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Heisenberg spin textures on a cylinder with topological defects
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The present work aims to study equilibrium configurations of spins on a cylinder with topological defects
such as screw dislocation and deficit angle. By making use of elliptic-f expansion method, which in turn utilizes
the Jacobi elliptic functions, we obtain exact solutions of the nonlinear sigma model in this geometry. We have
significant changes in the qualitative behavior of the solutions due to the presence of the parameter k of screw
dislocation. In particular, the behavior of soliton-like solutions, characteristic of a cylinder without dislocation,
was not found in the model here proposed.
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The nonlinear sigma model is the continuous limit of
Heisenberg’s hamiltonian for spins and has gained interest
recently. It allows the study of equilibrium configurations of
spins on non-trivial geometries such as cylinders, tori, ellip-
soids, surfaces with negative curvature and so on [1–4]. The
study of the stability of spin configurations and geometric
frustration on different kinds of geometry are the two effects
most explored with this model [5–8]. Defects such as punc-
tures and impurities in the structure have also played an im-
portant role related to spin topological textures. In particular,
we have introduced topological defects in an ideal cylinder
such as screw dislocation. This defect is obtained by produc-
ing a longitudinal displacement in the structure, distorting
the lattice helically. In this way we can study how the spin
textures are modified in relation to the simple cylinder with-
out these defects.

Connections with fundamental areas and important tech-
nological applications can also be made: the “similarity”
between the nonlinear sigma model in 2D and Yang-Mills
in (3+1)D [9]; out-of-plane vortex (its core is similar to the
central region of a soliton of spins). These out-of-plane vor-
tex are important in several mechanisms of magnetic logic
(MRAM), ultra-precise magnetic sensors, magnetic record-
ing, etc. [10, 11]

The Heisenberg model takes into account only the inter-
action of each spin of the lattice with its first neighbors. By
applying an external magnetic field, the Hamiltonian of the

system is then

Ho = −J
2 ∑
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3
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i Ba. (1)

Here hab is the 3×3 dimensionless interaction law matrix
(metric of the internal space of spins), J is the exchange en-
ergy, and Sa

i denotes the a-th component of the spin of the
i-th cell of the lattice, while < i, j > includes in the sum only
the first neighbor cells j of each cell i. For isotropic inter-
action we have hab = diag(1,1,1). The parameter g is the
gyromagnetic factor of the spins in the material medium, µ
is their magnetic momentum and Ba is the a-th component
of the external magnetic field. Eq. (1) is the hamiltonian for
J > 0, describing the ferromagnetic case. In the antiferro-
magnetic case (J < 0), the spin vector �S must be replaced by
the Néel vector�η = 1

2 (�S1 − �S2), where the index distinguish
two distinct sub-lattices in the more simple case.

For sufficiently small distances between neighbor cells
(and large spins) we can pass to the continuous limit, retain-
ing only up to second order terms in the Taylor expansion in
this parameter. In this limit, the hamiltonian for a spin lattice
with a non-trivial geometry is then given by the nonlinear
sigma model as
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Here gαβ is the metric of the surface and gαβ is its inverse,√|g|dx1dx2 is the infinitesimal area element, x1 and x2 are
coordinates which describe the surface, g = det[gαβ], ρ2

B =
2J

gµB and B is the magnitude of the external magnetic field.

In our case, the spins lie on an infinite cylinder of radius
ρo, with deficit angle 2π(1− c) and screw dislocation k [12–
15]. This 2-dimensional manifold is characterized by the line
element written in cylindrical coordinates as

ds2 = (c2ρ2
o + k2)dϕ2 +2kdϕdz+dz2. (3)

If c = 1 and k = 0 then clearly it includes the case of
a typical cylinder. In order to achieve the geometry (3),
we can remove an angular sector and make a longitudi-
nal dislocation from the flat surface (with metric given by
ds2 = ρ2

odθ2 +dZ2), and then identify the points at the edges
as (ρo,θ,Z) ↔ (ρo,θ+2πc,Z +2πk). With new coordinates
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ϕ ≡ θ/c and z ≡ Z − (k/c)θ, the line element takes the
form of Eq. (3) while the usual identification (ρo,ϕ,z) ↔
(ρo,ϕ+2π,z) must be observed.

The equations of the model can be obtained by writing
the vector �S = (sinΘcosΦ,sinΘcosΦ,cosΘ) in spherical
coordinates. By applying the principle of least action for
the hamiltonian (2) on the geometry (3) and by making
Ba = (0,0,±B) we obtain two highly nonlinear partial differ-
ential equations. We are searching symmetric solutions, the
generalization of cylindrically symmetric ones in the usual
case (say with c = 1 and k = 0). Therefore, we make the
supposition Φ(ϕ,z) = ϕ to yield

∂2Θ
∂z2 = αsinΘ+βsin2Θ (4)

e

∂Θ
∂ϕ

= k
∂Θ
∂z

, (5)

respectively. These are the Double Sine-Gordon (DSG) and
helical equations, where α = ± 1

ρ2
B

and β = 1
2c2ρ2

o
.

There is a large number of solutions to the DSG (4).
However, we need to seek new solutions in order to com-
ply with the boundary conditions Θ(ϕ,z)≡ Θ(ϕ+2π,z) and
Φ(ϕ,z) ≡ Φ(ϕ+2π,z). These boundary conditions are nec-
essary in order to have single-valued spin vector and also to
satisfy the helical equation (5). Some methods have been
proposed in order to solve nonlinear differential equations.
For instance, the homogeneous balancement method [16],
the method of expansion in hyperbolic functions [17–19],
the method of test function [20, 21], the method of nonlinear
transformation [22, 23], and sine-cosine method [24]. How-
ever, these methods yield only the solutions of solitary waves
and shock waves. These methods do not yield periodic solu-
tions of nonlinear equations. Although the method of expan-
sion in Jacobi elliptic functions includes periodic solutions,
we use here a more general method for solving our system
of equations [25, 26]. This method has been known as the f-
expansion method [27, 28]. A few stable solutions have been
found in terms of the Jacobi elliptic functions [29]. A subset
of them reads as follows

Θ(ϕ,z) = 2arctan

⎧⎪⎨
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⎤
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Here m ∈ (0,1) is the module of the Jacobi elliptic func-
tion cs. The function cs is the ratio of sn and cn, which re-
spectively are the Jacobi elliptic sine and cosine functions
[31]. The value for m is found by equaling the periodicity
of the Jacobi elliptic functions Ω(m) = 4

R 1
0

dt√
(1−t2)(1−m2t2)

,

which is itself an elliptic function of first kind, with the
periodicity required by the boundary conditions T (m) =

2πk

{√
2β(2−m2)+

√
4β2(2−m2)2+(α2−4β2)m4

m4

}
. In Fig. 1 we

depict schematically the spin field on the cylinder according
to the solution (6) due only to the interactions among spins
with α = 0.

For the usual cylinder the equilibrium configuration with
the lowest energy for the first class of homotopy is a π-soliton
along the whole cylinder [30]. In our case, we see clearly
a multi-π-soliton structure. Cylindrical symmetry is shown
there while we have a helical configuration around the cylin-
der here. This difference is associated to the lattice structure
which was longitudinally dislocated.

We discuss now the main effects due to the screw dislo-
cation and the deficit angle (relative to a simple cylinder).
The screw dislocation k eliminates the state of single soli-
tons, typical of a cylinder without this defect, allowing only

FIG. 1: Schematic representation of the spin distribution on the
cylinder according to solutions (6). We depicted the solution for the
case without magnetic field considering only the interactions among
spins. The cylinder and the spin periodic structure are presented
in different scales. The spin configuration should be seen as the
amplification from a small flat region of the cylinder. There is a
dislocated spin configuration, which is a helical configuration along
the whole cylinder.

periodic states. It introduces periodic boundary conditions in
order to make the spin vector single-valued. These boundary
conditions must be satisfied for all solutions. Therefore, the
solutions need also to be periodic. This is a property of this



Brazilian Journal of Physics, vol. 39, no. 4, December, 2009 713

defect. In all other base manifold which has solutions with
axial symmetry, a screw dislocation could similarly elimi-
nate the state of a single soliton from the system. On the
other hand, the deficit angle introduces a possibility to scale
the radius of the cylinder in such a way that a simple cylin-
der and a cylinder with conicity may have the same magnetic
properties due to the spin textures. This is shown clearly in
Eq. (3). The parameter c of conicity is a multiplicative factor
of the radius ρo of the cylinder.

The graphics from Figs. 2 and 3 illustrate the behavior of
the system as function of the magnetic field for two opposite
directions along the whole cylinder.
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FIG. 2: Solid, dotted and dashed lines represent the qualitative be-
havior of the function Θ from Eq. (6) for α = 0 , 4 , 14 with β = 1
and k = 1 in the range 0 ≤ z + kϕ ≤ 7, respectively. It is clear the
displacement of the domain-walls and the appearance of a saturated
region by increasing the magnetic field.
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FIG. 3: The same as Fig. 2 for α = 0, -4, -14.

We see that the spin vector periodically assumes all values
from −π to π while z + kϕ grows. In each period there is
a confined 2π-soliton, characterizing a multi-solitonic state
along the whole cylinder. By increasing the magnetic field
we dislocate the spin vectors in such a way that we may
configure two different regions. A saturation region with
Θ = 0[π] and a region with Θ changing in the range (−π,π).
We can associate the saturation region to the magnetic do-
mains separated by domain-walls, which are the 2π-solitons

occurring in the region where Θ varies.
Since the solution (6) satisfies both the DSG (4) and the

helical equation (5), the exchange energy density is given by

H = J Θ2
z . (7)

Here Θz is the partial derivative of the solution (6) with
respect to the variable z. From Eq. (7), Figs. 2 and 3 we see
that the magnetic energy density concentrates in the region
of the domain-walls while the magnetic field increases. The
function Θz increases rapidly in this region and vanishes in
the saturated region.

The magnitude of the magnetic field does not need to be
homogeneous along the whole cylinder. Therefore, we may
apply, starting from a configuration without magnetic field
with α = 0, a local magnetic field into a region and reverse
the local magnetic field into another region. Then we solve
Eqs. (4) and (5) for this configuration of different magnetic
fields in order to obtain the same solution form (6) in these
regions but with different magnetic field. This local magnetic
field may be a mechanism for the magnetic recording since
it can produce two distinct states with Θ = 0[π] isolated by
π-soliton-like domain-walls.

According to solution (6) for each step 2πk the Θ compo-
nent of the spin vector undertakes a rotation of 2π rad, at least
once, to fulfill the boundary conditions. After performing a
full 2π rad turn around the cylinder, covering 2πρo, the solu-
tion also undertakes this full rotation. For a nanotube we can
make ρo ≈ 10−9 m, k ≈ 10−9 m and c = 1 [32, 33]. If each
domain is a byte, then we have at least one byte in the area
4π2ρok ≈ 10−13 in2. Thus the density of magnetic recording
may reach beyond the order of Terabytes/in2, which is much
larger than the current capacity of about Gigabytes/in2. The
smaller the cylinder’s radius and the dislocation, the greater
will be the density of bytes.

Our periodic solutions with magnetic field does not fulfill
the self-dual equations of Bogomol’nyi, obtained from our
hamiltonian and given by

∂Θ
∂z

= ±βsinΘ
(

∂Φ
∂ϕ

− k
∂Φ
∂z

)
, (8)

β
(

∂Θ
∂ϕ

− k
∂Θ
∂z

)
= ∓sinΘ

∂Φ
∂z

. (9)

This would be necessary in order to minimize the energy in
each class of homotopy to 8πJ|Q|, where Q is the topologi-
cal charge on a finite cylindrical section, causing geometrical
frustration. This feature is due to the periodic solution caused
by the screw-dislocation and the presence of the magnetic
length ρB. Since these equations are not fulfilled, the energy
H(> 8πJ|Q|) in this cylindrical section may be minimized
by the deformation of an elastic cylinder whose constraint
ρ(z,ϕ) = ρo may be removed along the whole cylinder. The
regions where the domain-walls are localized are deformed
perpendicularly to the axis of the elastic cylinder. It is clear
that these deformations may also change the solutions in or-
der to eliminate the geometrical frustration [34].

From Figs. 2 and 3 it can be concluded that the ho-
mogeneous variation of the magnetic field along the whole
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cylinder (not local) dislocates synchronized with the domain-
walls. This global variation of the magnetic field may pro-
duce a spatial movement of these deformations causing a
peristaltic state [35]. This movement could be useful for
the transport of molecules or nano-structures and also for the
production of mechanic energy.

The known case k = 0 of spins in a nondislocated cylinder
cannot be found from the limit of our solution (6) as k → 0.
This solution diverges when trying to obtain a single-soliton.
This would occur if it were a hyperbolic function (m→ 1). If
the parameter k of screw dislocation vanishes, then our solu-
tion would no longer depend of the variable ϕ. The periodic
boundary conditions would then be naturally satisfied, even
if the solution were not periodic. The feature of this work is
that soliton-like localized solutions naturally occur for k = 0,
but are absent for k 
= 0 as states with the lowest energy.

It is known in the science of materials how discordances
(screw dislocation) alter properties like hardness. We have
seen here how this defect also changes significantly its mag-

netic properties. In particular, discordances would be related
to the formation of magnetic domain and effects of geomet-
rical frustration. This work may be of particular interest in
nanotechnology. Only recently began the synthesis of nan-
otubes and nanowires. On nanotubes and nanowires it may
be possible the deposition of ferromagnetic mono-coatings
with screw dislocation. The spin textures discussed here
could play an important role in technological applications
such as the construction of magnetic recording devices. They
may also be useful in order to understand phenomena in bi-
ological systems, if organic microtubules with some kind of
ferromagnetic magnetization can be found in nature. The
method utilized here can also be important for others physi-
cal problems.
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