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Note on semiclassical uncertainty relations
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An important manifestation of the Uncertainty Principle, one of the cornerstones of our present understanding of
Nature, is that related to semiclassical localization in phase-space. We wish here to add some notes on the subject
with reference to the canonical harmonic oscillator problem, with emphasis in the concepts of semiclassical
Husimi distributions, the associated Wehrl entropy, escort distributions, and Fisher’s information measure.
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1. INTRODUCTION

It is well known that the uncertainty principle poses a strict
bound to semiclassical localizability in phase-space, namely,
~, instead of the purely quantal ~/2 [1–3]. We will here revisit
the subject by recourse to concepts like escort distributions of
a given order [4] and Fisher’s information [5]. To such an end
we will utilize the semi-classical methodology detailed, for
instance, in Ref. [6], for applying/relating the “escort distri-
bution” concept, joining it with that of information measures
expressed in phase-space vocabulary.

Now, the oldest and most elaborate phase-space (PS) formu-
lation of quantum mechanics is that of Wigner [7–9]: to ev-
ery quantum state a PS function (the Wigner one) can be
assigned. This phase-space function can assume negative
values so that it is considered a quasi-probability density.
This “negative-values’ aspect” was circumvented by Husimi
[10] (among others), in terms of the so-called Husimi prob-
ability distributions µ(x, p) [11]. (Note that whole of quan-
tum mechanics can be completely reformulated in Husimi-
terms [12, 13].) The distribution µ(x, p) can be regarded
as a “smoothed Wigner distribution” [8]. Indeed, µ(x, p) is
a Wigner–distribution DW , smeared over an ~ sized region
(cell) of phase-space [2]. The smearing renders µ(x, p) a pos-
itive function, even if DW does not have such a character. The
semi-classical Husimi probability distribution refers to a spe-
cial type of probability: that for simultaneous but approxi-
mate location of position and momentum in phase-space [2].
We will in this communication highlight special aspects of
q−escort-generalizing Husimi functions so as to show how to
improve on this smearing-degree by diminishing the above re-
ferred to cell-size ~. We are particularly motivated by the fact
that gaining insight into the emergence of classical behavior
(here by recourse to semiclassical ideas) is one of the most
attended to present physics’ problems [14]. Note also that
the subject of phase-space localization is of great relevance
in the field of Quantum Chaos (see, for example, [15–18] and
references therein).

2. THE CONCEPT OF ESCORT DISTRIBUTION

Consider two (normalized) probability distributions f (x),
fq(x), and an “operator” Ôq linking them in the fashion

fq(x) = Ôq f (x) =
f (x)q∫

dx f (x)q . (1)

We say that fq(x) is the order q−associated escort distribu-
tion of f , with q ∈ ℜ. Often, fq is often able to discern in
better fashion than f important details of the phenomenon at
hand [4, 6].
The expectation value of a quantity A evaluated with a
q−escort distribution will be denoted by 〈A〉 fq . For some
physical applications of the concept in statistical mechanics
see, for instance (not an exhaustive list), [6, 19–21], and ref-
erences therein. For physicists, the fundamental reference on
escort distributions is [4].

3. HUSIMI DISTRIBUTIONS AND THEIR WEHRL
ENTROPIES

We review now some material described in detail in Ref. [21],
in particular with reference to information instruments ex-
pressed in phase-space parlance. A main tool is that called
the semi-classical Wehrl entropy W , a measure of phase-
space localization [1, 22] expressed via coherent states |z〉
[2, 23]. Coherent states are eigenstates of a general annihila-
tion operator â, appropriate for the problem at hand [23–25],
i.e.,

â|z〉= z|z〉, (2)

where z is a complex combination of the phase-space coordi-
nates x, p (â is not Hermitian),

z = z(x, p) = Ax+ iB p, (3)

with A, B being â−depending constants. The Wehrl entropy
definition reads

W =−
∫

dΩµ(x, p) lnµ(x, p), dΩ = dxdp/2π~ (4)

clearly a Shannon-like measure [26] to which MaxEnt con-
siderations apply. W is cast in terms of distribution functions
µ(x, p) commonly referred to as Husimi distributions [10]. As
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a measure of localization in phase-space, W exhibits a lower
bound demonstrated by Lieb with reference to the harmonic
oscillator coherent states [27]

W ≥ 1, (5)

on which we will elaborate below.
In turn, Husimi’s µ’s are the diagonal elements of the density
operator ρ̂, that yields all the available physical information
concerning the system at hand [28], in the coherent state basis
{|z〉} [23], i.e.,

µ(x, p)≡ µ(z) = 〈z|ρ̂|z〉. (6)

These are “semi-classical” phase-space distribution functions
associated to the system’s ρ̂ [23–25]. The distribution µ(x, p)
is normalized in the fashion∫

dΩµ(x, p) = 1. (7)

It is shown in Ref. [29] that in the harmonic oscillator case
the associated Husimi distribution is

µ(x, p)≡ µ(z) = (1− e−β~ω)e−(1−e−β~ω)|z|2 , (8)

with β = 1/kBT , T the temperature, which leads to a pure
Gaussian form in the T = 0−limit. It is also obvious that the
q-escort Husimi distribution γq(x, p) will be

γq(x, p) = Ôq µ(x, p) =
µ(x, p)q∫

dΩµ(x, p)q , (9)

which for the HO reduces to

γq(x, p) = q(1− e−β~ω)exp(−q(1− e−β~ω)|z|2). (10)

Its associated Wehrl’s measure becomes

Wq =−
∫

dΩγq(x, p) lnγq(x, p). (11)

i.e.,

Wq = W − lnq, (12)

as it was shown in Ref. [3], and the analytic expression for W
is [2]

W = 1− ln(1− e−β~ω). (13)

By requiring Wq to range between 0 and 1 we easily ascertain
that, at T = 0,

1≤ q≤ e. (14)

The Wq−requirement arises from wanting it to have a lower
upper bound than Liebs’s.

4. PARTICIPATION RATIO

We start here presenting our results. The question of interest
now is to further refine the range of possible values that q may
adopt. We introduce to this effect the “semi-classical” version

of a well-known quantum concept, that of participation ratio
[30], here associated to the q−escort Husimi distribution γq

Rq =
1∫ d2z

π
γq(z)2

, (15)

which, if we explicitly compute , reads

Rq =
2

q(1− e−β~ω)
. (16)

We can note that d2z/π ≡ dxdp/2π~. When the temperature
T = 0 we have Rq = 2/q and, when T goes to infinity, obvi-
ously Rq goes to infinity too. Since it is well-known that [30]
Rq ≥ 1, this immediately entails

q≤ 2. (17)

In view of (14) we have now a better-defined range of values
for q, namely, the new range

1≤ q≤ 2. (18)

5. SEMICLASSICAL FISHER INFORMATION IN
PHASE-SPACE

The last years have witnessed a great deal of activity revolv-
ing around physical applications of Fisher’s information mea-
sure (FIM) [5]. FIM provides one with a powerful variational
principle, the extreme physical information one, that yields
most of the canonical Lagrangians of theoretical physics [5],
characterizing also in quite a proper fashion an “arrow of
time”, alternative to the one associated with Boltzmann’s en-
tropy [31, 32]. The classical Fisher information associated
with translations of a one-dimensional observable x with cor-
responding probability density ρ(x) is [33]

Ix =
∫

dxρ(x)
[

∂ lnρ(x)
∂x

]2

, (19)

and the Cramer–Rao inequality is given by [33]

∆x≥ I−1
x (20)

where ∆x is the variance for the stochastic variable x which is
of the form [33]

∆x2 = 〈x2〉−〈x〉2 =
∫

dxρ(x)x2−
(∫

dxρ(x)x
)2

. (21)

An original, compact expression is here advanced for the
“semiclassical” Fisher information measure, which can be
easily derived from the Wehrl-methodology described in [29].
The new result reads

Isc
F =

1
4

∫ d2z
π

µ(z)
{

∂ lnµ(z)
∂|z|

}2

, (22)
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so that inserting the µ−expression into (22) we find the ana-
lytic form

Isc
F = 1− e−β~ω, (23)

leading to the following limits:

For T → 0 one has Isc
F = 1

For T → ∞ one has Isc
F = 0, (24)

as it should be expected. As for the associated escort-Fisher
measure Iq one easily gets

Iq =
1
4

∫ d2z
π

γq(z)
{

∂ lnγq(z)
∂|z|

}2

, (25)

which using (10) leads to

Iq = q(1− eβ~ω) = qIsc
F , (26)

entailing that 0 < Iq ≤ q.

5.1. Fisher uncertainties

It was shown in Ref. [34] that variances for x and p evaluated
with de Husimi distribution yield a Fisher-weighted uncer-
tainty relation

Isc
F ∆µx∆µ p = ~. (27)

We wish here to show that this relations is invariant under the
escort transformation. In other words, this is tantamount to
replacing µ for γq in the evaluation of the variances and also
Isc for Iq. Now, from Ref. [3] we know that

∆γqx∆γq p =
~

q(1− e−β~ω)
(28)

so that, using also Eq. (25) we easily obtain the (original in
this context) relation

Iq ∆γq x∆γq p = ~, (29)

which is the promised invariance. Contrariwise, removing the
Fisher measure from the above relations it destroys this in-
variance and yields interesting results that we discuss below.

5.2. Husimi uncertainties

Husimi-mean values 〈x2〉, 〈p2〉, 〈x〉, and 〈p〉 have been com-
puted in [3], reading

〈x2〉µ =
2σ2

x

1− e−β~ω
, (30)

〈p2〉µ =
2σ2

p

1− e−β~ω,
(31)

and

〈x〉µ = 〈p〉µ = 0, (32)
with σx = (~/2mω)1/2 and σp = (~mω/2)1/2. T−dependent
uncertainty relations for the harmonic oscillator straightfor-
wardly follow now in the fashion

∆µx∆µ p =
~

1− e−β~ω
, (33)

that, at zero-temperature, lead to the well-known result re-
ferred to in the Introduction (and that we wish to improve
upon), i.e.,

(∆µx∆µ p)T=0 = ~. (34)

We can evaluate these variances again using the γq−escort
distribution, being easily led to

〈x2〉γq =
〈x2〉

q
=

2σ2
x

q(1− eβ~ω)
, (35)

〈p2〉γq =
〈p2〉

q
=

2σ2
p

q(1− eβ~ω)
, (36)

〈x〉γq = 〈p〉γq = 0, (37)

which finally yield the new uncertainty relationship

∆γqx∆γq p =
∆µx∆µ p

q
=

~
q(1− eβ~ω)

. (38)

When the temperature goes to zero we find that

(∆γqx∆γq p)T=0 =
~
q
, (39)

which sensibly improves the typical, cell of size ~-
semiclassical power, and is also better than the ~/

√
q result

of [3]. Indeed, we recover the pure quantum result for the
maximum permissible q−value of 2.

6. CONCLUSIONS

We summarize now our main results. We have advanced three
original expressions, i.e., Eqs. (14), (22), (25) and (29). We
have observed the invariance of the Fisher uncertainties un-
der the escort transformation and, finally, we have shown that
with the help of the escort distributions one is able to reobtain
the canonical Heisenberg’s uncertainties at the semiclassical
level, thus clearly exhibiting the power of the escort-concept.
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