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Nonextensivity in a memory network access mechanism
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We have previously described neurotic psychopathology and psychoanalytic working-through by an associa-
tive memory mechanism, based on a neural network. Memory was initially modelled by a Boltzmann machine
(BM). We simulated known microscopic mechanisms that control synaptic properties and showed that the net-
work self-organizes to a hierarchical, clustered structure. Some properties of the complex networks which result
from this self-organization indicate that a generalization of the BM may be necessary to model memory. We
have thus generalized the memory model, using Generalized Simulated Annealing, derived from the nonexten-
sive formalism, and show some properties of the resulting memory access mechanism.
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1. INTRODUCTION

Early psychoanalytic research regarding the neuroses
found that traumatic and repressed memories are knowledge
which is present in the subject, but which is symbolically
inaccessible to him. It is therefore considered unconscious
knowledge [1, 2]. Freud observed that neurotic patients sys-
tematically repeated symptoms in the form of ideas and im-
pulses, and called this tendency a compulsion to repeat [3],
which he related to repressed or traumatic memory traces [1].

Neurotic analysands have obtained relief and cure of pain-
ful symptoms through a mechanism called working-through.
This procedure aims at developing knowledge regarding the
causes of symptoms by accessing unconscious memories, and
understanding and changing the analysand’s compulsion to
repeat [3]. The technique involves mainly free associative
talking and the interpretation of dreams during analytic ses-
sions, among other processes.

We have proposed a functional and computational model
which describes neurotic behavior as an associative memory
process [4, 5], where the network returns a stored pattern
when it is shown another input pattern sufficiently similar to
the stored one [6]. We modelled the compulsion to repeat
neurotic symptoms [1], by supposing that such a symptom is
acted when the subject is presented with a stimulus which re-
sembles a repressed or traumatic memory trace. The stimulus
causes a stabilization of the neural net onto a minimal energy
state, corresponding to the trace that synthesizes the original
repressed experience, which in turn generates a neurotic re-
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sponse (an act). The neurotic act is not a result of the stimu-
lus as a new situation but a response to the repressed memory.
We mapped the symbolic associative process involved in psy-
choanalytic working-through onto a corresponding process of
reinforcing synapses among memory traces in the brain.

In our model, memory functioning was originally modelled
by a Boltzmann machine (BM). However, the power-law and
generalized g-exponential behavior we have found, for the
node-degree distributions of the network topologies gener-
ated by our model, indicate that they may not be well de-
scribed by Boltzmann-Gibbs (BG) statistical mechanics, but
rather by nonextensive statistical mechanics [7-9]. We have
therefore modelled memory by a generalization of the BM
called Generalized Simulated Annealing (GSA) [8]. In GSA,
the probability distribution of the system’s microscopic con-
figurations is not the BG distribution, assumed in the BM, and
this should affect the chain of associations of ideas which we
are modelling.

In this paper, we review in Section 2 our associative mem-
ory model for neurosis and the self-organizing mechanism for
generating hierarchically clustered memory modules, repre-
senting sensorial and symbolic memories. In Section 3, we
discuss the use of GSA as a memory access mechanism, as
compared to the BM. We then show results from computer
simulations with some properties of these complex networks’
memory access mechanisms. In the last section, we draw
some conclusions and perspectives for future work.

2. ASSOCIATIVE MEMORY MODEL FOR NEUROSIS

We proposed a memory organization, where neurons be-
long to two hierarchically structured modules corresponding
to sensorial and symbolic memories. Traces stored in sen-
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sorial memory represent mental images of stimuli received
by sensory receptors. Symbolic memory stores higher level
representations of traces in sensorial memory, i.e. symbols,
and represents brain structures associated with symbolic pro-
cessing, language and consciousness. Sensorial and sym-
bolic memories interact, producing unconscious and con-
scious mental activity [4].

Memory functioning was initially modelled by a BM with
N neurons, where node states take binary values and connec-
tions have symmetrical weights w;; = wj;. The states S; of
the units take binary output values in {0, 1}. Because of the
symmetry of the connections, there is an energy functional

H({Si}) = ZWUS S, ey

which allows us to define the BG distribution function for

network states
Y ex p[ {S})} , ()

Pao((5:) =exp |- T
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where T is the network temperature parameter. In the BM,
pattern retrieval on the net is achieved by a standard simu-
lated annealing process, in which the network temperature T
is gradually lowered by a factor ., according to the BG dis-
tribution given by Eq. 2. A detailed treatment of the BM may
be found in [6, 10].

Brain neural topology is structured by cooperative and
competitive mechanisms, controlled by neurosubstances,
where neurons interact mainly with spatially close neighbors,
having fewer long-range synaptic connections to more distant
neurons [11, 12]. This is started and controlled by environ-
mental stimulation and is the process whereby the environ-
ment represents itself in the brain.

We summarize the clustering algorithm developed based
on these biological mechanisms [4] to model the self-
organizing process which results in a structured, clustered
topology of each memory as follows. In Step 1, neurons
are uniformly distributed in a bi-dimensional square sheet.
In Step 2, we assume a Gaussian approximation for the
numerical solution of the diffusion equation of neural sub-
stances that control neural competition and cooperation. A
synapse is thus allocated to connect two neurons n; and n;,
according to a Gaussian probability distribution P;; of the
distance that separates the pair, with standard deviation .
A synapse connecting n; to n; has strength proportional to
P;j and weights are symmetrical. Step 3 clusterizes neu-
rons in the memory sheets, based on mechanisms for form-
ing cortical maps [4, 6, 13], where a group of neurons spa-
tially close to each other represents a sensorial stimulus or
an idea. Step 4 regulates synaptic intensities by strengthen-
ing synapses within a cluster and reducing synaptic strength
between clusters, disconnecting them. Neurons, which have
received stronger sensorial stimulation and are more strongly
connected, stimulate their neighborhoods and promote even
stronger connections.

Long-range synaptic growth is energetically more costly
than short-range, and consequently the former is less frequent
in the brain than the latter. We represent association of ideas
or symbols (such as in culture and language) by long-range
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synapses, which should connect clusters by considering the
basic Hebbian learning mechanism [6, 11, 12], where synap-
tic growth between two neurons is promoted by simultaneous
stimulation of the pair. Since we are still unaware of synaptic
distributions which result in such topologies, as a first approx-
imation, we allocated synapses randomly among clusters. A
full description of the algorithm, with memory storage and re-
trieval and working-through simulation, can be found in [4].

3. NETWORK TOPOLOGY AND ASSOCIATIVITY

We have generated 10000 different initial topologies with
the clustering algorithm, for different values of N, such that
Nyens = Nyymp = N /2 of them belong to sensorial and sym-
bolic memories respectively and 6 = 0.58. In [4], we explain
how we represent and interpret these as neurotic topologies,
by linking neurons between sensorial and symbolic memo-
ries more weakly. Other model parameters are also described
in [4]. We then measured the average node degree (k) distri-
butions of these topologies.

Figure 1 [14] shows an asymptotic power law behav-
ior with exponent y ~ —3.2, which indicates scale indepen-
dence [9]. For N = 4000, the deviation from the fit by the
Poisson distribution, Py (k) = Afexp(—A)/k!, for k > 10 is
quite evident. The deviation from Poisson for higher values
of k£ may be attributed to the cooperative-competitive biologi-
cal mechanisms mentioned earlier, which introduce structure.
Smaller values of k correspond to neurons that did not sig-
nificantly participate in the competition-cooperation process
and, hence, distributions for small k are approximately fitted
by Poisson forms.

Figure 1 also shows a fit by a generalization of the g-
exponential function [9, 17] given by

1
Py(k) = pok® —, 3)

[1 - % + ﬁe(frl)uk T

where pg,d,T,u and g are additional adjustable parameters.
The curves indicate that, asymptotically, the power-law and
generalized g-exponential fits are appropriate, with g~ 1.113.
This is a common feature of many biological systems and in-
dicates that they may not be well described by BG statistical
mechanics.

There is no theoretical indication of the exact relation be-
tween network topology and memory dynamics. There have
been some indications that complex systems which present a
power-law behavior, i.e. which are asymptotically scale in-
variant, may be better described by the Nonextensive Statis-
tical Mechanics formalism [8, 9, 15, 16]. Since the neural
systems we are studying do not have only local interactions
and present the scale-free topology characteristic, we have
begun to investigate memory dynamics with a generalized ac-
ceptance probability distribution function [8] for a transition
from state S = {S;} to S, if H(S') > H(S), given by

1
(14 (ga—1)(H(S') —H(S))/T]"/@a=1) " S

where g4 is a model parameter and other variables and pa-
rameters are the same as defined in Section 2.

Pr(S—8)=
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FIG. 1: Average node degree distributions for various N. The fit by
Eq. 3 corresponds to ¢ = 1.113, py = 610, 8 = 4.82, T = 2.34 and
u = 0.014. The Poisson fit corresponds to N = 2950 and A = 6.4.
For large k, there is an exponential finite size effect.

The memory access mechanism is thus modelled by a gen-
eralization of the BM, called Generalized Simulated Anneal-
ing (GSA) [8], derived from the nonextensive formalism,
based on the generalized acceptance probability, given by Eq.
4. In GSA, the probability distribution of the system’s mi-
croscopic configurations is not the BG distribution given by
Eq. 2, assumed in the BM, and this should affect the chain of
associations of ideas which we are modelling. In the BM,
depending on temperature, there is a tendency of reaching
one of the energy minima closer to the initial configuration
presented to the network. The probability distribution given
by Eq. 4 should allow reaching more distant minima of the
energy functional H, from an initial configuration, than the
BM for the same temperature values, which corresponds to
more associativity among memory traces. This implies that
the GSA machine will tend to make many local associations
and, more often than the BM, will also make looser, more
distant associations. This would correspond to a more flexi-
ble and creative memory dynamics in the brain.

To illustrate this, we compare the energies of the pat-
terns accessed by the BM and GSA for an initial tempera-
ture T = 0.2. Since we are searching for local minima, we
use lower initial temperature values and higher values of the
annealing schedule o. In the following simulations, we have
analyzed smaller networks with N = 32, Nyzps = Ny = 16,
since simulation of memory access is very time consuming.
Memory sheets have size 1.5 X 1.5 and ¢ = 0.58. The simu-
lation experiment followed was to perform up to 10000 min-
imization procedures, each one starting from a different ran-
dom network configuration. When a new pattern is found,
it is stored and the procedure is repeated from other random
starting configurations, otherwise the search stops. We note
in Fig. 2 that, for T = 0.2, there are many patterns found by
GSA that are not found using the BM. In these simulations,
GSA appears to visit state space more loosely, while the tra-
ditional BM visits state space more uniformly. For very low
temperatures, the BM functions more like a gradient descent
method and, when presented with randomly generated pat-
terns, the network will stabilize at the closest local minima.
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We compare, in Fig. 3 the frequency with which different
patterns, corresponding to minimum energy states, are found
with the BM and with the GSA for g4 = 1.4, for the same sim-
ulations of Fig. 2. We observe there is degeneracy in network
states. We notice that, in the case of GSA, the frequency with
which the hardest to detect patterns are found is much larger
than the corresponding ones in the BM. In particular, many
patterns that are not found by the BM are detected employing
GSA. This corresponds to the gaps encountered in the spec-
trum shown in Fig. 2(a). GSA tends to prefer the lower energy
states, but will also find, with low probability, higher energy
states. One can observe an exponential upper limit for the
frequency of visits, as a function of energy for GSA. The BM
tends to visit states with a more uniform distribution of fre-
quencies, as is expected from the characteristic of the locality
of visits of state space, which we mentioned before.

4. CONCLUSIONS

We have proposed a memory organization, where two hier-
archically structured modules corresponding to sensorial and
symbolic memories interact, producing sensorial and sym-
bolic activity, representing unconscious and conscious men-
tal processes. This memory structure and functioning, along
with an adaptive learning process, is used to explain a pos-
sible mechanism for neurotic behavior and psychoanalytical
working-through.

The complex network topologies which result from the
self-organizing processes, based on biological mechanisms,
which we have proposed, have properties that are common
features of many biological systems and indicate that they
may not be well described by BG statistical mechanics, but
rather by Nonextensive Statistical Mechanics. These mecha-
nisms are very characteristic of much of the brain’s function-
ing and suggest the use of a GSA algorithm to model memory
functioning and the way we associate ideas in thought. The
study of network quantities such as node degree distributions
and clustering coefficients may indicate possible experiments,
which would validate models such as the one presented here.

We are proceeding in further model refinement and analy-
sis. It is necessary to verify more thoroughly the dependence
of model behavior on its various parameters such as 7' and
. These parameters represent, at least partially, the effects
of neurosubstances such as neural growth factors, neurotrans-
mitters and neuromodulators. Although we do not have ex-
perimental indications of their absolute values, the tuning of
their relative values is fundamental for model stability and
functioning. This may give some insight to basic mechanisms
in real neural networks and the emergence of behavioral as-
pects. We are also interested in trying to map language struc-
ture and processing into network topology and dynamics, al-
though we are not yet sure whether this is possible.

Our main contribution in recent work has been to propose
a neuronal model, based on known microscopical, biologi-
cal brain mechanisms, which describes conscious and uncon-
scious memory activity involved in neurotic behavior, as de-
scribed by Freud. The model emphasizes that symbolic pro-
cessing, language and meaning are important for conscious-
ness. However, we do not sustain or prove that this is the
actual mechanism that occurs in the human brain. Although
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FIG. 2: The numbers taken as abcissas in (a) and in (b) identify the same patterns. In both figures 7 = 0.2. (a) Left, energy of stored patterns
visited by the BM. (b) Right, energy of stored patterns visited by the GSA for g4 = 1.4, for the same initial configurations as in (a).
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FIG. 3: (a) On the left, visiting frequency to stored patterns by the BM for T = 0.2. (b) On the right, similar to (a) for the GSA at g4 = 1.4

and the same temperature.

biologically plausible, in accordance with many aspects de-
scribed by psychodynamic and psychoanalytic clinical expe-
rience, and experimentally based on simulations, the model is
very schematic. It nevertheless seems to be a good metaphor-
ical view of facets of mental phenomena, for which we seek
a neuronal substratum, and suggests directions of search.
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