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Phenomenological Model for the metal-insulator transition in two dimensions
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The resistivity measured in two-dimensional MOSFET geometry is modeled by considering that the resistivity
is a function of the temperature and the areal density of charges (electrons or holes). The logistics differential
equation is proposed for the behaviour of the resistivity as a function of temperature, so that the two phases are
obtained in a natural manner. At low temperatures, the Drude model behaviour is assumed for the resistivity
as a function of density. Two characteristics then follow in a natural manner: The existance of a characteristic
temperature for resistivity as a function of temperature, and the symmetry relationship. If the magnetic field is
incorporated into the Drude model, reasonable results are obtained for the qualitative behaviour of resistivity for
weak fields.
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I. INTRODUCTION

The decade of the 90s saw the emergence of very high
mobility MOSFET devices, at temperatures of a few degrees
Kelvin. A spate of experimental results followed on eas-
ily measurable quantities such as sample resistivity. This
brought the surprise of a metalic as well as insulating phases,
separated by a critical value of the resistivity of the order of
3h
e2 . [1–3].

This was a novelty for theorists, who expected only an
insulating phase, due to the prediction of all states being lo-
calized in two dimensions. Thereafter followed some work
trying to include interactions into the picture.[4, 5]. How-
ever, the general picture today is that microscopic models
are so far unable to account for the overall behaviour, in all
aspects of the problem.[6]

Since one is not ready yet to microscopically model the
situation, with any degree of success, it is valid to resort to
intermediate phenomenological models. It is in this spirit
that the Logistics differential equation is proposed for the
problem.

The merits advocated for this provisional model, the Lo-
gistics differential equation supplemented by the use of the
Drude model at low temperatures, are the prediction of a
characteristic temperature for resistivity behaviour as a func-
tion of temperature, and a proof of the symmetry relation-
ship. Additionally, reasonable results are obtained for weak
magnetic fields, used in connection with the Drude model.

In particular, it seemed to the author, that at this stage of
development, the nonlinear aspects could only arise if this
type of method is taken. It should be realized, that since this
is a new form of analysis, and therefore the usual scaling
method is not applied. However scaling ideas are implicit
in the Logistics equation, and there is an effective reference
temperature.

II. RESISTIVITY MODEL

If ρ(T,n) is the resistivity, we take as the one of the central

equations, the differential equation

dρ

dT
= α(ρ0 −ρ)ρ (1)

α is here a constant with respect to the temperature, but pos-
sible dependent on the areal density n.

This is known as the Logistics differential equation[7, 8],
of often use in biology or economics, but very seldomly in
Physics. It describes an inherently nonlinear situation, here
two phases. The insulating phase occurrs here for ρ > ρ0,
such that the derivative of ρ with respect to temperature T
is negative. The unexpected metalic phase, for which the
derivative of ρ with respect to temperature T is positive, oc-
curs for a resistivity lower than the critical value ρ0. Here n
is the areal density of charges (electrons or holes).

The nonlinear, autonomous differential equation (1) is eas-
ily separated and integrated with respect to temperature. For
that reason we must set some initial condition at some fixed
temperature. That is why we take the Drude form at zero
temperature T = 0, so that

ρ(T = 0,n) =
m

ne2τ
(2)

Here τ is a scattering time, and e the electric charge. This
gives a plane resistivity inversely proportional to the areal
charge. While experiments do not reach T = 0, the low tem-
perature data indeed suggests that ρ behaves inversely with
n.[9] For example the insulating phase is then associated with
low values of areal density, and there is a critical density nC
separating the two phases.

The result of the integration is that, with the definition β =
ρ(0)

ρ(T=0,n) ,

ρ

ρ0
=

1
1+(β−1)exp(− T

T0
)

(3)

where

T0 =
1

αρ0
(4)

Let us take now n = nC + ∆n, and write out β in more
detail, when we are near the transition, that is nC >> ∆n in
absolute value. It turns out that β−1 is ∆n

nC
. Finally we will
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find that ρ(T,nC+∆n)
ρ0

ρ(T,nC−∆n)
ρ0

is very close to 1, and this is
the statement of the symmetry relationship.[10, 11]

That the resistivity ratio is a function of T
T0

, where T0 is
possibly a function of n, is also quite consistent with the
usual scaling idea.

III. MAGNETORESISTANCE

The effect of a magnetic field in this case has been seen
to be large at low temperatures, and has the effect of re-
moving the metalic phase, transforming it into the insulating
phase.[12, 13] At low temperatures only slight differences
of carrier density cause large differences in the resistivity,
due to the proximity of the metal-insulator transition. We
take the case of a magnetic field perpendicular to the plane
of the charge motion. However, positive magnetoresistance
has only been found very near the transition, being negative
elsewhere.

The appropriate modification, for weak fields, is in the
Drude model, to have

ρ(T = 0,n) =
m(1+ω2τ2)

ne2τ
(5)

where ω = eB
m is the Cyclotron frequency due to the magnetic

field B. (Compare with equation (2).) For a Silicon MOSFET
the effective mass m is about 0.19 of the actual electron mass.

IV. DISCUSSION

It is thought that since the electronic correlations dominate
the problem, with an rS of about 10, which is the ration of the
electron-electron energy, divided by Fermi energy, that this
is the reason for which single electron models should not
work well. The microscopic scenario is far from understood,
and the model is merely intended as an intermediate working
scenario, until true microscopic understanding emerges.

A few facts are not understandable, within a purely in-
teracting electron model. (1) Why the Drude model should
seem at least qualitatively true at low temperatures. (2) A
lower level of electron density leads to stronger correlations,

but this gives us the insulating phase, rather than the met-
alic phase. It is then hard to understand the metalic phase as
directly a consequence of correlations.

As opposed to purely interacting electrons, single
electrons moving around in the presence of traps is
alternative.[14, 15] At low density, such electrons cannot
elude the traps, and the system behaves as an insulator. For
higher electron density one is able to have some electrons
eluding the traps, and has the metalic phase. However, one
is still very far from being able to predict the detail from just
this. Probably at this stage, the most promising line of attack
is to combine disorder (i.e. traps) with the effect of interac-
tions, as initiated by Finkelstein and Castellani. The reason
then that the effect of correlations may be ultra important, is
the effective very low concentration of charges, in excess or
in deficit of the critical density, very near the transition. It
would then be ∆n, and not n itself playing the role of car-
rier concentration, this giving the non-Fermi, Wigner type
behaviour for a certain subset of carriers.

To say why a Drude model could hold at very low temper-
atures, we recall that in this situation one probably deals in
collective modes, for which a quasiparticle image may apply.
Experiments do not extrapolate to very low temperature, and
one cannot say for sure what the behaviour really is.

What differentiates this work, is that it implies a strong
role for the low temperature Drude model, with the theoret-
ical prediction of a finite resistivity for T = 0, and gives a
sigmoid form for the overall function in terms of the ratio
T/T0. However it does not calculate the detail of the be-
haviour of T0 as a function of n, which has been the subject
of experimental measurments. Within usual scaling, T0 is
often proportional to |∆n/nc|zν.

On the other hand the usual phenomenological scaling
fits are meant for an intermediate temperature range, and
say nothing about zero temperature behaviour. What is also
eventually wrong is that the resistivity at the critical density
does eventually depend on T , for high enough temperatures,
and is not temperature independent, except within the inter-
mediate temperature range one usually deals with. This may
probably be corrected when phonons are brought into a mi-
croscopic model.

The present phenomenological model gives resistivity
curves, bounded above and below by a separatrix, which in
this model is temperature independent. The symmetry rela-
tionship is a natural consequence.
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