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6 MV Wedge Photon Beam Profiles with the Fricke Xylenol Gel Dosimeter
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Wedged beam are often used in clinical radiotherapy to compensate missing tissues and dose gradients. In
this work, the Fricke Xylenol Gel (FXG) dosimeter was used for 6 MV photons radiation wedge field profiles
measurements, allowing to infer the wedge filter physical attenuation coefficient. This dosimeter is a chemical
system of a Fe3+-Xylenol complex concentration, that when measured spectrophotometrically, the absorbance
is directly proportional to the absorbed dose. From theses results one can infer that the FXG can be used also as
an alternative dosimetric system for measurements of wedge filters.
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I. INTRODUCTION

Radiotherapy is used for cancer treatment involving ion-
izing radiation to control malignant cells. For this reason, it
is necessary not only to control the absorbed dose released
to the target volume, but also in the normal tissues surround-
ing the tumor. For this purpose, the geometry related to the
tumor and the type and energy of the ionizing radiation are
necessary to obtain a dose distribution suitable for each treat-
ment. In radiotherapy the dose homogeneity is one of the
most important parameters required during the irradiation
and it depends primarily on the patient contour and tissue
heterogeneity. Physical and virtual wedge filters, with typ-
ical angles of 150, 300 450 and 600, are normally used to
compensate that.

There are several papers reporting the results of wedge
beam profile measurements from physical, virtual and dy-
namic filters, using different dosimeters such as diode [1, 2],
ionization chamber [3–5], chemical dosimeter [6–8], film
[2, 4] and numerical methods that use Monte Carlo calcula-
tion codes [1, 9]. In this work the Fricke Xylenol Gel (FXG)
was used to measure the beam profiles of physical wedge fil-
ters used in 6 MV photons clinical beams.

The FXG has some interesting features such as, broad lin-
ear dependence with the absorbed dose from 0.5 up to 30
Gy for γ and x-ray photons [10–13], atomic effective num-
ber of 7.75 and density of 1.050 kg/m3, respectively near to
7.64 and 1.040 kg/m3 for soft tissue [14]. This dosimeter is
based in the Fe2+ to Fe3+ oxidation, forming a Fe3+-Xylenol
complex, whose absorbance peak is centered in 585 nm. All
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the absorbance measurements [15–17] were done with the
visible spectrophotometric technique. The results are com-
pared with the ones reported using Monte Carlo [1], film [4],
ionization chamber [3, 4] and diodes [1]. Similar measure-
ments, made with an ionization chamber of 0.016 cm3, are
also reported here.

II. MATERIALS AND METHODS

The measurements were done using 10×10, 15×15 and
20× 20 cm2 radiation field sizes of 6 MV photons beams,
generated by a Siemens/Mevatron. Also wedge filters of
150, 300, 450 and 600, made of iron alloy with an effective
atomic number of 25.93 and density of 7.81 103 kg/m3 were
used [18]. Typical absorbed doses of 2 Gy were delivered at
101.5, 110 and 120 cm source detector distances (SDD), for
each combination of field sizes and wedge angles. The pro-
files were obtained for all wedge angles for the FXG samples
and only with the PTW-Freiburg/TM31016-0120/AU604926
ionization chamber of 0.016 cm3 (IC0.01), for the 600 wedge
angle, the most stringent situation to corroborate the mea-
surements done.

The FXG samples manufactured through the mixture of
the concentrations of: 4% gelatin (300 Bloom-Aldrich), 0.1
mM xylenol orange, 25 mM sulphuric acid, 0.5 mM ferrous
ammonium sulphate and 96% Milli Q water [10, 11, 19, 20],
were inserted in PMMA special cuvettes (30×30×1 cm3).
An acrylic phantom, composed of a build-up plate of 30×
30× 1.5 cm3 and four plates of 30× 30× 2 cm3 was used
in order to provide full backscatter condition to the measure-
ments. The phantom was set on the machine table top, with
the machine gantry at 00, for both FXG and IC0.01 beam pro-
files measurements (Fig. 1).
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FIG. 1: Acrylic phantom for beam profile measurements, with four
plates of 30 × 30 × 2 cm3 and a build-up plate with 1.5 cm thick-
ness. The phantom, the cuvettes and the IC0.01 were irradiated per-
pendicularly to the beam.

The FXG absorbance measurements were obtained using a
home made quasi monochromatic light intensity reader [13]
(with a collimator aperture of 1 mm). The system is com-
posed of a light emission diode and a photodiode sensor, both
with peaks near to 585 nm, correspondent to the FXG max-
imum absorbance, previously determined in a visible spec-
trophotometer. For the irradiations, the FXG cuvettes were
placed between the acrylic plates and the ionization chamber
was inserted in the special acrylic plate of (30×30×1 cm3),
to be placed between the other plates, like the FXG.

The natural oxidation of Fe+2 ions can be divided in natu-
ral and ionization radiation, the natural consideration aspects
as: temperature variation, light intensity and influence with
air [11, 21–23]. Both oxidations increases with the time,
consequently the absorbance values also increase. In order
to infer how the absorbance varieties with the time, six FXG
samples were irradiated with 2 Gy of 6 MV photons and were
read immediately after irradiations (t = 0) and subsequent
times till complety 5 hours. For the FXG system the ab-
sorbance behavior measurements (average for six values for
each time value) is presented in Fig.2 and a maximum uncer-
tainty was calculated as 0.5% [24]. Together with these mea-
surements, also the diffusion coefficient measurements were
done, whose value obtained was 0.2 mm2/h [25]. From these
results one can infer that for up to 5 hours the absorbance
values are almost time independent post-irradiation. With
these results, we have decided to read the samples 30 min-
utes after irradiations. For the profiles measurements, three
absorbed dose readings were done for each selected point,
along the field size at depths of 1.5, 2.5, 9, 10, 20 and 21
cm, respectively. The measured profile values were then nor-
malized to the maximum value, at the field center. The nor-
malized profiles were compared with data reported in the lit-
erature, Monte Carlo (MC) (DOSXYZ) [1], diode (area di-
ameter 0.25 cm2) [1], X-OMAT V film (Kodak/Company)
[4] and ionization chambers array (IC) (Wellhöfer /CA24)
[3, 4]. Although the literature values are for a 6 MV pho-
ton beam, they were generated by different machines and in
this way, different wedge delivery systems such as: Varian
Physical Wedges [1], Siemens Virtual Wedge [3] and Varian
Enhanced Dynamic Wedge [4], the comparisons are consid-
ered useful.

FIG. 2: FXG absorbance behavior versus time for samples irradi-
ated with 2 Gy of a 6 MV photon beam, 10 × 10 cm2 field size and
101.5 cm SDD. These measurements show the absorbance indepen-
dence with the time.

After the wedge filter profiles measurements, the effective
linear attenuation coefficient of the physical filter (µ) could
be derived from a selected point of the profile and correlated
to the value at the center of the field, according to the follow-
ing equation [26]:

D(x,1) = D(0,1)e−(µx tanα) (1)

where, D(0,1) and D(x,1) are the absorbed doses readings
in/off the central axis respectively, µ is lateral distance (off-
axis) and α is the angle provided by the wedge used. From
all these values, (from the samples data) the attenuation co-
efficient can be inferred.

III. RESULTS AND DISCUSSION

In Fig. 3 the FXG and IC beam profile results for 600

wedge filters are presented together with some data reported
in the literature; for ionization chamber and film with 20×20
cm2 field size at depths of 1.5, 10 and 20 cm. The dosime-
ters agreement for the 150, 300 and 450 wedge filters are very
similar to those observed with 600 wedge filters.

Table I presents the results from the FXG absorbed dose
values compared with the values of ours ionization chamber
and those reported values in the literature (IC [3, 4], MC [1],
diode [1] and film [4]), considering the wedge filters angles,
field sizes, measurement depths and 6 MV photon beams.

From the literature [27, 28], the absolute percentage dif-
ference between two values can be derived from:

diff% =
(FXGvalue −Dosimetersvalue)

FXGvalue
×100 (2)

The FXG values in this case, are taken as reference for the
comparisons and using eq. (2), the average and maximum
absolute percentage differences were obtained.
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TABLE I: Maximum differences in absorbed dose expressed in percentage among the FXG, IC0.01, MC, IC [3], IC [4], diode and film
values. The small greek letters represent measurements depths as: α at 1.5 cm, β at 10 cm and γ at 20 cm, for 10×10 and 20×20 cm2

field size. For the 15×15 cm2 field size the depths were: α at 2.5 cm, β at 9 cm and γ at 21 cm.

W15 W30 W45 W60
10×10 15×15 20×20 10×10 15×15 20×20 10×10 15×15 20×20 10×10 15×15 20×20

− 2.0α − − 0.9α − − 0.5α − − 1.2α −
MC[1] − 1.6β − − 1.3β − − 0.5β − − 0.7β −

− 0.9γ − − 0.7γ − − 0.9γ − − 0.5γ −
0.7α − 1.5α 0.4α − 0.9α 1.2α − 0.9α 1.6α − 0.7α

IC[3] 1.2β − 1.5β 0.8β − 1.2β 1.9β − 1.2β 1.4β − 0.9β

1.2γ − 1.6γ 1.4γ − 0.8γ 1.6γ − 1.2γ 1.1γ − 1.1γ

− − − − − 0.5α − − 1.7α − − 0.6α

IC[4] − − − − − 0.6β − − 1.1β − − 0.9β

− − − − − − − − − − − −
− − − − − − − − − − − 0.4α

IC0.01 − − − − − − − − − − − 0.8β

− − − − − − − − − − − 0.9γ

− 0.9α − − − − − 0.5α − − 0.4α −
Diode[1] − 1.3β − − − − − 0.8β − − 0.5β −

− 1.5γ − − − − − 0.8γ − − 0.7γ −
− − − − − 0.6α − − − − − 0.5α

Film[4] − − − − − 1.8β − − − − − 1.5β

− − − − − − − − − − − −

FIG. 3: Beam profile measurements comparison between FXG,
IC0.01, IC and film for 6 MV photon beams transmitted through
a 600 wedge physical filter and 20×20 cm2 field size at the depths
of 1.5, 10 and 20 cm.

The maximum absolute percentage differences obtained
are 2.0, 1.9, 1.8, 1.7, 1.5 and 0.9, respectively for MC, IC
[3], film, IC [4], diode [1] and IC0.01 and the average abso-
lute percentage differences are 1.6, 1.2, 1.1, 0.9, 0.9, 0.7,
respectively for MC, film, IC [3], IC [4], diode and IC0.01.
From these results, it can be inferred that the maximum dif-
ferences compared to Monte Carlo [1], IC [3], film, IC [4],
diode [1] and IC0.01 are smaller than 2%. These differences
can be related with the different machines spectral and wedge
delivery systems.

From eq. (1), the effective linear attenuation coefficient

may be calculated considering different off-axis distances
and wedges angles. Using the eq. (1) and the IC0.01 and FXG
data, the wedge filter linear attenuation coefficients, can be
inferred as 0.0518±0.0001 cm−1 and 0.0513±0.0003 cm−1

respectively. These values are within 2.2% and 1.2% from
0.0507 cm−1 as reported by Santvoort [26].

IV. CONCLUSIONS

We have presented the radiation beam profiles using phys-
ical wedge filters for a 6 MV Siemens Linac. The measure-
ments were conducted for field sizes of 10 × 10, 15 × 15
and 20× 20 cm2, at several measurements depths. The re-
sults were compared to similar data reported in the litera-
ture, for different dosimeters (film, diode, ionization cham-
ber array) and a Monte Carlo code. From these comparisons,
one can infer that the FXG dose profile measurements are in
close agreement, better than 1%, with a very small ioniza-
tion chamber and within 2.0% with the Monte Carlo code.
Considering the effective linear attenuation coefficient for
the Siemens Mevatron physical wedge filter, a difference of
only 1.2% with the literature, could be attributed to the FXG
results. According to all results obtained, it can be concluded
that the dosimetric features of the FXG system clearly indi-
cate its suitability for radiotherapy clinical beams measure-
ments.
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