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We extend a previously theory for the interspecific allometric scaling developed in a d +1-dimensional space
of metabolic states. The time, which is characteristic of all biological processes, is included as an extra di-
mension to d biological lengths. The different metabolic rates, such as basal (BMR) and maximum (MMR),
are described by supposing that the biological lengths and time are related by different transport processes of
energy and mass. We consider that the metabolic rates of animals are controlled by three main transport pro-
cesses: convection, diffusion and anomalous diffusion. Different transport mechanisms are related to different
metabolic states, with its own values for allometric exponents. In d = 3, we obtain that the exponent b of BMR
is b = 0.71, and that the aerobic sustained MMR upper value of the exponent is b = 0.86 (best empirical values
for mammals: b = 0.69(2) and b = 0.87(3)). The 3/4-law appears as an upper limit of BMR. The MMR scaling
in different conditions, other exponents related to BMR and MMR, and the metabolism of unicellular organisms
are also discussed.
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I. INTRODUCTION

Several biological quantities change with organism size
according to particular rules [1–3]. It is common to be-
lieve that these rules are related with the euclidean geom-
etry. However, in many cases the geometric pattern is not
observed because physical constraints also limit how much
an organism can be modified to cope with changes in scal-
ing. Recently, considerable effort has been invested to un-
derstand the scaling of some of these variables under cer-
tain physical and geometrical constraints: the dimensions of
long bones [4, 5], the basal metabolic rate (BMR) [6–11],
the maximum metabolic rate (MMR) [11–13] and the cost in
food webs [14]. In this paper we are interested in the scal-
ing of metabolic rate, which is the most studied variable in
traditional allometry.

It is accepted and empirically tested that the metabolic rate
B and the body mass M of almost all organisms are connected
by a power law relationship B = aMb, where a is a constant
and b is the scaling exponent [1–3, 15]. The origin and the
universality of the scaling exponent of metabolic rates is a
subject of great controversies and there are several debates
in the literature [16–22]. In a recent paper [11], we and a
colleague proposed an unified theory for the interspecific al-
lometric scaling of metabolism. It was developed in a d + 1
dimensional space of metabolic states of organisms (d bio-
logical lengths and a physiological time). It is natural to in-
clude explicitly an extra temporal dimension in the analysis
of allometric scaling because all biological process are time
dependent. Moreover, in some cases this approach has pro-
duced a simple explanation for the problem with satisfactory
results [11, 23–25]. In that paper [11], the authors supposed
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that each metabolic rate of organisms is characterized manly
by one of two transport processes, namely, convection and
diffusion. In this paper we consider the general case in which
a metabolic rate of 3-dimensional organisms can be charac-
terized by one, two or three of the transport processes: con-
vection, diffusion and anomalous diffusion. It is well known,
that the transport in large distances is done by convection and
the transport in small distances is done by diffusion. A clas-
sical example is the oxygen transported from the heart until
the capillaries by convection and from the capillaries to the
cell by diffusion. However, the mechanism of transport of
large molecules inside a cell and between the cells of a tis-
sue is still unknown and in many cases is suggested to be an
anomalous diffusion. The three kinds of transport imply also
we must now deal with different characteristic times. But
they are all related if the network delivery is optimal.

This work is organized as follows. We discuss the hy-
potheses of da Silva, Barbosa and Silva (SBS) [11] and
present a new one, and derive the main equations in Sec.
II. In Sec. III we re-derive the scenarios for BMR of SBS
work in our present context as limiting cases. The BMR of
mammals and birds is studied in Sec. IV and the scaling of
capillaries and aorta are obtained in Sec. V. The approach to
describe the MMR of endotherms is presented in Sec. VI and
the exponents of aorta and capillaries in the MMR conditions
are discussed in Sec. VII. The metabolism of unicellular or-
ganisms is discussed in Sec. VIII. We summarize our results
in the last section.

II. HYPOTHESES AND MAIN RELATIONS

Following SBS [11] we use the mass density
ρd+1(L1,L2, . . . ,Ld ,τ) (mass per unit volume and unit
time) and the energy density σd+1(L1,L2, . . . ,Ld ,τ) (avail-
able energy per unit volume and unit time) to characterize
the metabolic state of organisms. The use of energy density
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is justified because in the metabolic processes ATP cannot
be supplied from outside but must be synthesized within the
organism (within the cells). The efficient use of substrates
by cells depends on the presence of an adequate quantity of
mitochondria as power house [26] and secondly on adequate
supply of fuels and oxygen. The fuels, which are directly
related to the available energy E, are contained inside the
organism but the oxygen flux is supplied by outside the
organism. So, energy content is important to characterize
the state of an organism. This can also be illustrated with
the MMR situation. The animal runs until it has no more
available energy. Then it falls exhausted.

The first and second hypotheses are that natural selec-
tion enforces the constraints of scaling-invariant (indepen-
dent of body mass) ρd+1 and σd+1, during evolution. The
third hypothesis is that the scaling of the metabolic states is
determined by the dominant dynamical transport processes
of nutrients. Moreover, these processes are characterized
by scaling-invariant quantities (diffusion coefficient, average
velocity, etc.).

Although we have d biological lengths, each one with its
characteristic time ti (i = 1,2 . . . ,d), we suppose that only
one time τ is relevant to describe the metabolic states. It
means that the resources rates of all these processes must be
matched ((1/t1) ∝ (1/t2) . . .(1/td) ∝ (1/τ)) (symmorphosis
principle proposed by Taylor and Weibel [12]). Therefore
we are considering optimal transportation networks (the new
fourth hypothesis).

It follows from the second hypothesis that E = σd+1 τVd .
Here, we have that τVd is the (d + 1)-volume and Vd =
L1L2 . . .Ld . Using the power definition (P = dE/dt), the
energy can be written in terms of the metabolic rate B, the
power averaged over the time scale τ, as E = Bτ. Therefore
from the first and second hypotheses we obtain an equation
for the organism’s mass, namely

M = ρd+1 τVd , (1)

and the following expression for the metabolic rate

B = σd+1 Vd . (2)

Note that Eqs. (1) and (2) are valid for all metabolic
regimes. Different metabolic scaling regimes will appear be-
cause there are different ways to transport nutrients.

III. LIMIT SCENARIOS FOR THE BASAL METABOLIC
SCALING

III.1. The BMR-3 scenario

We discuss in this section some limit cases for the basal
metabolic rate scaling. Let us first study the BMR-3 sce-
nario, a lower bound for all metabolic scaling. We suppose
that all the transportation occurs via diffusion, implying that

Li = Dit
1/2
i , with i = 1, 2 . . . , d ,

where D2
i are the scaling-invariant diffusion coefficients and

ti are characteristic times. Since the resource supply rates

must be matched (1/t1 ∝ 1/t2 . . .1/td ∝ 1/τ), we have only
one time scale (τ) and only one relevant length, namely

L1 ∝ L2 ∝ . . . ∝ Ld ∝ L .

Note that the biological volume is given by Vd ∝ Ld . Since
Li = Diτ

1/2, we obtain from Eq. (1) that τ ∝ M2/(d+2).
This relation furnishes how L depends on M, namely L ∝

M1/(d+2), and we can use Eq. (2) to obtain that

L ∝ M
1

2+d ,

τ ∝ M
2

2+d ,

B ∝ M
d

2+d .

In d = 3, the metabolic exponent is b = 3/5. Since these
transportation processes are the slowest ones, this value is
a lower bound for the exponent b for all metabolic situa-
tions. Note that this scenario can, in principle, describe
the metabolic rate of very small organisms because diffusion
over short distances is fast.

III.2. The BMR-2 scenario

For larger organisms, transport by convection is utilized
on large length scales because diffusion is slow. In the car-
diovascular system of mammals, for example, blood circu-
lates in a ballistic regime until the capillaries, where diffu-
sion plays the main role. Therefore we consider first that the
BMR is driven by ballistic transport, namely

L = v0τ ,

where the velocity v0 is scaling-invariant. Then we must
taken in account the other metabolic steps. In a “cylin-
drical” symmetry we have L1 ∝ L = v0t1 (ballistic term)
and d− 1 lengths Ri = Dit

1/2
i (diffusion terms). v0 and all

Di (i = 2,3, . . . ,d) are scaling-invariant. Since the delivery
of the network is optimal (t1 ∝ t2 . . . ∝ τ), it follows that
Ri ∝ Diτ

1/2. From Eq. (1) we obtain that τ ∝ M2/(3+d),
implying that L1 ∝ M2/(3+d) and Ri ∝ M1/(3+d). Since the
biological volume is Vd ∝ Rd−1L1, we obtain from Eq. (2)
that

L1 ∝ τ ∝ M
2

3+d ,

R ∝ M
1

3+d ,

B ∝ M
1+d
3+d .

Then in d = 3, we obtain the 2/3 law. Note that this result
was obtained without mention of the area/volume ratio.

III.3. The BMR-1 scenario

In this scenario all metabolic relevant lengths are related
to the ballistic transport, namely Li = viti (i = 1, . . . ,d). Us-
ing that all characteristic times are proportional to τ (fourth
hypothesis), we find that Li ∝ τ. In other words, there is only
a single metabolic relevant length L ∝ v0τ and a single time
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τ, both related to the ballistic transport. This scenario repre-
sents an upper bound for BMR. Since that Vd ∝ Ld , we find
from Eq. (2)that

L ∝ τ ∝ M
1

d+1 ,

B ∝ M
d

d+1 .

Therefore we find the 3/4-law for d = 3, namely B ∝ M3/4.
This upper bound value is the same as those of West, Brown
and Enquist [6] and Banavar et al. [7, 8]. It is worth mention-
ing that Demetrius [10] found that the b exponent of BMR
should be in the interval [2/3,3/4]. His work is based in the
integration of the chemiosmotic theory of energy transduc-
tion with the methods of quantum statistics.

IV. BMR OF MAMMALS AND BIRDS

From now on we use d = 3 because cells and organisms
are three dimensional objects. We also use a single time
(τ) for all transportation processes because all characteristic
times are proportional to it. In order to study the BMR scal-
ing of mammals and birds, let us discuss the nutrient trans-
port inside an eukaryotic cell and between different cells of a
tissue. The first biological length L1 is related to the transport
of oxygen and small molecules by diffusion, namely

L1 = Dτ
1/2 .

On the other hand, large molecules can also be trapped in
vesicles by macropinocytoses and pinocytoses and trans-
ported in direction of the nucleus. Note that a vesicle can
carry a relatively large quantity of fuel. Although the exact
description of vesicular transport is still unknown, we sup-
pose it as an anomalous diffusion process [27, 28], namely

L2 = Dxτ
(1/2)+x .

The normal diffusion and ballistic transport processes occur
when x = 0 and x = 1/2, respectively. This description is
supported by works [29, 30] about the movement of engulfed
particles on eukaryotic cells. Beads placed on the peripheral
lamella of giant human fibroblasts are engulfed into the cy-
toplasm and move in direction of the nuclear region. In the
lamella region the beads move ballistically with an average
velocity of v ≈ 1 µm/min (L ∝ vt). In the perinuclear re-
gion they move randomly within a restricted space and the
authors have determined that L ∝ t3/4. Moreover, in a recent
work of Neto and Mesquita [31] of optical microscopy, the
authors conclude that the movement of a macro pinosome in-
side a macrophage is ballistic (L ∝ vt). The average velocity
v varies from 0.5 µ/min to 2.0 µm/min depending on the ra-
dius of the macro pinosome. Therefore is quite probable that
x≈ 1/2. We emphasize that a fuel vesicle is transported not
only inside a cell but also from one cell to other one of the
tissue.

In the case of the BMR of mammals and birds, there is
also a biological length

L3 = v0τ

TABLE I: Allometric exponents related to the basal metabolism for
mammals and birds. Under parenthesis is the error in the last signi-
ficative of the observed quantities.

Predicted Observed Comment Ref.
Basal metabolic rate

0.714 0.712(13) mammals [17]
[0.667,0.714] 0.737(26) binning data [17]

0.666 (BMR-2) 0.668(25) small mammals [16]
0.750 (BMR-1) 0.710(21) mammals [16]

0.664(15) birds [16]
0.686(14) large mammals excluded [19]

0.669 birds [42]
Heart rate

−0.286 −0.25(2) mammals, unknown data [34]
[−0.333,−0.286] −0.25 mammals [43]
−0.333 (BMR-2) −0.27 mammals [33, 44, 45]
−0.250 (BMR-1) −0.25(3) mammals, binning data of [33] [17]

−0.26 mammals [46]
−0.27 mammals [47]
−0.23 birds [48]
−0.209 birds [49]
−0.33(6) birds [50]

Respiration rate
−0.286 −0.260(5) mammals [34]

[−0.333,−0.286] −0.28 mammals [45]
−0.333 (BMR-2) −0.28 mammals [51]
−0.250 (BMR-1) −0.25 mammals [52]

−0.26(6) mammals, binning data of [53] [17]
−0.31 birds [48]
−0.20 birds [49]
−0.33 passerines [43]
−0.28 nonpasserines [43]

related to the transport by convection utilized on large length
scales. For example, we find in mammals the cardiovascular
system that transports blood to the capillaries.

To obtain the exponent b we first evaluate V3 in terms of τ,
namely V3 ∝ DDxv0τ2+x. Then, we use the relation between
mass and τ (Eq. 1) to find how τ depends on M (τ ∝ M1/(3+x).
Finally, we use Eq. (2) to obtain how B depends on M. It
follows that

B ∝ M
2+x
3+x ,

τ ∝ M
1

3+x .

The case x = 0 give-us b = 2/3 and correspond to the BMR-
2 scenario, where we have two lengths related to diffusion
and one related to convection. This scenario yields the 2/3
law. When x = 1/2 the vesicular transport within a cell is
ballistic and we have that b = 5/7 ≈ 0.714. Since it is quite
probable that x ≈ 1/2, the BMR exponent of mammals and
birds is close to b = 5/7.

The empirical and predicted values of the BMR exponent
b of mammals and birds are shown in Tab. I. This is the
most analyzed and discussed allometric scaling in the last
years. Note that all empirical values for b are in the pre-
dicted range, except the one (0.737(26)) obtained by Savage
et al. [17] with a data “binning” procedure. In such pro-
cedure the log-transformed data were averaged into equally
spaced data points in order to achieve equal weight to all
body size intervals and prevents phylogenetic relatedness.
However, the error bars do not exclude the upper value of
the range 0.714. Since their procedure has been criticized
by Glazier [20], we note that the same data set without the
binning procedure furnishes b = 0.712(13), a value in good
agreement with our prediction. Perhaps the more rigorous
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and complete study of the mammalian BMR exponent is the
work of White and Seymour [19](see also [32]). The authors
excluded large herbivores of the data due to their long fast
duration required to reach the post-absorptive state of BMR
and obtained b = 0.686(14). They note that such animals are
typically fasted for less than 72 h before the measurement
of O2 consumption, while the post-absorptive state of rumi-
nants may require 7 days to be reached. We think that large
mammals must be included in the data. Perhaps the BMR
value can be obtained by a time extrapolation procedure, in
which some measurements are realized periodically after the
initial fasting. It is quite possible that this procedure will
slightly raise the estimation of b. Interesting, the avian BMR
exponent values are close to the lowest value of the predicted
range.

Since the heart rate scaling is obtained by using that
F ∝ M− f ∝ 1/τ ∝ M−1/(3+x), the predicted range for f is
[−0.333,−0.286]. There is not a recent comprehensive ana-
lyze of this exponent for mammals. In Tab. I we also shown
the data for the pulse rate and respiration rate of mammals
and birds measured in basal conditions. Savage et al. [17]
obtained −0.25 by binning the data of Brody [33] (original
exponent b = −0.27). Stahl [34] claims that f = −0.25 but
he has not published its data. The empirical value for birds
is more scattered and there is a report of an empirical value
near the lower value of the predicted range. Although the
pulse rate is more easy to measure than BMR, it is hard to
achieve any conclusion about the empirical value of f . Note
that the value −0.27 is out of the predicted range but is also
different from −0.25. In fact, it is equidistant from −0.25
and −0.286. It is worth mentioning that −0.27 was also pre-
dicted by other recent analysis of Bishop [35]. On the other
hand, the respiration rate empirical exponents of mammals
and birds have the majority of values within the predicted
range.

V. OTHER EXPONENTS OF BASAL METABOLISM FOR
MAMMALS AND BIRDS

In order to obtain other exponents, let us now characterize
the network by “aorta” and “capillaries”. We define La, Ra
and va as the aorta length, radius and fluid velocity, respec-
tively. The capillaries can be described by the capillary num-
ber Nc, length lc, radius rc and fluid velocity vc. It is worth
mentioning that the length lc and the radius rc of capillaries
are not necessarily invariants, although, from our third as-
sumption, we need some dynamical scaling-invariant quan-
tities, like the blood flow speed velocity v0 in the aorta or
in the capillaries. The exponents related to these quantities
can be obtained from the nutrient fluid conservation in the
transportation network. Fluid conservation implies that

Q̇ = πR2
ava = Ncπr2

c vc , (3)

where Q̇ is the volume rate flow. It is clear that Q̇ ∝ B is
a natural assumption. Since va is invariant, the aorta radius
scaling is given by Ra ∝ B1/2 and the aorta length scaling is
described by La ∝ vaτ. These last relationships imply that
the exponents aR and aL defined by Ra ∝ MaR and La ∝ MaL

are aR = (2 + x)/(6 + 2x) and aL = 1/(3 + x). The transi-
tion from the largest length scale (aorta) to the cell length

scale occurs in the arterioles and capillaries. vc must be
scaling-invariant and, since the blood cells have the same
size, we can make the extra assumption that rc is also scaling-
invariant. Therefore the density of capillaries Nc/M behaves
as Nc/M ∝ B/M. The capillary length can be invariant or
mass dependent. Since the typical cell transport length is not
scaling-invariant, the capillary length should also depend on
M, namely lc ∝ vcτc ∝ vcτ.

VI. THE MMR OF MAMMALS AND BIRDS

The circulatory networks of endothermic animals make
a transition from resting to maximum activity in such way
that (i) the heart increases its rate and output, (ii) the arte-
rial blood volume increases due to constriction of the veins
and (iii) the total flow and muscular flow increase, with all
muscular capillaries activated. These facts suggest that we
have a “forced movement” during the characteristic time τ,
implying that the typical constant velocity can be written as
v = a0τ (a0 is a scaling-invariant acceleration). Therefore
the aerobic sustained MMR is limited by an inertial move-
ment accelerated during time τ and the ballistic movement
of BMR is now given by L = vτ = a0τ2.

In the upper limit of the MMR of animals, the MMR-1 sce-
nario, all lengths are related to the inertial accelerated move-
ment (Li = aiτ

2, i = 1,2,3). Since V3 ∝ L3 and L ∝ τ2, we
obtain from Eqs. (1) and (2) the metabolic relations:

L ∝ M
2
7 ,

τ ∝ M
1
7 ,

B ∝ M
6
7 .

These results agree with the ones obtained trough a gener-
alization of West, Brown and Enquist [6] ideas to the MMR
[13].

In the BMR description, we had i) a length (L1) related to
diffusion of O2 and small molecules, ii) a length (L2) asso-
ciated to the anomalous diffusion of vesicles and very near
to a convection movement and iii) a length (L3) related the
large scale transport of blood by convection. The MMR-1
scenario consider that L3 is the only relevant length and that
L1 and L2 evolved to match it. Although this description ex-
plains better the empirical data and is more consistent with
the maximal restrictions of MMR conditions, we must con-
sider other cases. We call the MMR-2 scenario, when at least
the lengths related to ballistic movement (L3 and L2) changes
to L3 = a3τ2 and L2 = a2τ2, respectively. L1 = D1τ1/2 re-
mains the same. Using Eqs. (1) and (2) we obtain that

L3 ∝ L2 ∝ M
4
11 ,

L1 ∝ M
1

11 ,

τ ∝ M
2

11 ,

B ∝ M
9

11 .

When only the length related to the large scale transports
changes (L3 = a3τ2, L2 = v2τ, L1 = D1τ1/2), we have the



Brazilian Journal of Physics, vol. 39, no. 4, December, 2009 703

MMR-3 scenario. A similar procedure furnishes the follow-
ing results:

L3 ∝ M
4
9 ,

L2 ∝ M
2
9 ,

L1 ∝ M
1
9 ,

τ ∝ M
2
9 ,

B ∝ M
7
9 .

Note that the MMR and the heart frequency exponents
should be in the intervals [7/9,6/7] and [−2/9,−1/7], re-
spectively. The predicted values of b and the heart rate expo-
nent f for animals agree with the empirical values (see Tab.
II) for animals in exercise-induced MMR conditions. But we
must emphasize that the MMR data base is much narrower
than it appears. Several references, for example Savage et
al. [17] and Bishop [36], represent basically the same data,
namely those from the study of Taylor and Weibel [12] with
some variation in the data composition. Note also that ath-
letic species have a higher level of MMR than normal (non-
athletic) ones [37]. For species with similar body mass, the
MMR of athletic species can be 2.5 up to 5 times greater
than the normal one. This implies that ρ4/σ4 are different
for the two groups. The MMR theory just developed must
be valid for normal species. Since the MMR exponent for
athletic species (b = 0.94(2)) is very different from the one
(b = 0.85(2)) for normal species, it is reasonable to assume
that the inertial transport is different for the athletic group. If
we assume that L3 = c3τ3, instead of L3 = aτ2, we obtain a
large exponent b = 9/10, a value near the empirical result.

MMR can also be induced by exposure to low tempera-
ture. Oxygen consumption is measured during progressive
reduction of the ambient temperature until a decline in this
consumption is observed. In these experiments, the animal
loses such heat quantity that the usual ways to dissipate it
are overwhelm. Then it is possible that the relevant lengths
be dominate by heat diffusion (L1 ∝ L2 ∝ L3 ∝ τ1/2). This
implies that b = 3/5. However, if we consider that the blood
transport in the arterial system be also relevant we have that
L3 = a0t2

3 and L1 ∝ L2 ∝ t1/2. In this case we obtain that
b = 3/4. It follows that the cold-induced MMR exponent
should be in the interval [0.600,0.750], in a relatively good
agreement with empirical values.

VII. OTHER EXPONENTS OF MAXIMUM
METABOLISM FOR MAMMALS AND BIRDS

The exponents related to the aorta are easily obtained from
Eq. (3). Now the aorta blood velocity is not constant and
grows with body mass as va ∝ a0τ ∝ M1/7 (MMR-3). In fact
this exponent should be in the range [0.143,0.22]. From now
on we will discuss the exponents always in MMR-1 scenario
which is in better agreement with the empirical data. The
exponents related to the aorta radius and length are given by
aR = 5/14 and aL = 2/7, respectively. The description of
capillary scaling is not so clear. The radius rc can be as-
sumed invariant since the blood cells do not depend on body
mass. There are three possibilities for the blood velocity vc

and the capillary length lc: (i) vc and lc are invariant, (ii) vc
is invariant and lc = vcτc and (iii) vc = acτc and lc = acτ2

c
with ac invariant. Since we are assuming that the typical
transport length in a cell is not invariant, lc should not be
scaling-invariant. Let us consider the case (ii). Using that rc
and vc are invariant, we obtain from Eq. (3) that the density
of capillaries behaves as Nc/M ∝ M−1/7. If τc ∝ τ we ob-
tain lc ∝ M1/7. On the other hand, if τc ∝ t2 and x = 1/2 we
obtain that lc ∝ M2/7.

We discuss now the aorta scaling. As already discussed,
it is it is probable that x = 1/2. In this case the BMR
and MMR theories predict the same exponents aR and aL
for the aorta radius and length, namely aR = 0.357 and
aL = 0.286. These values are in agreement with the empirical
values (see Tab.II). The aorta velocity va is invariant in the
BMR description, in agreement with data (Dawson, 2003)
(va ∝ M0.07). On the other hand, in the MMR description
va must depend on body mass (va ∝ M1/7 (MMR-1)). We
do not know any empirical result for va in the MMR condi-
tions. So, it could be interesting to experimentally verify this
simple prediction for normal species.

The extra assumption that the capillaries radius is in-
variant is agreement with the empirical data [3] and with
the theoretical-empirical estimations of Dawson [38] (rc ∝

M0.08, lc ∝ M0.21 ). In the BMR description, the capillary
velocity is also invariant. However, the capillary length lc
should depend on M. If x = 1/2 we have that lc ∝ M0.286.
In the MMR description, we must also have rc invariant. If
we assume that vc is invariant, we obtain that the capillary
density Nc/M ∝ M−0.143 agrees well with data of muscular
capillary density of mammals (see Tab. II). In this case we
have that lc = vcτc, with two possibilities for τc: τc ∝ τ or
τc ∝ t2. Only the second possibility, together with x = 1/2
is consistent with vc invariant. We obtain a result lc ∝ M0.286

which agrees with the BMR description and with Dawson
estimation.

VIII. THE BMR OF UNICELLULAR ORGANISMS

We present now the BMR of unicellular organisms. The
first biological length L1 is related to the transport of oxy-
gen and small molecules by diffusion, namely L1 = Dτ1/2.
The second length is related to large molecules that can be
trapped in vesicles by macropinocytoses and pinocytoses and
transported in direction of the nucleus. It is described by
L2 = Dxτ(1/2)+x, with x = 0 and x = 1/2 corresponding to
diffusion and ballistic transport, respectively. In order to
evaluate the b exponent of unicellular organisms we need to
taken in account a third length. A general description of this
length is achieved by supposing that L3 = Dyt

(1/2)+y
3 , with y

varying in the interval [0,1/2] (diffusion movement: y = 0,
ballistic one y = 1/2). To obtain the exponent b we first eval-
uate V3 in terms of τ, namely V3 ∝ DDxDyτ(3/2)+x+y. Then,
we use the relation between mass and τ (see Eq. (1) to find
how τ depends on M (τ ∝ M2/(5+2x+2y)). Finally, we evaluate
each length in terms of M and we use Eq. (2) to obtain how B
depends on M. It follows that B ∝ M[3+2x+2y/(5+2x+2y)] and
τ ∝ M[2/(5+2x+2y)]. The case with only diffusion transport
(x = 0 and y = 0) give us b = 3/5, a lower bound for the al-
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TABLE II: Allometric exponents related to maximum metabolism and other exponents for mammals and birds. Under parenthesis is the
error in the last significative of the observed quantities.

Predicted Observed Comment Ref.
Exercise-induced maximum metabolic rate

0.857 (MMR-1) 0.828(70) mammals, binning data [17]
[0.778,0.857] 0.88(2) standard animals [36]

0.872(29) mammals [37]
0.94(2) athletic [37]
0.85(2) non-athletic [37]

0.882(24) marsupials [54]
0.87(5) mammals [19]
Heart rate

−0.143 (MMR-1) −0.16(2) mammals [35]
[−0.222,−0.143] −0.15 mammals [46]

−0.17(2) birds, flight [50]
−0.146 birds, flight [49]
−0.157 birds [49]

Cold-induced maximum metabolic rate
[0.600,0.750] 0.65(5) mammals [19]

0.772(30) marsupials [54]
0.789(40) theria [54]

Capillary density
−0.143 (MMR-1) −0.14(7) [2, 55]

Aorta radius
0.357 (BMR and MMR-1) 0.36 mammals [2, 47]

[0.333,0.357] (BMR) 0.335 mammals [45]
Aorta length

0.286 (BMR and MMR-1) 0.32 mammals [2, 45]
[0.286,0.333] (BMR) 0.31 mammals [47]

TABLE III: BMR allometric exponent b (B ∼ Mb) for unicellular
organisms. Under parenthesis is the error in the last significative of
the observed quantities.

Exponent b
Predicted Observed Ref.

0.714 0.75 [39]
[0.667,0.714] 0.66(9) [41]

0.600 (BMR-3) 0.608(5) [40]

lometric exponent. The upper value for x is x = 1/2 (ballistic
movement). In this case we have that b = (2+y)/(3+y), im-
plying that the allometric exponent of unicellular organisms
is in the interval [0.667,0.714].

In Tab.III it is shown the empirical values of b as well the
predict values. The value of the exponent obtained by Hem-
mingsen [39] (b = 0.75) is out of our predicted range. How-
ever, Prothero [40] observed that Hemmingsen had lumped
together two metabolically different groups (prokaryotes and
eukaryotes). When he excluded bacteria, flagellates, and ma-
rine zygotes from Hemmingsen’s data sample, he obtained
b = 0.608±0.05 for eukaryotes, a value just above our lower
bound (BMR-3). On the other hand, Phillipson [41] stud-
ied the BMR scaling of 21 unicellular species and found
b = 0.66±0.092.

IX. SUMMARY

We developed a theory for the allometric scaling of
metabolism based in four ad-hoc postulates: i) mass den-
sity ρd+1 and ii) available energy density σd+1 are scaling-
invariant quantities, iii) dominant transport processes, which
are characterized by scaling-invariant quantities, drive the
metabolic scaling and iv) there is only one relevant char-
acteristic time because the resource rates of these processes
are matched in order to have an optimal nutrient delivery. A
lower bound for all metabolic exponents, namely bmin = 3/5,
is found when we consider all transport processes as diffu-
sive ones.

The BMR of mammals and birds is obtained when we
have A) diffusion, describing the transport of oxygen and
small molecules, B) ballistic transport (L3 ∝ v0τ), which is
related to the blood delivery in large scale and C) anomalous
diffusion that represents the vesicular transport inside a cell
and between cells of a tissue. Assuming that the last pro-
cess is very close to the ballistic transport we obtained that
b = 5/7. This value is in good agreement with the best em-
pirical estimation for BMR (0.69), obtained by White and
Seymour (2005) for mammals without ruminants. We be-
lieve that these large mammals should be included in some
way in the empirical analysis, implying that the real empir-
ical b value for mammals should be around 0.71. The 2/3-
law is obtained when the anomalous diffusion process is near
normal diffusion. Therefore b = 2/3 is a lower bound for
BMR of mammals and birds. On the other hand, the 3/4-



Brazilian Journal of Physics, vol. 39, no. 4, December, 2009 705

law appears as an upper bound for BMR since this value is
obtained when all transport processes are ballistic. There-
fore the b exponent for mammals and birds is the interval
[2/3, 3/4]. Interesting, the empirical value for birds is close
to the low limit. The predict interval for the exponent re-
lated to heart rate (or respiration rate) is [−1/3,−1/4] and
the most probable value is−2/7. They are in agreement with
the empirical values for mammals and birds. However, this
exponent was not recently studied in a comprehensive way
as was done for the b exponent.

The aerobic sustained MMR is described by an inertial
movement accelerated during time τ (L3 ∝ a0τ2). The upper
limit for the MMR exponent (b = 6/7) is obtained when all
transport processes are proportional to the accelerated one
and the lower limit (b = 7/9) occurs when only the length
related to the large scale transport (L3) changes to the accel-
erated movement. Since during strenuous exercise the trans-
port systems are stressed to their uttermost, we believe that
the upper limit describe better the MMR scaling. The pre-
dict value for b and for the heart rate exponent are in good
agreement with the empirical values. However, the data base
is still narrow. The cold-induced MMR is studied by consid-
ering that usual heat transport processes are overwhelm and
that we have a new metabolic state where only heat diffusion
is important. The different empirical exercise induced MMR
exponents obtained for athletic species and non-athletic one
can be explained qualitatively by assuming that the acceler-
ated movement for athletic species is different (L3 ∝ c0τ3, for
example).

The exponents related to the aorta and capillaries of mam-
mals are obtained through fluid conservation. Aorta blood

velocity is scaling-invariant in BMR conditions but grows
with mass in the exercise-induced MMR situation. This ex-
ponent, which is predicted to be in the interval [0.143, 0.22],
was never measured. The empirical determination of this ex-
ponent seems to be easy and interesting. Moreover, it can be
an experimental test of the importance of the transportation
processes for the metabolic scaling. The exponents charac-
terizing the length and radius of aorta and capillaries in the
BMR description have the same values as that of the upper
limit of exercise-induced MMR situation.

The predict values agree with the empirical ones. On the
other hand, the capillary density must be described by the
MMR scenario and the predict value also agrees with the ex-
perimental value.

Finally we discussed the BMR of unicellular organisms.
In this case we have two diffusion transport processes, which
are related to the transport of oxygen and small molecules,
and one anomalous diffusion process that describes vesicu-
lar transport. An extra reason to use anomalous diffusion
as the third transport mechanism is that it allow us to eas-
ily change this transport mechanism from pure diffusion to a
ballistic motion in the theoretical description. The predicted
range [2/3, 5/7] was compared with the few results of the
literature.
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