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A simple way to avoid metastable configurations in the density-matrix renormalization-group
algorithms
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We use the spin-1 Heisenberg chain with periodic boundary conditions to ilustrate that the systems get stuck
in metastable configurations only when the density-matrix renormalization-group algorithm start with small
number of states m. We also show that the convergence of the energies have a huge improvement if we start the
algorithm with a large number of states m.
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The density-matrix renormalization-group [1, 2] (DMRG)
is one of the most appropriate techniques to study static prop-
erties of the one-dimensional systems at zero temperature
(for a review see, for example, Refs. 3 and 4). It is also
possible to calculate dynamic properties [3–7] and work at
finite-temperature through the DMRG [8–10]. The main ad-
vantage of DMRG, compared with the Lanczos exact diag-
onalization [11], is its capability to obtain the ground-state
properties of very large systems in a well controlled way.
Note that it is also possible to investigate large systems by
Monte Carlo methods. However, the Monte Carlo technique
is not appropriated to study frustrated/fermionic systems due
to the “sign” problem.

Although the DMRG algorithm was developed for one-
dimensional systems, it has been used to treat two-
dimensional systems [12–17]. The procedure consists in
mapping the low-dimensional model on an one-dimensional
model with long range interactions. As first point out by
Liang and Pang [12], the energies of two-dimensional sys-
tems, converge slower than the ones of one-dimensional sys-
tems with short range interactions. The number of states
needed to keep a fixed accuracy seems to increase exponen-
tially with the width of the system.

A similar effect also appears when we study one-
dimensional systems with periodic boundary condition
(PBC) [1, 2]. Since the DMRG was developed, it was ob-
served that the ground state energy (as a function of the num-
ber of states m kept in the truncation process) converge faster
for the system with open boundary condition (OBC) than
the one with PBC. Although it is not completely understood,
it seems that everytime that an operator that acts in the left
block is directly connected with an operator that acts in the
right block (see Fig. 1), the ground state energy convergence
is slower. This has been observed for one-dimensional sys-
tems as well for the two-dimensional systems.

Another difficulty also appears when the left and right
blocks are directly connected. Some times, in the simula-
tions, the system gets stuck in some local minimum of energy
(see Fig. 3(a)), even working with large values of m [18, 19].
This is a serious problem. If the energies do not change in-
creasing m, we may think naively that the true ground state
energy was reached. But in fact, the energy found is far from
the true ground state.

Few years ago [19], White proposed a variation of the
density-matrix renormalization-group algorithm with a sin-
gle center site. This new algorithm has the advantage of (i)
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FIG. 1: A schematic representation of a system with size L = l +
l′ + 2 sites for the standard DMRG method with two center sites.
The left (right) block contain l(l′)sites. The solid lines represent
the interactions.

decreasing the computation time as well as the memory used,
and more important, (ii) to avoid that the system gets stuck
in metastable configurations. As discussed by White [19],
the main reason that the simulations get stuck in metastable
configurations is due to the fact that some important fluctu-
ations between the system and environment are absent. This
happens because the environment blocks lost some relevant
states in the truncation process [20]. In order to incorporate
the missing states for those fluctuations, White suggests that
we have to add in the density-matrix ρ small terms like [19]

∆ρ = a∑
i

A+
i ρAi +h.c. (1)

for each operator Ai that is connected directly with the envi-
ronment. The constant a is a small free parameter, the mag-
nitude of a is chosen to vary from a ∼ 10−2 −10−4 [19].

In fact, using the one-dimensional spin-1 Heisenberg
model with PBC as a test, White found that single-site
DMRG method with the correction to the density-matrix,
gets lower energy than the standard two-sites DMRG method
[19].

It is very important to note that, in the standard DMRG
algorithms, White shown [1, 2] that the new blocks built in
the renormalization process are better represented by the fol-
lowing transformation: Hnew

sis = OHold
sis O†. Where the rows of

O are the m eigenvectors of the density-matrix ρ that are as-
sociated with the largest eigenvalues. So, if we add in the
density matrix the term ∆ρ, the matrix O will not have any-
more all the optimal states. Actually, it is quite surprising
that the DMRG with the correction in the density matrix gets
a lower energy.

In this article, we present a simple procedure to avoid that
the system gets stuck in metastable configurations using the
standard DMRG algorithm with two center sites. Note that
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FIG. 2: A schematic representation of the DMRG algorithm with
two center sites for a finite system with size L. The right and left
blocks are represented by solid line rectangles, while the system
and environment by the dotted line rectangles. In the first part of
the algorithm, we add two new center sites at each interaction until
reach the desized size.

the DMRG method with two center sites demand more CPU
time and memory. But as we see, it has the advantage of ob-
taining lower energy than the single-site DMRG method with
correction in the density-matrix. Besides that, it is free of
non-controlled parameters, and more important, the transfor-
mation matrix O is built considering only the optimal states.

As a benchmark test, in this work, we consider the one-
dimensional spin-1 Heisenberg model

H = J ∑
i

Si ·Si+1,

where the coupling J was set to unity to fix the energy scale.
We investigated the model above with DMRG technique with
OBC and PBC. We use the finite-size algorithm for sizes up
to L = 100 and keeping up to m = 4000 states per block in
the final sweep. The discarded weight, 1−Pm, was typically
about 10−6 −10−13 in the final sweep (see Fig. 4(b)).

Before presenting the results, let us first briefly describe
the DMRG algorithm for finite-size systems, which is cru-
cial in our discussion. We can divide the finite-size DMRG
algorithm in three parts, as illustrated in Fig. 2. In the first

FIG. 3: The error in the energy ∆E for the one-dimensional spin-1
Heisenberg model with size L = 100 and PBC. (a) ∆E as function
of the sweeps. The arrows indicate the value of m in that sweep. (b)
∆E vs. m for some values of m0 (see text).

part, we use the standard infinite system density-matrix al-
gorithm until reach the desired lattice size. This first part of
the algorithm is used only once to obtain the environment
blocks that will be used in the second part of the algorithm.
As we see later, the fact that the system gets stuck in some
metastable configurations is related with this part of the al-
gorithm. Once we reach the desired size we start to sweep,
as illustrated in Fig. 2. Note that in the third part of the al-
gorithm the environment blocks are those blocks built in the
second part of the algorithm. Usually, all the measurements
are done in last iteration of the third part of the algorithm (the
symmetric configuration).

In general, if we want the ground state energy E0(L,m) of
a system with lattice size L and m = m f inal states per block,
we start the first part of the algorithm with m0 < m f inal (typ-
ically is used m0 ∼ 50−100). We increase at each sweep the
states kept in the truncation process until we reach the final
value m f inal .

In Fig. 3(a), we present the error in the energy, defined as
∆E = E0(L,4000)−E0(L,m) [21], as function of the number
of sweeps for the one-dimensional spin-1 Heisenberg model
with size L = 100 under PBC. We have done for each value
of m five sweeps [22]. As we can see in this figure, for
the sweeps with m between 100-400, there is no improve-
ment in the convergence [23]. This is a serious problem.
For instance, if we had defined the error in the energy as
∆E = E0(L,400)− E0(L,m), we could be thought that we
had reached the ground states energy with high accuracy. But
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FIG. 4: (a) ∆E vs. m for the one-dimensional spin-1 Heisenberg
model with lattice size L = 100 under PBC (filled cicles) and OBC
(filled squares). (b) The truncation error 1−Pm vs. m.

in fact, the energy is still far from the true ground state. In
order to avoid this serious problem, as we mentioned before,
White proposed to add in the density-matrix the small term
∆ρ defined in Eq. 1. By using this new approach, White was
able to improve the convergence up to two orders of magni-
tude [19].

In this article, we show another simple procedure to avoid
that the system to get stuck in metastable configurations. Our
main result is presented in Fig. 3(b). In this figure, we show
the error in the energy as function of m for different values of
m0. We clearly see that if we start the first part of the DMRG
algorithm with a small value of m0 (filled triangles down),
the convergence is much worse than the one that started with
m0 = m f inal (filled circles). From this observation, we con-
clude that a simple way to gain a huge improvement in the
convergence is to start the algorithm with large values of m0.
And more important, if we start with m0 = m f inal the system
does not get stuck in metastable configurations. We empha-
size that the system gets stuck in metastable configurations,
as we observe in Fig. 3(b), due to the fact that some impor-
tant states were missed in the truncation process in the first
part of the algorithm.

It is also important to observe that the difference of the en-
ergies obtained with m0 = m f inal and m0 = m f inal/2 is very

small. In particular for m = m f inal = 800 this difference is
2x10−7. So, we can save CPU time starting the DMRG algo-
rithm with m0 = m f inal/2, and even so, we still obtain results
with a very high accuracy.

In Table 1, we show some energies obtained using the
standard DMRG algorithm with two center sites (standard
two-sites) and m0 = m f inal/2 for two values of m f inal . We
also present the energies (taken from Ref. 19) obtained
with the single-site DMRG method with the correction to the
density-matrix (corrected single site). Note that the energies
obtained by the standard DMRG with two center sites are
slightly lower than the ones acquired by White in Ref. 19.

m f inal 340 4000
standard two-sites -140.148 370 -140.148 403 904 64

corrected single-site -140.148 279 -140.148 403 903 92

TABLE I: The ground state energies of the spin-1 Heisenberg chain
with lattice size L = 100 and PBC for two values of m f inal . The
energies for the single-site DMRG method with the correction was
taken from Ref. 19. We use m0 = m f inal/2 in the standard DMRG
with two center sites.

Finally, we point out that indeed the convergences of the
energies have a significant improvement if we use m0 =
m f inal (or m0 = m f inal/2) instead of m0 = 50 for the model
under PBC. However, the energies obtained with PBC still
converge much slower than the ones with OBC, as we can
observed in Fig. 4(a). As we can see in this figure, if we
use OBC and m = 400 we basically obtain the ground state
energy with the precision of the computer. Similar behavior
is also found in the truncation error 1−Pm, as presented in
Fig. 4(b).

In conclusion, in this work we study the one-dimensional
spin-1 Heisenberg model with periodic/free boundary con-
ditions. We shown that the standard DMRG algorithm with
two center sites gets stuck in metastable configurations only
when few states are selected in the grow process (the first
part of the algorithm, where is used the infinity size algo-
rithm). A simple way to obtain a huge improvement in the
convergence is to start the algorithm with the same numbers
of states of the final sweep. Even using this procceding, we
observe that the convergence of the ground state energy for
the system under periodic boundary condition is slower than
the one with open boundary condition. Finally, our results
suggest that it may be possible also that a similar improve-
ment can be reached with this approach if it is consider the
single-site DMRG algorithm without the correction to the
density-matrix.
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[3] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[4] K. Hallberg, Adv. Phys 55, 477 (2006).
[5] K. A. Hallberg, Phys. Rev. B 52, R9827 (2006).
[6] E. Jeckelmann, Phys. Rev. B 66, 045114 (2002).
[7] T. K. Kühner and S. R. White, Phys. Rev. B 60, 335 (1999).
[8] R. J. Bursill, T. Xiang, and G. A. Gehring, J. Phys.: Condens.

Matter 8, L583 (1996).
[9] X. Wang and T. Xiang, Phys. Rev. B 56, 5064 (1997).

[10] N. Shibata, J. Phys. A: Math. Gen. 66, R381 (2003).
[11] E. Dagotto, Rev. Mod. Phys, 66, 763 (1994).
[12] S. Liang and H. Pang, Phys. Rev. B 49, 9214 (1994).
[13] S. R. White, Phys. Rev. Lett. 77, 3633 (1996).
[14] D. J. J. Farnell, Phys. Rev. B 68, 134419 (2003).
[15] T. Xiang, J. Lou, and Z. Su, Phys. Rev. B 64, 104414 (2001).
[16] J. C. Xavier and E. Dagotto, Phys. Rev. Lett. 100, 146403

(2008).
[17] H. C. Jiang, Z. Y. Weng, and D. N. Sheng, Phys. Rev. Lett.

101, 117203 (2008).
[18] S. R. White and D. J. Scalapino, Phys. Rev. Lett. 80, 1275

(1998).
[19] S. R. White, Phys. Rev. B 72, 180403(R) (2005).
[20] Note that some trials, such as adding extra random states, were

tested. However did not work very well (see Ref. 19).
[21] We use m0 = 2000, in the first part of the algorithm, to obtain

the energy E(L,4000).
[22] For m > 2000 we did two sweeps.
[23] Similar results were obtained by White in Ref. 19, although

for m = 600 our error in the energy seems to be one order of
the magnitude smaller than the one presented by White.


