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On the calculation of inner products of Schur functions
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Instituto de Fı́sica Teórica, Universidade Estadual Paulista, UNESP, 01140-070, São Paulo, Brazil

V.K.B. Kota†

Physical Research Laboratory, Ahmedabad 380 009, India
(Received on 30 September, 2009)

Two methods for calculating inner products of Schur functions in terms of outer products and plethysms are
given and they are easy to implement on a machine. One of these is derived from a recent analysis of the SO(8)
proton-neutron pairing model of atomic nuclei. The two methods allow for generation of inner products for the
Schur functions of degree up to 20 and even beyond.
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1. INTRODUCTION

Quantum many-particle systems in general carry several
degrees of freedom. For example atomic nuclei carry orbital,
spin and isospin degrees of freedom. In group theoretical
models of these systems (say with n particles), the wavefunc-
tions that correspond to these different degrees of freedom
transform according to definite irreducible representations
(irreps) of both the spectrum generating group G and the per-
mutation group Sn of n objects. These irreps are then coupled
such that the total wave functions are completely antisym-
metric (if we have fermion systems) or symmetric (if we have
boson systems) under permutation of all particles. For recent
applications of group theoretical models to fermion and bo-
son systems, see [1, 2]. Therefore, one needs to know how to
reduce the Kronecker product of two Sn irreps into Sn irreps
and this gives the Clebsch-Gordon series for the symmetric
groups [3]. In group theory this product corresponds to inner
product of Schur functions [4, 5]. The Sn irreps are labeled
by the partitions (λ) = (λ1,λ2, ...,λn) of the integer n. Note
that λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 and ∑

n
i=1 λi = n. Our purpose

in this paper is to give methods for evaluating the Kronecker
products of Sn irreps with n up to 20 and beyond. Before
going further it is useful to mention that the spectrum gener-
ating groups G of interest are general linear groups GL(N),
unitary groups U(N) and so on [1, 2, 6].

A powerful tool in the study of the representations of uni-
tary groups and their subgroups including the Sn groups, is
Schur functions [5, 7, 8] and they are characters of the uni-
tary irreps of unitary groups (also the characters of finite di-
mensional irreps of general linear groups) [6, 7]. The Schur
functions are symmetric homogeneous polynomials in p in-
determinates (variables) x = (x1,x2, ...,xp) and more impor-
tantly they involve a partition (λ) of an integer r having k
parts, i.e. (λ) = (λ1,λ2, . . . ,λk) such that λk > 0, p ≥ k and
r = ∑

k
i=1 λi. Now a comprehensible definition of the Schur

functions {λ}x of degree r, in terms of determinants is [6, 7]

{λ}x =
|M(λ)|

|M(λ = 0)|
(1)
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where M(λ) is a p × p matrix with elements Mi j(λ) =
(xi)λ j+p− j. Littlewood established many properties of Schur
functions and they allow us to deal with these functions with-
out using the explicit expression given by Eq. (1) in terms of
the variables x. Because of this reason, Schur functions {λ}x
are simply denoted by {λ}.

Given two Schur functions {λ} and {µ}, they can be
’multiplied’ in three different ways giving: (i) outer prod-
uct denoted by {λ}{µ} = ∑ν Γλµν{ν}; (ii) inner product de-
noted by {λ}×{µ}= ∑ν gλµν{ν}; (iii) plethysm denoted by
{λ}⊗ {µ} = ∑ν Φλµν{ν}. The outer product gives the re-
duction of the Kronecker product (sometimes called tensor
product) of U(n) irreps {λ} and {µ} into U(n) irreps {ν}
and Γλµν is the multiplicity (or number of occurrences) of
the irrep {ν} in the product. Note that here the irreps {λ}
and {ν} correspond to partitions (λ) and (µ) for two differ-
ent integers n1 and n2 and {ν} correspond to the partition (ν)
for the integer n1 +n2. Similarly the inner product gives the
reduction of the Kronecker product of Sn irreps labeled by
partitions (λ) and (µ) into Sn irreps (ν) and gλµν is the multi-
plicity of the irrep (ν). The third product is called plethysm
or symmetrized power and it is explained in [5–7, 9–11]. For
example say the states of a single particle correspond to the
irrep {λ} of U(n). Then with m identical particles occupying
these states, the m particle states with permutation symmetry
(µ) of Sm transform as the irreps {ν} of U(n) and the {ν}
are given by the plethysm {λ}⊗{µ}. It should be stressed
that, although the subject of Schur function multiplications
is old, there is recent interest in developing algorithms for
these [6, 11–14] and this is mainly due to the developments
in group theoretical models for atomic nuclei.

The coefficients Γλµν of outer products can be obtained by
the well known Littlewood Richardson rules [8, 15] and it is
easy develop a computer code using these rules. In addition,
recently computer codes are also developed for evaluating
plethysms [11–13] and one of the authors [16] has created
a bank of plethysms. On the other hand inner products are
more complicated. By definition the gλµν in the inner product
are given by the formula [3, 5]

gλ′λ′′λ = ∑
β

h(β)
n!

χ
(λ′)(β)χ(λ′′)(β)χ(λ)(β) . (2)

In Eq. (2) the sum is over the Sn classes β, h(β) are their
order and χ(λ)(β) their character in the irrep (λ). However
this formula is difficult to use in practice for larger integer
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values n. The three operations, outer product, inner product
and plethysm are connected among themselves by relations
known in the literature and exploiting this, we will give in
this paper two methods for the calculation of inner products
for irreps for large n values. One of the methods discussed
ahead is developed following a recent study of the SO(8)
proton-neutron pairing model of atomic nuclei [1]. In [5]
tables for inner products are given for n ≤ 9 only and the
methods presented in the present paper allow one to go up
to n = 20 and beyond. It should be mentioned that in some
special cases, formulas for inner products are available in lit-
erature [3, 17]. Also, computer codes in [12, 13] allow one
to calculate inner products but it is not clear if these codes
allow one to consider partitions of integers up-to 20 and be-
yond. Now we will give the preview.

Section II gives the method based on outer products for
calculating inner products. In Section III described is the
method that uses both plethysms and outer products. In Sec-
tion IV we present some examples for n up to 20. Finally
Section V gives conclusions.

2. INNER PRODUCTS OF SCHUR FUNCTIONS IN
TERMS OF OUTER PRODUCTS

Our first method (I) uses the following equation, obtained
by Littlewood[4, 5], and it allows us to compute inner prod-
ucts of Schur functions using only outer products,

({µ}{λ})×{ν}= ∑
ρ ,σ

Γρσν({µ}×{ρ})({λ}×{σ}) . (3)

In Eq. (3), Γρσν is the multiplicity of {ν} in the outer product
{ρ}{σ} of {ρ} by {σ}. To use this equation say for {µ}×
{λ}, one starts by singling out the last non-null part µt of µ,
and then write using Eq.(3),

({µ1,µ2, . . . ,µt−1}{µt})×{λ}=
∑

λ′ ,λ′′
Γλ′λ′′λ({µ1,µ2, . . . ,µt−1}×{λ

′})({µt}×{λ
′′})

= ∑
λ′λ′′

Γλ′λ′′λ({µ1,µ2, . . . ,µt−1}×{λ
′}){λ

′′} .

(4)

In the last step we used {µt}× {λ′′} = {λ′′} since {µt} is
symmetric. On the other hand,

{µ1,µ2, . . . ,µt−1}{µt}= {µ}+ ∑
µ′ 6=µ

Γ{µ1,µ2,...,µt−1}{µt}{µ′}{µ′}

(5)
implying that

({µ1,µ2, . . . ,µt−1}{µt})×{λ}=
{µ}×{λ}+∑µ′ 6=µ Γ{µ1,µ2,...,µt−1}{µt}{µ′}({µ′}×{λ}) .

(6)

Now, equating Eq. (4) and Eq. (6) one obtains

{µ}×{λ}= ∑
λ′ ,λ′′

Γλ′λ′′λ({λ
′}×{µ1,µ2, . . . ,µt−1}){λ

′′}−

∑
µ′ 6=µ

Γ{µ1,µ2,...,µt−1}{µt}{µ′}({µ′}×{λ}) . (7)

The inner products that appear in the first sum of Eq. (7)
are from S(n−µt ) while those in the second sum are from

Sn. One can then establish a recursive procedure in which
we compute all the Sn inner products knowing those of
Sn−1,Sn−2, . . . ,S2. When computing inner products of a
given Sn irrep {µ} by all {λ} one must be sure that all Sn
inner products appearing in the second sum of Eq. (7) have
already been computed. This is achieved by ordering the ir-
reps {µ} in decreasing order of their length and irreps of the
same length being ordered in decreasing order of their parts
read from left to right. The procedure then is:

1. Make a table of all outer products with final degree n
. This will give the coefficients Γ and the irreps {λ′}
and {λ′′} in the first sum in Eq. (7).

2. Make a table of all inner product for Sn−1,Sn−2, . . . ,S2

3. Order all Sn irreps in the order described above.

4. For a given {λ}, compute {µ}×{λ} for all {µ} in the
order given above using the formula

{µ}×{λ}= ∑
λ′ ,λ′′

Γλ′λ′′λ({λ
′}×{µ1,µ2, . . . ,µt−1}){λ

′′}−

∑
µ′≺µ

Γ{µ1,µ2,...,µt−1}{µt}{µ′}({µ′}×{λ}) . (8)

In Eq. (8) ≺ means preceding following the order in step
(3). Note that the procedure starts with the known result
{µ}× {n} = {µ}. Implementing the steps (1)-(4), a com-
puter code has been developed; see ahead for examples. The
calculation of inner products and construction of tables have
been shortened by use of the well known properties of inner
products [3],

{µ}×{λ}= {λ}×{µ} ,

({µ}×{λ})T = {λ}×{µ}T = {λ}T ×{µ} ,

{µ}T ×{λ}T = {µ}×{λ} , (9)
{n}×{λ}= {λ} , {1n}×{λ}= {λ}T

where { f}T means transposed(or conjugate) of { f}.

3. INNER PRODUCTS OF SCHUR FUNCTIONS IN
TERMS OF PLETHYSMS

Now we will turn to the second (II) method and this makes
use of plethysms [5, 7, 9, 18]. From the properties of
plethysms one has [5],

({1}′{1}′′)⊗{λ}= ∑
λ′ ,λ′′

gλ′λ′′λ {λ
′}′{λ

′′}′′ (10)

where the symbol ⊗ means plethysm and the superscripts ’′’
and ’′′’ over the Schur functions indicate that they are de-
fined in different spaces (for example spin and orbital for
atoms). If we can compute the LHS of Eq. (10) by other
means, the comparison of results will give us the coefficients
gλ′λ′′λ of the reduction of the inner product of Sn irreps {λ}′
and {λ}′′. The result obtained from Eq. (10) can be dimen-
sionally checked using (see Eq. (56) in [11] and also [14]),

∑
λ′λ′′

gλ′λ′′λ dim{λ
′}ndim{λ

′′}n = dim{λ}n2 . (11)
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In Eq. (11) dim{ f}r is the dimension of the irrep { f} of
U(r). Knowing the multiplicity coefficients g’s for all the
Schur functions of a given degree n, one constructs a table
having in its columns these coefficients. The rows of such
a table will give the reduction of the inner products of all
Schur functions of degree n. We have recently used this trick
in Ref. [1] for two-columns irreps {λ}= {2a1b} that appear
in the so called SO(8) model of atomic nuclei and this model
describes pairing in LST coupling for nuclei; note that T is
isospin. The simplicity here is that it is possible to use the
relation

{2a1b}= {1a+b}{1a}−{1a+b+1}{1a−1}, a > 0 (12)

and then Eq. (10) becomes

{1}′{1}′′⊗{2a1b}=
({1}′{1}′′)⊗ ({1a+b}{1a})− ({1}′{1}′′)⊗ ({1a+b+1}{1a−1})
= [({1}′{1}′′)⊗{1a+b}] [({1}′{1}′′)⊗{1a}]
−[({1}′{1}′′)⊗{1a+b+1}][({1}′{1}′′)⊗{1a−1}] .

(13)
In Eq. (13) all plethysms have only antisymmetric Schur
functions as right factors and for them one has the simple
result

({1}′{1}′′)⊗{1p}= ∑
f1+ f2=p

{2 f2 ,1 f1− f2}′{ f1, f2}′′ . (14)

For example, Eq. (14) has been used in atomic physics
(i.e. for fermion systems) in LS-coupling [5] and in nuclear
physics while dealing with isospin in LST coupling [1]. Us-
ing Eq. (14) in Eq. (13) and performing the resulting outer

products, the LHS of Eq. (10) is easily obtained for two-
columns irreps {λ}. Similar to Eqs. (12), (13) and (14), it is
possible to obtain for a two rowed irrep { f1 f2}, the plethysm
{1}′{1}′′⊗{ f1 f2} by using the relation

{ f1 f2}= { f1}{ f2}−{ f1 +1}{ f2−1} , f2 > 0, (15)

and the basic result (used often for boson systems [5, 11]),

gλ′λ′′ {m} = δ{λ}′{λ}′′ . (16)

For general irreps {λ} of degree n, it is possible to use the
method based on Eq. (10) as it is possible to expand any
Schur function {λ} in terms of totally antisymmetric or sym-
metric Schur functions. This can be implemented in a re-
cursive procedure by assuming that the results for all irreps
of the integers 1 to n− 1 are known and then obtain the in-
ner products for the irreps of n. Alternatively one can use
a procedure given in [11] to compute plethysms adapted for
computing the LHS of Eq. (10) for all {λ} of Sn starting with

({1}′{1}′′⊗{n}= ∑
λ

{λ}′{λ}′′. (17)

where use was made of Eq. (16) and the sum is over all Sn
irreps. Then the procedure is as follows.

In the first step (i), find all partitions of n and order them in
the order described after Eq. (7). Then in the second step (ii),
for each partition {λ}= {λ1,λ2, . . . ,λt ,0, . . . ,0} perform the
outer product {λ1,λ2, . . . ,λt−1}{λt} and then use the equa-
tion

({1}′{1}′′)⊗{λ}= [({1}′{1}′′)⊗{λ1,λ2, . . . ,λt−1}] [({1}′{1}′′)⊗{λt}]
− ∑
{λ′}≺{λ}

Γ{λ1,λ2,...,λt−1}{λt}→{λ′} [({1}′{1}′′)⊗{λ
′}] (18)

where the symbol ≺ means preceding, following the order-
ing in step (i). Now using Eq. (18) in Eq. (10), this procedure
allows us to compute the inner products of all irreps of de-
gree n, by induction, provided the inner products of irreps of
degrees 1 to n−1 are known. In fact, using Eq. (18) we can
compute all the inner products of {λ} in the order of step (i),
since all the ({1}′{1}′′)⊗{λ′} in the RHS have been com-
puted by the induction process.

4. EXAMPLES FOR SCHUR FUNCTIONS OF DEGREE
n≤ 20

As a simple example (this can be worked out by hand cal-
culations), first let us compute the inner product of all Schur
functions of degree 4 using the inner products of Schur func-
tions of degrees 1,2 and 3. Eq. (17) gives,

({1}′{1}′′)⊗{4} = {4}′{4}′′+{31}′{31}′′+{22}′{22}′′
+ {212}′{212}′′+{14}′{14}′′ . (19)

Using {31}= {3}{1}−{4} one obtains
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({1}′{1}′′)⊗{31}= [({1}′{1}′′)⊗{3}] [({1}′{1}′′)⊗{1}]− [({1}′{1}′′)⊗{4}]
= [{3}′{3}′′+{21}′{21}′′+{13}′{13}′′] [{1}′{1}′′]− [{4}′{4}′′+{31}′{31}′′
+{22}′{22}′′+{212}′{212}′′+{14}′{14}′′] = {4}′{31}′′+{31}′{31}′′
+{31}′{22}′′+{31}′{212}′′+{22}′{212}′′+{212}′{212}′′
+{212}′{14}′′+xch terms

(20)

where ’xch terms’ means exchange {λ}′ by {λ}′′ when they
are different. Knowing ({1}′{1}′′)⊗{31} we use {22} =

{2}{2}−{4}−{31} and obtain,

({1}′{1}′′)⊗{22}= [({1}′{1}′′)⊗{2}] [({1}′{1}′′)⊗{2}]− [({1}′{1}′′)⊗{4}
+({1}′{1}′′)⊗{31}] = {4}′{22}′′+{31}′{31}′′+{31}′{212}′′+{22}′{22}′′
+{22}′{14}′′+{212}′{212}′′+xch terms .

(21)

From {212}= {2}{12}−{31} one obtains,

({1}′{1}′′)⊗{212}= [({1}′{1}′′)⊗{2}] [({1}′{1}′′)⊗{12}]− [({1}′{1}′′)⊗{31}]
= {4}′{212}′′+{31}′{31}′′+{31}′{22}′′+{31}′{212}′′+{31}′{14}′′+{22}{212}′′
+{212}′{212}′′+xch terms .

(22)

Finally, {14}= {13}{1}−{212} gives,

({1}′{1}′′)⊗{14}= [({1}′{1}′′)⊗{13}] [({1}′{1}′′)⊗{1}]− [({1}′{1}′′)⊗{212}]
= {4}′{14}′′+{31}′{212}′′+{22}′{22}′′+xch terms .

(23)

Now we order the RHS of Eqs. (19)-(23) in the order

{4}′{4}′′,{4}′{31}′′,{4}′{22}′′,{4}′{212}′′,{4}′{14}′′,{31}′{31}′′,{31}′{22}′′,
{31}′{212}′′,{31}′{14}′′,{22}′{22}′′,{22}′{212}′′,{22}′{14}′′,{212}′{212}′′,

{212}′{14}′′,{14}′{14}′′ .

The coefficients of the resulting Eqs.(19)-(23) are used as
entries in the columns of a table with columns labeled by
{4},{31},{22},{212},{14} and rows by the pairs {λ}′{λ}′′
given above. The rows in this table will give the coefficients
of the expansion of {λ}′×{λ}′′. Final results for n = 4 are
given in Table 1.

The methods I and II are implemented on a ma-
chine and inner products for n ≤ 20 are obtained. As
non-trivial examples, here below given are four exam-
ples for the inner products: (i) {5,4,2,12} × {5,4,2,12};
(ii) {11,5} × {6,4,3,2,1}; (iii) {15,3} × {10,5,3}; (iv)
{17,3}×{82,2,12}. The results are as follows:
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TABLE I: Inner products for S4 irreps. The entries in each row give
the coefficients of the inner products of the irreps listed in column
1.

{4} {31} {22} {212} {14}
{4}′{4}′′ 1
{4}′{31}′′ 1
{4}′{22}′′ 1
{4}′{212}′′ 1
{4}′{14}′′ 1
{31}′{31}′′ 1 1 1 1
{31}′{22}′′ 1 1
{31}′{212}′′ 1 1 1 1
{31}′{14}′′ 1
{22}′{22}′′ 1 1 1
{22}′{212}′′ 1 1
{22}′{14}′′ 1
{212}′{212}′′ 1 1 1 1
{212}′{14}′′ 1
{14}′{14}′′ 1

{5,4,2,12}×{5,4,2,12}= {13}+3{12,1}+10{11,2}+23{10,3}+41{9,4}+

49{8,5}+35{7,6}+9{11,12}+45{10,2,1}+121{9,3,1}+83{9,22}+

211{8,4,1}+276{8,3,2}+223{7,5,1}+461{7,4,2}+271{7,32}+99{62,1}+

385{6,5,2}+476{6,4,3}+250{52,3}+188{5,42}+22{10,13}+123{9,2,12}+

335{8,3,12}+288{8,22,1}+523{7,4,12}+911{7,3,2,1}+305{7,23}+

427{6,5,12}+1271{6,4,2,1}+845{6,32,1}+891{6,3,22}+629{52,2,1}+

1094{5,4,3,1}+943{5,4,22}+846{5,32,2}+248{43,1}+623{42,3,2}+

249{4,33}+41{9,14}+234{8,2,13}+589{7,3,13}+556{7,22,12}+

762{6,4,13}+1527{6,3,2,12}+673{6,23,1}+368{52,13}+1573{5,4,2,12}+

1175{5,32,12}+1580{5,3,22,1}+374{5,24}+842{42,3,12}+942{42,22,1}+

1097{4,32,2,1}+632{4,3,23}+187{34,1}+250{33,22}+60{8,15}+

322{7,2,14}+694{6,3,14}+698{6,22,13}+663{5,4,14}+1521{5,3,2,13}+

766{5,23,12}+882{42,2,13}+839{4,32,13}+1266{4,3,22,12}+426{4,24,1}+

472{33,2,12}+380{32,23,1}+96{3,25}+68{7,16}+319{6,2,15}+

546{5,3,15}+582{5,22,14}+296{42,15}+889{4,3,2,14}+511{4,23,13}+

262{33,14}+444{32,22,13}+212{3,24,12}+32{26,1}+59{6,17}+

224{5,2,16}+271{4,3,16}+314{4,22,15}+254{32,2,15}+191{3,23,14}+

42{25,13}+38{5,18}+107{4,2,17}+70{32,17}+101{3,22,16}+

31{24,15}+17{4,19}+32{3,2,18}+15{23,17}+5{3,110}+

5{22,19}+{2,111} . (24)
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{11,5}×{6,4,3,2,1}= {10,4,2}+{10,32}+{9,6,1}+5{9,5,2}+

7{9,4,3}+{8,7,1}+8{8,6,2}+17{8,5,3}+10{8,42}+4{72,2}+

16{7,6,3}+20{7,5,4}+11{62,4}+8{6,52}+{10,4,12}+

3{10,3,2,1}+{10,23}+5{9,5,12}+18{9,4,2,1}+13{9,32,1}+

13{9,3,22}+8{8,6,12}+38{8,5,2,1}+53{8,4,3,1}+43{8,4,22}+

36{8,32,2}+4{72,12}+34{7,6,2,1}+79{7,5,3,1}+59{7,5,22}+

49{7,42,1}+103{7,4,3,2}+29{7,33}+39{62,3,1}+28{62,22}+

62{6,5,4,1}+103{6,5,3,2}+72{6,42,2}+64{6,4,32}+13{53,1}
49{52,4,2}+36{52,32}+38{5,42,3}+5{44}+{10,3,13}
{10,22,12}+8{9,4,13}+18{9,3,2,12}+7{9,23,1}+18{8,5,13}+

61{8,4,2,12}+43{8,32,12}+53{8,3,22,1}+10{8,24}+16{7,6,13}+

84{7,5,2,12}+121{7,4,3,12}+121{7,4,22,1}+105{7,32,2,1}+

50{7,3,23}+40{62,2,12}+119{6,5,3,12}+111{6,5,22,1}+

79{6,42,12}+215{6,4,3,2,1}+81{6,4,23}+67{6,33,1}+77{6,32,22}+

53{52,4,12}+116{52,3,2,1}+41{52,23}+101{5,42,2,1}+99{5,4,32,1}+

106{5,4,3,22}+45{5,33,2}+31{43,3,1}+27{43,22}+35{42,32,2}+

8{4,34}+5{9,3,14}+5{9,22,13}+18{8,4,14}+39{8,3,2,13}
17{8,23,12}+25{7,5,14}+88{7,4,2,13}+63{7,32,13}+84{7,3,22,12}+

21{7,24,1}+12{62,14}+80{6,5,2,13}+124{6,4,3,13}+134{6,4,22,12}+

121{6,32,2,12}+74{6,3,23,1}+10{6,25}+66{52,3,13}+67{52,22,12}+

53{5,42,13}+162{5,4,3,2,12}+78{5,4,23,1}+56{5,33,12}+

80{5,32,22,1}+24{5,3,24}+39{43,2,12}+42{42,32,12}+56{42,3,22,1}+

13{42,24}+30{4,33,2,1}+16{4,32,23}+3{35,1}+3{34,22}+

{9,2,15}+8{8,3,15}+8{8,22,14}+18{7,4,15}+39{7,3,2,14}+

18{7,23,13}+16{6,5,15}+61{6,4,2,14}+45{6,32,14}+62{6,3,22,13}+

17{6,24,12}+30{52,2,14}+57{5,4,3,14}+64{5,4,22,13}+61{5,32,2,13}+

40{5,3,23,12}+7{5,25,1}+12{43,14}+40{42,3,2,13}+21{42,23,12}+

17{4,33,13}+25{4,32,22,12}+9{4,3,24,1}+{4,26}+4{34,2,12}+

2{33,23,1}+{8,2,16}+5{7,3,16}+5{7,22,15}+8{6,4,16}+18{6,3,2,15}+

8{6,23,14}+4{52,16}+18{5,4,2,15}+14{5,32,15}+19{5,3,22,14}+

5{5,24,13}+8{42,3,15}+9{42,22,14}+10{4,32,2,14}+6{4,3,23,13}+

{4,25,12}+{34,14}+{33,22,13}+{6,3,17}+{6,22,16}+

{5,4,17}+3{5,3,2,16}+{5,23,15}+{42,2,16}+{4,32,16}+{4,3,22,15} . (25)
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{15,3}×{10,5,3}= {13,5}+{12,6}+{11,7}+{10,8}+{13,4,1}+

{13,3,2}+3{12,5,1}+4{12,4,2}+2{12,32}+4{11,6,1}+8{11,5,2}+

7{11,4,3}+3{10,7,1}+8{10,6,2}+11{10,5,3}+5{10,42}+{9,8,1}+

4{9,7,2}+8{9,6,3}+7{9,5,4}+{82,2}+3{8,7,3}+4{8,6,4}+

2{8,52}+{72,4}+{7,6,5}+2{12,4,12}+2{12,3,2,1}+4{11,5,12}+

7{11,4,2,1}+4{11,32,1}+2{11,3,22}+4{10,6,12}+11{10,5,2,1}+

11{10,4,3,1}+5{10,4,22}+3{10,32,2}+2{9,7,12}+7{9,6,2,1}+

12{9,5,3,1}+5{9,5,22}+5{9,42,1}+6{9,4,3,2}+{9,33}+2{8,7,2,1}+

5{8,6,3,1}+2{8,6,22}+5{8,5,4,1}+4{8,5,3,2}+2{8,42,2}+{8,4,32}+

{72,3,1}+{7,6,4,1}+{7,6,3,2}+{7,52,1}+{7,5,4,2}+{7,5,32}+

{11,4,13}+{11,3,2,12}+2{10,5,13}+4{10,4,2,12}+2{10,32,12}+

{10,3,22,1}+{9,6,13}+4{9,5,2,12}+4{9,4,3,12}+2{9,4,22,1}+

{9,32,2,1}+{8,6,2,12}+2{8,5,3,12}+{8,5,22,1}+{8,42,12}+

{8,4,3,2,1}+{9,4,2,13} . (26)

{17,3}×{82,2,12}= {10,9,1}+2{10,8,2}+{10,7,3}+2{92,2}+

3{9,8,3}+{9,7,4}+{82,4}+{11,7,12}+{11,6,2,1}+3{10,8,12}+

5{10,7,2,1}+2{10,6,3,1}+2{10,6,22}+3{92,12}+10{9,8,2,1}+

8{9,7,3,1}+6{9,7,22}+2{9,6,4,1}+3{9,6,3,2}+7{82,3,1}+6{82,22}+

4{8,7,4,1}+7{8,7,3,2}+{8,6,5,1}+2{8,6,4,2}+{8,6,32}+{72,4,2}+

{72,32}+{11,6,13}+{11,5,2,12}+4{10,7,13}+4{10,6,2,12}+

{10,5,3,12}+{10,5,22,1}+7{9,8,13}+13{9,7,2,12}+6{9,6,3,12}+

5{9,6,22,1}+{9,5,4,12}+{9,5,3,2,1}+11{82,2,12}+12{8,7,3,12}+

11{8,7,22,1}+4{8,6,4,12}+6{8,6,3,2,1}+2{8,6,23}+{8,52,12}+

{8,5,4,2,1}+2{72,4,12}+5{72,3,2,1}+2{72,23}+{7,6,4,2,1}+

5{9,6,2,13}+{9,5,3,13}+{9,5,22,12}+5{82,14}+11{8,7,2,13}+

5{8,6,3,13}+4{8,6,22,12}+{8,5,4,13}+{8,5,3,2,12}+4{72,3,13}+

5{72,22,12}+{7,6,4,13}+2{7,6,3,2,12}+{7,6,23,1}+{9,6,15}+

3{8,7,15}+2{8,6,2,14}+3{72,2,14}+{7,6,3,14}+{7,6,22,13}+

{72,16} . (27)

In addition, Table 2 gives the number of terms and the
highest multiplicities for some selected inner products with
n ≤ 20. As seen from Eqs. (24)-(27) and Table 2, for
n > 10 the number of terms in the inner products start be-
coming large and also the multiplicities big. For exam-
ple, as seen from Eq. (24), for {11,5}×{6,4,3,2,1} there
are 164 terms and the multiplicities for the Schur func-
tions {6,4,3,2,1}, {6,5,22,1}, {7,5,3,1}, {5,4,23,1} and
{42,3,2,13} are 215, 111, 79, 78 and 40 respectively. Sim-
ilarly in {5,4,2,12}× {5,4,2,12} there are 100 terms and

highest multiplicity is 1580. Let us mention that full tables
for n ≤ 20 are available from download in the homepage of
one of the authors (www.ift.unesp.br/users/jaca)

5. CONCLUSIONS

In this paper discussed are two methods (called I and
II in Sections II and III respectively) for calculating inner
products of Schur functions in terms of outer products and
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TABLE II: Highest multiplicities for selected inner products. Listed in column 2 are the number of terms in the inner product, in column 3
the highest multiplicity and in column 4 the term with this multiplicity.

inner product no. terms highest mult. term with highest mult.
{4,3,2,1}×{4,3,2,1} 42 117 {4,3,2,1}
{5,3,2,1}×{5,3,2,1} 55 312 {5,3,2,1}
{5,3,2,12}×{5,3,2,12} 77 945 {5,3,2,12}
{6,4,2,12}×{6,4,2,12} 133 3985 {6,4,2,12}
{5,4,3,2,1}×{5,4,3,2,1} 176 18269 {5,4,3,2,1}
{6,4,3,2,1}×{6,4,3,2,1} 239 72973 {6,4,3,2,1}
{6,4,3,2,12}×{6,4,3,2,12} 297 324133 {6,4,3,2,12}
{7,4,3,2,12}×{7,4,3,2,12} 384 684784 {7,4,3,2,12}
{7,5,3,2,12}×{7,5,3,2,12} 488 2274958 {7,5,3,2,12}
{8,6,4,12}×{7,5,3,22,1} 613 17055035 {6,5,4,2,13}

plethysms. One of these (II) is derived from a recent anal-
ysis of the SO(8) proton-neutron pairing model of atomic
nuclei [1]. It is useful to mention that in general method I
is preferable to method II because it needs only outer prod-
ucts (hence more efficient computationally) while method II
needs plethysms. However we could use method II as we
have a great bank of plethysms [16]. Also method II, as dis-
cussed in [1], can give in many situations analytical results.
Similarly method I can be used to obtain analytical results
for inner products involving Sn irreps with small number of
parts as for example those given in Eqs. (7-167)-(7-170)
in [3]. We have generated tabulations for inner products of
Schur functions of degree n ≤ 20 and this represents a ma-
jor advance since the tabulations by James and Kerber [22]
and Wybourne [5] for n ≤ 9. Thus, with our previous work
[10, 11, 14] we have generated tabulations for plethysms [16]
and now with the present paper we have tabulations for inner

products. Finally let us mention that the numerical results
for large n, giving large multiplicities (see Table 2), can be
useful for the following: (i) to test formulas derived for sim-
ple class of irreps (for example references [3],[17]); (ii) to
examine the systematics of the multiplicities, as to see if it
is possible to derive formulas for some other class of irreps;
(iii) to examine the possibility of identifying some statisti-
cal structure for the multiplicities. They are also useful for
developing and testing statistical models for these and this
belongs to the emerging topic of statistical group theory. See
[19–21] for some papers on this subject.

For large N the tables are very long and therefore unprac-
tical for hand calculations. Their use is for computer calcula-
tion, when the data are easily obtained from the files stored in
the computer memory. For this reason they are available, in
computer form, for download in the already mentioned web
address, together with programs for handling them.
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