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Effect of an columnar defect on vortex configuration in a superconducting mesoscopic sample
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In this work we investigate the vortex dynamics in a square mesoscopic superconducting cylinder in the
presence of an applied magnetic field parallel to its axis. The rectangular cross-section of the sample is L2 and
an engineered columnar defect of area d2 at the center is taken into account; L = 12ξ(0) for all simulations
while d varies discretely from 1ξ(0) to 10ξ(0). We study the magnetization and the vortex configuration,
increasing the magnetic field from zero to the normal state field. We found that for d ≥ 7ξ(0) no vortices in the
superconductor area are possible. Also, if the size of the defect is reduced, the nucleation fields decrease.
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I. INTRODUCTION

The progress of nanofabrication technologies during the
last years has resulted in an increased interest in the study
of superconducting properties of mesoscopic samples. For
type II superconductors the magnetic field, in the so called
mixed state, penetrates in the form of vortices, which carry a
flux quantum, and form a triangular lattice. For mesoscopic
samples, i.e. for a sample of the order of penetration depth,
the superconducting properties such as the critical fields, the
critical current, the vortex lattice and the vortex itself, can
present new and very interesting properties, as for example
an increase in the critical field and giant vortices carrying
more than one quantum flux [1, 2], the effect of defects on
two and three dimensional samples on vortex configurations
were studied by [5–8]. Several phenomenological theories
have been developed during the decades of research in su-
perconductivity. The London theory, the Ginzburg - Lan-
dau theory and its time dependent extension, known as Time
Dependent Ginzburg - Landau (TDGL) theory have been
widely used during the years of research into superconduc-
tivity [3, 4]. In previous work, we have studied the properties
of mesoscopic superconducting samples surrounded by dif-
ferent metallic materials using TDGL equations [9–11]. We
numerically solve the nonlinear TDGL equations to study
vortex dynamics in a mesoscopic type II cylinder supercon-
ductor containing one square defect in the presence of an
external field applied perpendicular to the surfaces. We an-
alyze the defect size on the vortex configuration, magnetiza-
tion curves and vortex number. It is assumed that the inner
defect edge is in contact with a vacuum. The dynamics of
different vortex states and the magnetization curves are stud-
ied as a function of the external magnetic field.

II. THEORETICAL FORMALISM

Time dependent Ginzburg Landau equations in a zero
electric potential gauge and in normalized units lead to the

following mathematical problem for the order parameter ψ

and the vector potential A [12, 13]:
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Where lengths have been scaled in units of ξ(0), time
in units of t0 = π~/(96KBTC), A units of HC2(0)ξ(0),
temperatures in units of TC.

We used Uψ method [4] for solve the TDGL equations
in a discrete grid. Complex link variables Ux and Uy are
introduced to preserve the gauge-invariant properties of the
discretized equations. Ux and Uy are related to A by:.
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The link variable method is used since a better numerical
convergence is obtain in high magnetic fields [12]. The
TDGL equations 1 and 2 can be written in the following
form:
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where α = (x,y), and Im indicates the imaginary part. We
used this method to obtain our results. The outline of this
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simulation procedure is as follows: the sample is divided in
a rectangular mesh consisting of Nx ×Ny cells, with mesh
spacing ax×ay. To derive the discrete equations let us define
by xi = (i− 1)ax, yi = (i− 1)ay, an arbitrary vertex point in
the mesh and:
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Then the discretized version of the TDGL equations main-
taining second order accuracy in space are gyven by:
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The discretized open boundary conditions are:

ψ1, j = ψ2, jUx
1, j

ψNx+1, j = ψNx, jŪx
Nx, j

We use the simple Euler method with 107 steps, ∆t = 0.0015,
spacing ax = ay = 0.25. ~He is increased linearly with time
from 0 to 1, with small intervals of ∆H = 10−7, κ = 5, T = 0
for all simulations.
The procedure consists of beginning of certain value of the
applied magnetic field He and the order parameter ψ(r, t = 0),
i.e. the variables are homogeneously initialized to a perfect
Meissner state ψ(t = 0) = 1, A(t = 0) = 0 (for every point
in the domain). The stationary state found for a fixed He is
used then as initial condition for the next field value H +∆H,
using small increments of ∆H. The applied magnetic field is
increased smoothly from zero to a value where the super-
conductivity will be destroyed completely. For each applied
field we follow the temporary evolution of the magnetic in-
duction and of the superconducting order parameter to obtain
a stationary solution.

We considered a mesoscopic superconducting cylinder
with a rectangular cross section L2 with an engineered
columnar defect of area d2 at its center. The TDGL equa-
tions are used upon taking the magnetic field and the order
parameter invariant along z-direction led to bi-dimensional

Fig. 1. Magnetization curves as function of the applied external
field for a cylinder of L = 12ξ(0), with a centered defect with

d/ξ(0) = 2,3,4.

Fig. 2. Magnetization curves as function of the applied external
field for a cylinder of L = 12ξ(0), with a centered defect with

d/ξ(0) = 5,6,7.

numerical treatment. The superconducting wave function
satisfies the boundary conditions n̂.(−i∇−A)ψ = 0, where
n̂ denotes the normal vector to the superconductor - vacuum
interface, and the boundary conditions for A, namely that
Bz = êz.∇×A at the external surface must equal He, the
applied field. The defect has the following dimensions:
d = 1ξ(0) to d = 10ξ(0) and L = 12ξ(0).

III. RESULTS

The results for the magnetization curves M as a function
of the applied external field He are depicted in Figs. 1,2,3.
The magnetization curves exhibit a series of discontinuities;
each of these discontinuities signals a vortex entrance in the
sample. As is well known we can appreciate that if we re-
duce the size of the defect, Hc2 remains constant Hc2 = 1.6
for d = 2,3,4 and increases Hc2 = 1.7 for d = 5,6,7 and
Hc2 = 2.0,2.5,4.0 for d = 8,9,10, with vorticity N = 28 for
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Fig. 3. Magnetization curves as function of the applied external
field for a cylinder of L = 12ξ(0), with a centered defect with

d/ξ(0) = 8,9,10.

Fig. 4. Snapshot of the vortex configuration for d = 6ξ(0) and (a)
N = 4, (b), (c) and (d) N = 12 at

He/Hc2(0) = 0.40,0.840,0.845,0.847 respectively, blue and red
regions represents values of the modulus of the order parameter

from 0 to 1.

d = 1,2,3,4, N = 30 for d = 5,6, N = 32 for d = 7,8, N = 44
for d = 9 and N = 72 for d = 10. The vortex number in the
sample increases as defect size increases. For a defect d ≥ 7,
the sample has ring superconductor behavior, Hc2 increase
and no vortices are possible in the superconductor region,
Hc1 remains constant for all samples. We do not include the
sample with d = 1 in order for the figure to be better visual-
ized.

The magnitude of the order parameter |ψ| is plotted in
Figures 4 for a sample with d = 6ξ(0). In Figs. 4(a - d),
values of the order parameter close to zero are given by blue
regions and close to 1 by red regions.
In Fig. 4(a) the first four vortices will be located in the

defect. Although they are not visible in the contour plot of
the magnitude of order parameter, there is a change in the
phase around each hole equal to ∆φ = 8π. The phase allows
us to determine the number of vortices in a given region,
by counting the phase variation in a closed path around this
region. If the vorticity in this region is N, then the phase
changes by ∆φ = 2πN [13]. By increasing the magnetic
field eight more vortices appear in the sample, as shown in
Fig 4(b). They are localized in the superconductor region
and goes to the defect corner. Then, in Fig. 4(c), eight
vortices are situated in the hole and four vortices are in the
superconducting region, while four vortices are going out of
the defect. In Fig 4(d), with N = 12, four vortices remain in
the defect hole and eight in the superconducting region. All
the states are not stationary states.

In the next tables we shown the magnetic field He with
the pair of vorticities - inside and outside the defect.

He Ninside Noutside Ntotal
0.20 0 0 0
0.24 0 2 2
0.42 0 4 4
0.60 0 6 6
0.64 0 8 8
0.72 0 10 10
0.98 0 12 12

TABLE I: Vorticies inside and outside the defect for a sample L =
12ξ(0) and d = 1ξ(0)

He Ninside Noutside Ntotal
0.20 0 0 0
0.24 0 2 2
0.39 0 4 4
0.57 2 4 6
0.70 4 6 10
0.95 6 8 14
1.00 6 8 14

TABLE II: Vorticies inside and outside the defect for a sample L =
12ξ(0) and d = 4ξ(0)

He Ninside Noutside Ntotal
0.20 4 0 4
0.40 4 2 6
0.45 4 4 8
0.50 4 6 10
0.840 4 8 12
0.845 8 4 12
0.847 4 8 12

TABLE III: Vorticies inside and outside the defect for a sample L =
12ξ(0) and d = 6ξ(0)

The magnitude of the order parameter is plotted in Figure
5 for a sample with d = 1 for (a) He = 0.2, N = 0. (b) He =
0.72, N = 10. (c) He = 0.9, N = 12, d = 8 for (d) He =
0,86, N = 12, d = 9 for (e) He = 1.04, N = 16 and d =
10 for (f) He = 1.11. N = 18. We can observe a sequence
of transitions as the magnetic external field increases. The
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Fig. 5. Snapshot of the vortex configuration for d = 1ξ(0) for (a)
He = 0.2Hc2(0), N = 0. (b) He = 0.72Hc2(0), N = 10. (c)

He = 0.9Hc2(0), N = 12 and d = 8ξ(0) for (d) He = 0,86Hc2(0),
N = 12. d = 9ξ(0) for (e) He = 1.04Hc2(0), N = 16 and

d = 10ξ(0) for (f) He = 1.11Hc2(0). N = 18.

sample with d = 1ξ(0) does not allow vortices in the defect,
due to size restrictions. d > 7ξ(0) does not present vortices
in the superconductor area.

IV. CONCLUSIONS

We theoretically calculated the spatial distribution of the
vortices in a cylindrical mesoscopic superconductor with one
square defect. All the work done here is for an infinitely
long sample with mesoscopic square cross section with size
L = 12ξ(0). The presence of the defect affects the vortex
distribution, as well as the vortex entry. We observed a se-
quence of transitions as the magnetic external field increases.
Samples with defects d ≥ 7 do not present vortices in the su-
perconductor area. Our results also show that, as we reduce
the size of the defect, the nucleation field decreases. The
main goal of this work is to determine the limit of the occur-
rence of square ring superconductor behavior.
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