂x
g2(x)

∂

∂x
g2(x)P(x, t)+

λ
√

D1D2

1− τ2

[
h′(xs)−

g′2(xs)
g2(xs)

h(xs)
] ∂

∂x
g1(x)

∂

∂x
g2(x)P(x, t)+

λ
√

D1D2

1− τ2

[
h′(xs)−

g′1(xs)
g1(xs)

h(xs)
] ∂

∂x
g2(x)

∂

∂x
g1(x)P(x, t). (11)

Where
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xs =
3

√
−q

2
+

√(q
2

)2
+
( p

3

)3
+

3

√
−q

2
−
√(q

2

)2
+
( p

3

)3
− b

3
, (12)

p = κ1−
(α+β)2

3κ2
2

, (13)

q =
1

27

(
α+β

κ2

)3

+
p
3

α+β

κ2
− κ1

κ2
β, (14)

b =−α+β

κ2
. (15)

From Eq. (11), one has

∂P(x, t)
∂t

=− ∂

∂x
[h(x)+g′(x)g(x)]P(x, t)+

∂2

∂x2 g(x)g(x)P(x, t),
(16)

where

g(x) =

D2g2
2(x)+

2λ
√

D1D2

1− τ2

[
2ακ1xs

(κ1+xs)2 −κ2

]g1(x)g2(x)+D1g2
1(x)

1/2

. (17)

If the multiplicative noise is colored with finite correla-
tion time τ1, the UCNA method can be employed. Thus the
non-Markov process of Eq. (2) can be simplified to a one-
dimensional Markov process

dx
dt

=
1

A(x,τ1)
[h(x)+g2(x)Γ(t)+g1(x)ξ(t)], (18)

with

A(x,τ1) = 1− τ1

[
h′(x)− g′2(x)

g2(x)
h(x)

]
= 1− τ1

[
2ακ1x

(x2 +κ1)2 −κ2

]
, (19)

where h′(x) and g′2(x) are the derivatives of h(x) and g2(x)
with respect to x and Γ(t) is white noise with

〈Γ(t)〉= 0,〈Γ(t)Γ(t ′)〉= 2D2δ(t− t ′). (20)

By combining the results, Eq. (11), of the functional anal-
ysis and Eq. (18) of the UCNA, the Fokker-Planck equation
corresponding to Eqs. (2,3,4,5,6) can be written as

∂P(x, t)
∂t

= − ∂

∂x
h(x)

A(x,τ1)
P(x, t)+D2

∂

∂x
g2(x)

A(x,τ1)
∂

∂x
g2(x)

A(x,τ1)
P(x, t)

+
λ
√

D1D2

1− τ2
A(xs,τ1)

[
h′(xs)−

g′1(xs)
g1(xs)

h(xs)
] ∂

∂x
g2(x)

A(x,τ1)
∂

∂x
g1(x)

A(x,τ1)
P(x, t)

+D1
∂

∂x
g1(x)

A(x,τ1)
∂

∂x
g1(x)

A(x,τ1)
P(x, t)

+
λ
√

D1D2

1− τ2
A(xs,τ1)

[
h′(xs)−

g′2(xs)
g2(xs)

h(xs)
] ∂

∂x
g1(x)

A(x,τ1)
∂

∂x
g2(x)

A(x,τ1)
P(x, t). (21)

Thus the two different kinds of colored noise can be approx-
imated and expressed by Eq. (21). It should be mentioned
that the regime of the approximation method used in deriving

Eq. (21) is [32]

G(x,τ1,τ2) = 1− τ2

A(x,τ1)

[
h′(xs)−

g′2(xs)
g2(xs)

h′(xs)
]

> 0,

(22)
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G(x,τ1,τ2)� λ
√

D1D2

∣∣∣∣h′(x)h(x)

∣∣∣∣ . (23)

In the following calculations, these conditions are satis-
fied. Thus the corresponding Fokker-Planck equation of the
steady state probability distribution system, Eq. (21) when
∂P(x, t)/∂t = 0, can be written as

Pst(x) = exp
[∫ H(x)

G2(x)
dx− ln |G(x)|

]
, (24)

with

H(x) =
h(x)

A(x,τ1)
,G(x) =

g(x)
A(x,τ1)

. (25)

Then we give a numerical analysis for equation (24) and
the results are presented in Figs. 2-5.

FIG. 2: Pst (steady probability density) as a function of x for differ-
ent values of the multiplicative white noise intensity D1. D1=0.1,
0.3, 0.5, and 0.7, respectively, at D2=0.5, τ1=0.1, τ2=0.5, λ=0.4,
α=5.75, β=0.4, κ1=10.0, and κ2=1.0. (units are relative).

The effects of the strength of the multiplicative white noise
D1 (the fluctuation of transcription rate) on the steady state
probability distribution (SPDF) are plotted in Fig. 2. As we
can see from the curves, for a small value of D1, the sys-
tem has two steady states with the upper state excelling the
lower state. With the increasing of the noise strength, the
height of the right peak decreases while the height of the left
peak increases. For a large noise strength the height of the
right peak decreases drastically. Therefore, the multiplica-
tive white noise can drive the steady state from the upper
state to the lower state, and the system from bistability to
monostability. That is to say, strong fluctuation of transcrip-
tion rate may suppress the gene transcription.

Fig. 3 depicts the effects of the strength of the additive col-
ored noise D2 (the fluctuation of basal rate of synthesis) on
the steady state probability distribution (SPDF). For a small
value of D2, the system has two steady states with the lower

FIG. 3: Pst (steady probability density) as a function of x for dif-
ferent values of the additive colored noise intensity D2. D2=0.1,
0.3, 0.5, and 0.7, respectively, at D1=0.1, τ1=0.1, τ2=0.5, λ=0.4,
α=5.75, β=0.4, κ1=10.0, and κ2=1.0. (units are relative).

state excelling the upper state. With the increasing of the
noise strength, the height of the left peak and the right peak
decrease simultaneously. The peak becomes flat for big noise
strength. So it can be prophesied that the system turns into
confusion for large perturbation of environment. This im-
plies that the additive colored noise do not affect the tran-
scription switch, but make a strong impact on the transcrip-
tion efficiency. That is to say, the fluctuation of basal rate of
synthesis can be used to weaken the transcription efficiency.
Such a development could have important implications for
gene transcription regulation.

Fig. 4(a)-4(c) are plots of the effects of different values of
τ1 (the correlation time of the colored noise) on the steady
state probability distribution. For a small value of τ1, the
curves have a similar feature as Fig. 2 when D1 is small.
With the increasing of the value of a small value of τ1 (see
in Figs. 4a, 4b), the height of the left peak and the height of
the right peak increase simultaneously and the height of the
right peak increases more slowly than the left one. For a large
value of τ1 (see in Fig. 4c), with the increasing of the value of
the τ1, the height of the right peak decreases while the height
of the left one increases extremely rapidly. Therefore, the
correlated time of the colored noise can drive the steady state
from the upper state to the lower state, and the system from
bistability to monostability. That is to say, strong fluctuation
of correlation time of the multiplicative colored noise (the
transcription rate) may suppress the gene transcription.

In Fig. 5, we show the effects of different values of τ2
(the correlation time between the additive colored noise and
the multiplicative white noise) on the steady state proba-
bility distribution. When τ2=0, the system exhibits a typi-
cal bistable region. There are two peaks in the distribution
curve: the right one has a lower concentration site and the
left one has a higher concentration site. Hence, the system



Brazilian Journal of Physics, vol. 40, no. 3, September, 2010 299

FIG. 4: Pst (steady probability density) as a function of x for differ-
ent values of the correlation time of the multiplicative color noise
τ1. Fig. 4(a): τ1=0.0, 0.5, and 1.5; Fig. 4(b): τ1=1.5, 3.0, 5.0, and
7.0; Fig. 4(c): τ1=7.0, 10.0, 15.0, and 20.0, respectively, at D1=0.1,
D2=0.1, τ2=0.5, λ=0.5, α=5.5, β=0.5, κ1=10.0, and κ2=1.0. (units
are relative).

FIG. 5: Pst (steady probability density) as a function of x for differ-
ent values of the correlation time between the multiplicative noise
and the additive noise τ2. τ2=0.0, 3.0, 6.0 and 9.0, respectively,
at D1=0.1, D2=0.1, τ1=0.1, λ=0.5, α=5.5, β=0.5, κ1=10.0, and
κ2=1.0. (units are relative).

has two steady states. With the increasing of the value of
τ2, the height of the right peak increases while the height of
the left one reduces. Therefore, the correlation time between
the additive colored noise and the multiplicative white noise
can drive the steady state from the lower state to the higher
state, and the system from bistability to monostability. That
is to say, strong fluctuation of correlation time between the
additive colored noise (basal rate of synthesis) and the multi-
plicative white noise (the transcription rate) can activate the
gene transcription.

4. CONCLUSIONS AND SUMMARY

In this paper, based on the kinetic model of Smolen-
Baxter-Byrne [29], the effects of the fluctuations in the tran-
scription rate and basal rate of synthesis of transcription fac-
tor have been investigated through the numerical computa-
tion and the analysis theory. It is found that the additive col-
ored noise reduces the transcription efficiency. Remarkably,
the correlated-time between the additive colored noises as
well as the multiplicative white noise can convert the bista-
bility to monostability and can suppress the transcription.
The correlation-time between the multiplicative white noise
and the additive colored noise can convert the bistability to
monostability and can activate the transcription.
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