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Structural Studies of Liquid Alkaline-earth Metals -A Molecular Dynamics Approach
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In the present research article we have studied various properties like binding energy, the pair distribution
function g(r), the structure factor S(q), specific heat at constant volume, and coordination number of alkaline-
earth metals (Be, Mg, Ca, Sr, and Ba) near melting point temperature using molecular dynamics (MD) simu-
lation technique with a pseudopotential proposed by us. Good agreement with the experiment is achieved for
the binding energy, pair distribution function, and structure factor and these results compare favorably with the
results obtained by other such calculations, showing the transferability of the pseudopotential used from solid
to liquid environment in the case of alkaline-earth metals.
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1. INTRODUCTION

The alkaline-earth metals (IIA column) can be considered
as simple metals in regard of the electronic aspect, they are
certainly the less studied elements among the metals. From
the experimental point of view, only a few properties have
been determined to date. Indeed, we can mention the elec-
trical resistivity [1], the absolute thermopower [2], the static
structure [3], the sound velocity [4], and the density [5]. This
is due to the high chemical reactivity and to the gas adsorp-
tion ability [6] that further increase with temperature. These
difficulties have induced a low interest for technological pur-
poses and a disinterest for theoretical work on alkaline-earth
metals, while alkali and polyvalent ones were often preferred.
However, alkaline-earth metals have a central place. On one
hand, they can be considered as simple and free-electron-like,
since they have only s-like conduction electrons. Beryllium
and magnesium, essentially free-electron-like, are as simple
as sodium [7]. On the other hand, in the case of Ca, Sr, and
Ba the existence of an empty d-band above the Fermi level,
which get nearer as one goes down the (IIA column) [8] has a
great influence on the electronic properties. This explains the
high electrical resistivity of liquid barium [1,9].

Table 1. Input parameters used in the calculation and the binding
Energy (in Ryd.) and specific heat at constant volume. The

value in the ( ) parentheses shows the percentage deviation of
the binding energy from the experimental findings.

Element T(K) ( )3
0aΩ

 

rc in  

(a .u . )  
sr  TkB2

3
 

Evol Econ present
binE  

texp
binE  

[22] 

*
VC  

(a.u.) 

Be 1560 59.82 0.92411 1.9274 0.01482 -2.4275 0.1016 
-2.3110 

(1.91%) 
-2.2676  3.67 

Mg 980 173.20 1.66547 2.7445 0.00931 -1.8040 0.0325 
-1.7621 

(1.11%) 
-1.7820  3.90 

Ca 1138 333.03 2.88390 3.4128 0.01081 -1.5069 0.0569 
-1.4391 

(2.02%) 
-1.4688  2.98 

Sr 1040 420.38 3.21860 3.6884 0.00988 -1.3816 0.0456 
-1.3261 

(2.08%) 
-1.3544  3.21 

Ba 998 465.12 3.35410 3.8148 0.00948 -1.3390 0.0239 
-1.3056 

(4.24%) 
-1.2524  2.98 

 

 

Recent works [8,10–12] have been devoted to this class of
elements to see trends through the Periodic Table and to study

the transition from alkali to more complex metals in relation
to the influence of the electron gas. Alemany et al. [12]
also computed the velocity auto-correlation function VACF,
its memory function and the self-diffusion coefficient.

In this paper, we study the properties like binding energy,
the pair distribution function g(r), the structure factor S(q),
specific heat at constant volume, and coordination number
using molecular dynamics (MD) simulation technique with
a pseudopotential of Baria and Jani [13-15] for alkaline earth
metals, namely beryllium, magnesium, calcium, strontium,
and barium. We present the results of the static properties i.e.,
Binding energy, the structure factor, and the pair distribution
function and compared with both experimental and theoreti-
cal previous works, as well as the VACF and its spectral den-
sity. Because of the lack of experimental data for VACF and
its spectral density, we are only able to compare our results
with the recent ones of Alemany et al. [12]. Our calculations
have been performed with the molecular dynamics simulation
technique with the pseudopotential of Baria and Jani [13-15]
in the second-order perturbation theory.

2. THEORY

Simple metals are usually depicted as an assembly of ions
of well-defined electric charge immersed in the bath of the
conduction electrons, the global system being electrically
neutral. Since the number of conduction electrons per atom
has an integer value (Z=2 for alkaline-earth metals), the direct
ion-ion repulsion, essentially Coulombic, is easy to describe
contrary to the transition metals. In contrast, the description
of the effective ion-ion interaction is drastically affected by
the electron-electron and the electron-ion interactions.

The electron-electron interaction relies on the electronic
charge density, which takes also a well-defined value for sim-
ple metals. Its description is performed in terms of screening
with two functions, the Lindhard-Hartree dielectric function
εH(q) and the local-field correction G(q), which account for
electrostatic and exchange-correlation effects, respectively.
Wax and Bretonnet [16] have shown that the important char-
acteristic of G(q) at least for the static structure factor of liq-
uid metals is the low-q limit parameter depending on the cor-
relation energy of the electron gas. The exchange-correlation
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effect is now a days well-predicted by Monte Carlo tech-
niques, and the Ichimaru and Utsumi [17] IU expression of
the local-field correction used in this work is certainly one of
the most reliable. Since alkaline-earth metals are simple like
metals, the main difficulty in the calculation of the effective
ion-ion interaction lies in the description of the electron-ion
interaction. Thus, the effective pair potential can be obtained
from the perturbation theory applied to second order to the
determination of the configurational energy of the material,

u(r) =
Z2

r
− 2Z2

π

∫
∞

0
FN(q)

sin(qr)
qr

dq (1)

FN(q) being the normalized energy-wave number character-

istic,

FN(q) =
(

q2 V
4πZ N

)2 [
1− 1

ε(q)

] (
1

1− G(q)

)
|WB(q)|2

(2)
Where, V

N = Ω0, being the atomic volume, the electron-gas di-
electric function ε(q), and the local-?eld correction G(q) that
takes into account the exchange-correlation effects [17] be-
tween conduction electrons and WB(q) is the pseudopotential
proposed by Baria and Jani [13-15], (in Ryd. Unit) is given
by,

WB (q) =− 8 πZ
Ω0 q2
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c

+ 4 sin(q rc)
q rc

+ sin(q rc)
(1+q2 r2
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+ 2 e q2 r2
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c)3 − cos(q rc)

 (3)

where rc is the parameter of the potential and e the base of
natural logarithm. We have calculated the parameter of the
potential rc using standard zero pressure technique. The cor-
responding parameters are compiled in Table I. One further
variable aspect of the pseudopotential formalism is the choice
of the exchange-correlation function, G(q). We employ the
expression exempt from free parameters developed by Ichi-
maru and Utsumi [17].

In the framework of the second-order perturbation theory
of the pseudopotential, the binding energy is given by the en-
ergy of an atom as,

Ebin =
3
2

kB T +Econ +Evol (4)

The configurational energy Econ is obtainable directly by
molecular dynamics or from its definition in terms of pair dis-
tribution function g(r),

Econ =
N

2V

∫
u(r)g(r)dr (5)

The volume-dependent contribution to the binding energy,
Evol , is given according to the prescription of Hasegawa and
Watabe [18] by

Evol = Eeg−
lim

q→ 0

[
2πZ2 N

V

(
π

4kF
− G(q)

q2

)]
− 1

2V ∑
q6=0

4πZ2

q2 FN(q) = Eeg +Beg +Φ (6)

In this expression, Eeg represents the ground state energy of
the electron gas, for which the following Nozieres-Pines [19]
interpolation formula is used (within atomic units):

Eeg =
Z
2

[
2.21
r2

s
− 0.916

rs
+0.031 ln(rs)−0.115

]
(7)

rs being the radius of the electronic sphere defined by r3
s =

9π

4k3
F

= 3
4π

( V
N Z

)
. The first term of Eq. (7) is the kinetic en-

ergy of the free electron gas, the second term is the attractive
exchange energy due to the parallel-spin electrons separated
by Pauli’s exclusion principle, and the third term is the cor-
relation energy that gives an additional lowering in energy.

In the right-hand side of Eq. (6), the second term, usually
noted Beg, corresponds to a rearrangement of various ener-
getic contributions for the zero-wave vector and the third term
noted as Φ, represents the self-energy between an ion and its
surrounding cloud of charge. In this context, the local pseu-
dopotential assumed for the ion-electron interaction and the
local-field correction G(q) considered for the exchange and
correlation effects within the electron gas are crucial for ob-
taining the volume-dependent energy.

3. MOLECULAR DYNAMICS SIMULATION

The molecular dynamics (MD) simulations are performed
in the NVE microcanonical ensemble. The system is a cubic
box containing N atoms with periodic boundary conditions
and the box sizes are fitted to the desired density, ρ = N

V =
1

Ω0
. During the thermalization stage, the system relaxes and

the velocities are rescaled each 50 time steps to the expected
temperature. Once the system is thermalized, the production
stage is launched and positions and velocities of the particles
are taped each 5 (for dynamical properties) or 10 (for static
ones) time steps. During this stage, the temperature is no
more renormalized. Because of the statistical fluctuations, for
which standard deviations of the temperature are a few tenths
of degrees, the effective temperature during the production
differs from the expected one.

In this paper, we always indicate the effective value of the
temperature at which the results are obtained, since, as it will
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FIG. 1: Pair distribution function g(r) for Be, Mg, Ca, Sr and Ba near melting temperature. Full lines are our molecular-dynamics results.
Cross (x) are the experimental results of Waseda [20].

be seen later, the self-diffusion coefficient is highly sensitive
to the temperature. It is worth to mention that the isother-
mal MD simulation, which requires the renormalization of
the velocities, is prescribed in observing the evolution of a
tagged particle in order to compute the VACF. Depending on
the physical properties under study, two different sizes for the
simulation box is used; 256 particles for dynamical proper-
ties and 2048 particles for static properties. The bigger is the
system, the faster is the thermalization and the smaller are the
fluctuations of the temperature. Knowing a great number of
successive configurations, the pair distribution function g(r)
can be determined from the relationship,

g(r) =
n(r)

4
3 πρC

[
(r +δr)3− r3

] (8)

Where, C is the number of configurations taped and n(r) is the
number of atoms counted at a distance between r and r + δr

from another atom taken as origin. As we said, for computing
the static structure the box contains N=2048 atoms in order
to ensure a large enough r extension of g(r). So, the structure
factor S(q) is obtained straightforwardly by Fourier transform
as,

S(q) = 1+ρ

∫
[g(r)−1] exp(−q · r) ·dr (9)

Another function 4 π ρ r2 g (r) obtained from g (r) is used
in the discussion of the structure of non-crystalline systems.
This has been called the radial distribution function (RDF).
This function corresponds to the number of atoms in the
spherical shell between r and r+dr, the coordination number,
and is obtained from relation [20],

n1 =
∫ rm

r0

4 π ρ r2 g (r) dr (10)

Where, r0 is the left hand edge of the first peak and rm corre-
sponds to the first minimum on the right hand side of the first



Brazilian Journal of Physics, vol. 40, no. 2, June, 2010 207

1 

 

 

 

 

1 

 

 

 

 

 

 

 

1 

 

Structural Stu 

 

 

 

 

 

 

1 

 

 

 

 

 

 

 

FIG. 2: Structure factor S(q) for Be, Mg, Ca, Sr and Ba near melting temperature. Full lines are our molecular-dynamics results. Cross (x)
are the experimental results of Waseda [20]. Structure factor S(q) for Be, Mg, Ca, Sr and Ba near melting temperature. Full lines are our
molecular-dynamics results. Cross (x) are the experimental results of Waseda [20].

peak in RDF.

4. RESULTS AND DISCUSSION

To determine the binding energy by Eq. (7), we first calcu-
late the configurational internal energy Econ by MD simula-
tion. We also take advantage of the fluctuations in this energy
during the course of the calculation to evaluate the specific
heat at constant volume using the standard expression [21],

C∗V =
CV

N kB
=

3
2

1−
3 N
〈
(δEcon)

2
〉

2 〈Ekin〉2

−1

(11)

〈Ekin〉 being the average kinetic energy and δEcon, the fluctu-
ation in the configurational energy, Table 1 presents potential

parameter rc, C∗V and Econ with the other contribution to the
volume-dependent energy, as well as the experimental bind-
ing energy [22]. Note that the main contribution Φ, to the
binding energy comes from the electrostatic interaction be-
tween an ion and its own screening cloud of electrons. Our
present values of binding energies are in good agreement with
the experimental values within percentage deviation of 1.11%
to 4.24%.

As a test of transferability of the pseudopotential under
study, we can compare the binding energy with experiment
since it corresponds to the sum of the ionization energies of
the valence electrons, Eion, and the cohesive energy, Ecoh. In-
deed, we recall that the conventional binding energy can be
written [23] as

E =−(Eion +Ecoh) (12)

Our results for the pair distribution function g(r) are pre-
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Table 2. First and Second-Peak position of g (r), and their related
magnitude with the Coordination number.

Table 2. First and Second-Peak position of ( )rg , and their related magnitude with the 

Coordination number. 

Metal 
T 

(K) 

First peak position and related 

magnitude of ( )rg  

Second peak position and related 

magnitude of ( )rg  

Coordination 

number 1n  

First peak 

position 1r  in (

0
A ) 

Related 

magnitude 

Second peak 

position 2r  in (

0
A ) 

Related 

magnitude Present Expt. 

Present Expt. Present Expt. Present Expt. Present Expt. 

Be 1560 3.0 - 2.484 - 5.6 - 1.277 - 10.1 - 

Mg 953 3.1 3.21 2.701 2.294 6.1 6.0 1.240 1.252 11.2 10.9 

Mg 1063 3.1 3.21 2.503 2.144 6.1 6.0 1.203 1.228 11.1 - 

Mg 1153 3.1 3.21 2.411 2.126 6.1 6.0 1.186 1.208 11.0 - 

Ca 1138 3.8 3.83 2.751 2.614 7.4 7.3 1.264 1.243 11.2 11.1 

Sr 1040 4.2 4.23 2.510 2.421 7.9 8.0 1.240 1.248 11.2 11.1 

Ba 998 4.3 4.31 2.582 2.561 8.2 8.1 1.260 1.276 10.9 10.8 

 

 

sented in Fig. 1 for Be, Mg, Ca, Sr, and Ba near their melting
point temperature in comparison to the experiments [20]. To
the best of our knowledge, no experimental results have ever
been published for Be. For Mg, Ca, Sr, and Ba there is a
slight overestimation of the height of the first peak with the
experimental values of Waseda [20] except these, our present
findings are excellent. The corresponding static structure fac-
tors S(q) are displayed in Fig. 2. Though our calculations are
performed with 2048 particles, we can see that the low-q be-
havior of S(q) is poorly described because of the smallness of
the simulation box. The mesh in the q space being governed
by the extension of g(r), it may happen that the curves of S(q)
are not smooth in some crucial ranges, like the position of the
main peak, due to the lack of points. Thus, for Mg, Ca, and
Ba, the height of the first peak of S(q) seems to be slightly un-
derestimated. Except these small differences, the agreement
between our calculations and experiments [20] is overall very
satisfactory. The first and second peak position and its rela-
tive magnitude of g (r), and coordination number are shown
in table 2 while first and second peak position and its relative
magnitude of S(q) are shown in table 3. Presently calculated
values of first and second peak position of g (r), coordination
number and S(q) are excellently agrees with the experimental
findings of Waseda [20] for Mg, Ca, Sr and Ba while for Be,
no experimental data are available for comparison.

5. CONCLUSION

It is rather difficult to estimate the error for the dynamical
properties in computer simulations because many factors in-
fluence the results of the calculations. These are the relatively
small number of particles, the periodic boundary conditions,
the number of configurations used in calculating various av-
erages and the shortcomings of the pair potential, and hence
the pseudopotential.

The properties of crystalline and liquid phases are found to
be adequately modeled by the pseudopotential of Baria and
Jani [13-15]. Since the self-diffusion coefficient is very sensi-
tive to the temperature and it is doubled at least at each 400K,
it might be a very accurate test of the potential. The static

TABLE 3. First and Second-Peak position of S (q), and their
related magnitude.Table 3. First and Second-Peak position of ( )qS , and their related magnitude. 

Metal 
T 

(K) 

First peak position and related 

magnitude of ( )qS  

Second peak position and related 

magnitude of ( )qS  

First peak 

position   1q  in (
10

A
−

) 

Related 

magnitude 

Second peak 

position 2q  in (
10

A
−

) 

Related 

magnitude 

Present Expt. Present Expt. Present Expt. Present Expt. 

Be 1560 2.45 - 2.595 - 4.45 - 1.132 - 

Mg 953 2.4 2.42 2.501 2.556 4.41 4.40 1.301 1.252 

Mg 1063 2.4 2.42 2.356 2.381 4.41 4.40 1.223 1.213 

Mg 1153 2.4 2.42 2.239 2.228 4.41 4.40 1.199 1.179 

Ca 1138 1.94 1.95 2.630 2.634 3.62 3.63 1.191 1.211 

Sr 1040 1.77 1.78 2.650 2.643 3.31 3.30 1.222 1.208 

Ba 998 1.75 1.73 2.600 2.661 3.22 3.21 1.198 1.213 

 

structure does not appear to be very sensitive to it as we can
see from the results of g(r) and S(q), both being in very good
agreement with experiment. So, for this kind of metals, we
have to consider a much more sensitive property, and the self-
diffusion coefficient could be this one. Unfortunately, the lack
of experimental value prevents definitive conclusions.

To conclude, we have performed molecular dynamics study
of liquid alkaline-earth metals with pseudopotential of Baria
and Jani [13-15] in order to check the transferability of the
model. Considering that this pseudopotential is exempt from
adjustable parameters, the good quality of our results of the
structure factor is a strong argument in favor of the trans-
ferability of the pseudopotential from the solid state to the
liquid state for alkaline-earth metals as far as the pair poten-
tial and the ionic structure is concerned. The study of the
dynamic properties and above the entire self-diffusion coef-
ficient points out the relevance of this latter quantity to deal
with the transferability of the pseudopotential. The existence
of experimental data would be helpful.
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