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Generalized entropy indices to measure α− and β−diversities of macrophytes
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A family of entropy indices constructed in the framework of Tsallis entropy formalism is used to investigate
ecological diversity. It represents a new perspective in ecology because a simple equation can incorporate all
aspects of α−diversity, from richness to dominance and can be also related to a measure of species rarity. In
addition, a generalized Kullback-Leibler distance, constructed in the framework of a nonextensive formalism,
is recalled and used as a measure of β−diversity between two systems. These tools are applied to data relative
to the macrophytes collected from two not far apart arms of Itaipu Reservoir, in Paraná River basin.
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1. INTRODUCTION

Biodiversity is a central issue in ecology and biological
conservation and has attracted the attention of ecologists and
conservationists especially over the last two decades [1, 2].
The number (richness) of species has been largely used as
a measure of biological diversity [3]. However, several in-
dices were created to measure diversity, such as the Shannon-
Wiener index (H) [4, 5], derived from information theory, and
the Simpson index (D) [6], derived from probability theory.
Both indices have been widely used since the 50’s and they
are appealing because they summarize, in a single number,
information on species richness (S) and species evenness (E).
However, controversy on which index should be used exists
in the literature, because diversity (and its broader meaning
“biodiversity”) can not be fully captured in a single num-
ber [7]. For these reasons, the introduction of a broader way
to quantitatively measure diversity is tempting. In this di-
rection, we agree with the idea that generalized diversity in-
dices are superior to the traditional, one-dimensional ones,
which are responsible for point descriptions of ecological as-
semblages, as discussed in Refs. [8–10]. Consequently, it is
necessary to explore the potentialities of generalized entropy
indices within the ecological contexts in more details.

In this paper we first review the most common families
of entropy indices that have been used in ecology in the last
decades, with particular emphasis on the parametric Patil and
Taillies indices (known in statistical physics as Tsallis en-
tropy). This discussion puts in evidence how Tsallis entropy
highly employed in physics and other areas of inquiry can be
useful in ecology. Along with this family of indices, we will
use a recently proposed index developed in the framework
of this family, to explore its characteristics measures of di-
versity in ecology with applications to aquatic macrophytes.
The term “aquatic macrophytes” refers to a diverse group of
aquatic photosynthetic organisms, all large enough to be seen
with bare eyes [11]. Macrophytes are important in aquatic
ecosystems, because they provide food and habitat for a va-
riety of organisms, and interfere in the ecosystem function-
ing [12–14]. Reservoirs are usually suitable for macrophytes
development and they can deteriorate multiple uses of these
artificial environments (navigation, water sports and losses in
the generation of electricity). For this reason, in the Itaipu
Reservoir as well as in other similar systems, investigation of
the diversity of macrophytes has to be correctly addressed.

The data collected in two arms of the Itaipu Reservoir

are firstly analyzed to investigate α−diversity in the frame-
work of Tsallis entropy indices, as extensively discussed in
Ref. [15]. A further development of these ideas is the explo-
ration of the concept of β−diversity. To accomplish this task,
we use the generalized Kullback-Leibler distance, as given by
Patil and Taillie [16] and Borland et al. [17]. In some sense,
this follows the program started by Gorelick to extend Shan-
non’s and Simpson’s indices to simultaneously account for
species richness and relative abundance, but now we consider
a continuous family of q values [18].

This paper is organized as follows. In Sec. 2, we present
in a summarized way the most common families of entropy
indices that are also known in ecological applications, even
if they have not been applied until now as intensively as they
should be. The emphasis lies on the family constructed in the
framework of Tsallis entropy formalism. In Sec. 3, we recall
the definition of an alternative index, also based on Tsallis
entropy, relevant to diversity and evenness. These indices are
applied to a dataset (presented in Sec. 3.1) to quantitatively
investigate the α−diversity of macrophytes. In Sec. 4, we
review the derivation of the generalized Kullback-Leibler in-
formation gain and discuss its relevance for the analysis of
β−diversity. The mathematical tools built in this framework
are applied to a dataset obtained not far apart in the Itaipu
Reservoir as a measure of the dissimilarities among samples.
Finally, some concluding remarks are drawn in Sec. 5.

2. GENERALIZED ENTROPY INDICES IN ECOLOGY

The use of families of indices have a long history in ecol-
ogy [8, 19]. The first family was proposed by Rényi (1961),
who extended the concept of Shannon’s entropy by defining
the entropy of order α, originating a family of α−diversity
indices [19], in the form

R(α) =
1

1−α
ln

W

∑
i=1

pα
i , for α≥ 0 and α 6= 1, (1)

where pi is the probability of the state i and W is the number
of states. The limit α→ 1 recovers the Shannon’s entropy.
Hill (1973) proposed a family of diversity indices that may
be interpreted as mean numbers of species [10, 21]. These
numbers can be written in an entropic form as
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Nα =

(
W

∑
i=1

pα
i

)1/(1−α)

, for α≥ 0 and α 6= 1. (2)

In the same direction, Daróczy (1970) and Aczél and Daróczy
(1975) also proposed an entropy family of type α as [22, 23]:

Hα =
1

21−α−1

(
W

∑
i=1

pα
i −1

)
, for α≥ 0 and α 6= 1.

(3)
It is easy to show that the Shannon’s entropy is a limiting
function of Hα when α→ 1. Patil and Taillie (1979) proposed
a parametric diversity index family β, in the form [24]

∆β =
1
β

(
1−

W

∑
i=1

pβ+1
i

)
, for β 6= 0 and β≥−1. (4)

The Patil and Taillie’s indices have been intensely studied re-
cently in the context of statistical physics [25–27] and are
usually written in the form:

Sq =
1−∑W

i=1 pq
i

q−1
, (5)

known as Tsallis entropy, where q = β+1 is a real parameter
which is considered non-negative to ensure that Sq is concave.
Motivated by these studies, Keylock (2005) explored these
families of indices in an ecological context. A critical discus-
sion of these indices was made by Jost (2006) [10]. Recently,
a new index, Sq∗, was introduced as a unified way to measure
ecological diversity and species rarity [15]. It is based on Patil
and Tallies’s indices and the corresponding evenness. This
family of indices (based on Tsallis entropy) captures multi-
ple aspects of biodiversity and provides a better perspective
that goes beyond the indices currently used in ecology. From
this family, special diversity and evenness indices that bal-
ance commonness and rareness, a practice still unemployed
by ecologists, was proposed [15].

As a family of diversity indices, Eq. (5) interpolates the
well known Simpson (q = 2),

S2 = 1−
W

∑
i=1

p2
i , (6)

and Shannon- Wiener indices (q→ 1),

S1 =−
W

∑
i=1

pi ln pi. (7)

In general, each specific application of the entropy Sq requires
the determination of a particular value of q. This is not an
easy task, especially when dealing with statistical mechanical
systems. On the other hand, a desirable measure of diver-
sity has to take all the relevant aspects that characterize eco-
logical systems into account, from richness to species domi-
nance. Along these lines, when the possible values of q are
considered, Sq becomes a family of diversity indices because

it embodies and accounts for the fundamental properties of
the usual diversity indices in a simple and unified way. For
instance, besides incorporating H and D, the Tsallis entropy
can be used as a measure of richness because when q = 0,
S1 = S−1, with S = W and p0

i = 1, for pi 6= 0.
To end this section, it is necessary to emphasize, as we did

before, that even if the idea of a family of indices and the
indices themselves are known in ecology, they surely were
scarcely applied in the last decades.

3. THE ALTERNATIVE INDEX Sq∗

As underlined above, Sq represents a parametric family of
indices labeled by q, with some limiting values representing
well-known indices that measure biological diversity. Simi-
larly to what happened with Sq, it is possible to introduce a
family of evenness indices also labeled by q [9]. This family
is defined as

Eq =
Sq

Smax
q

, (8)

where

Smax
q =

1−W 1−q

q−1

represents the maximum value of Sq when the constraint
∑W

i=1 pi = 1 is imposed. As before, the limiting cases of
evenness can be obtained by considering particular values of
q [15]. These indices will be used in this section to analyze
part of the data described below.

3.1. The dataset

The Itaipu Reservoir, a major impoundment of the Upper
Paraná River located on the Brazil-Paraguai border, is colo-
nized by a rich assemblage of aquatic plants. From January
2001 to July 2007, two arms located along the reservoir were
studied (São João and São Vicente). Sixty stands (30 per arm)
were surveyed from a boat, at constant and low velocity. In
each stand, two independent samplers spent 10 min observing
or collecting aquatic macrophytes for identification. To repre-
sent the time employed in the analysis presented in this paper,
we fixed the time for the first sample (made in both arms in
January 2001) as t1 = 0 month. After that, 13 other samplings
were made (described in Table I), just to give an idea of the
oscillation between summer and winter in the collects. The
relative abundance (pi) of each species was measured as:

pi =
ni

∑S
i=1 ni

,

where ni is the number of stands in which the species i was
recorded.

In Fig. 1, the evenness introduced in Eq. (8) is shown as
a function of the parameter q for illustrative samplings col-
lected along three consecutive years in the São Vicente arm
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TABLE I: Periods in which the samples were collected in two arms
of the Itaipu Reservoir: São Vicente River and São João River. The
time for the first sample was fixed, for reference, as t1 = 0 and the
others are given in months on the right column.

Sampling Time (months)
January, 2001 t1 = 0

June, 2001 t2 = 5
January, 2002 t3 = 11
August, 2001 t4 = 18

February, 2003 t5 = 24
July, 2003 t6 = 29

January, 2004 t7 = 35
July, 2004 t8 = 41

January, 2005 t9 = 47
July, 2005 t10 = 53

February, 2006 t11 = 60
July, 2006 t12 = 65

January, 2007 t13 = 71
July, 2007 t14 = 77

(see Sec. 3.1). The trend of the curve is the expected one,
showing the existence of a minimum that defines q∗. Each
sample, corresponding to a given arm, is associated to a mini-
mum. The temporal variation of q∗ is depicted in Fig. 2 for all
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FIG. 1: Evenness indices Eq versus q for the data described in
Sec. 3.1: January, 2001 (dotted line), January, 2002 (solid line), and
February, 2003 (dashed line). The minima in these curves correspond
to q = q∗.

samples shown in Table I. It is remarkable that q∗ remained

below the value q = 1 in all months, exhibiting oscillations
(minima in summer and maxima in winter). Notice that this
point q = q∗ defines the maximum deviation of the perfect
equitability (Eq = 1.0) of a given sample. For this reason and
because it was demonstrated the negative relationship between
q∗ and S, the index Eq∗, defined for q = q∗, was interpreted
as a parameter associated with species rarity[15]. For com-
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FIG. 2: q∗ versus the tn (in months) corresponding to the samples de-
scribed in Sec. 3.1. A continuous line in this and subsequent graphs
was drawn to visualize trends.

parative purposes, in Fig. 3 Eq∗ and the usual evenness E (i.e.,
the evenness related to the Shannon’s index) are shown for
São Vicente River along time. The absolute values of these
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FIG. 3: Evennesses indices Eq∗ (dotted line ) and E1 (solid line)
versus tn for the dataset described in Table I.

indices are clearly different, as expected, because they corre-
spond to different values of q, but their values were signifi-
cantly correlated (Pearson = 0.66). However, the new index
Eq∗ enhanced the temporal variations characterizing the sam-
ple. This behavior reinforces the conclusion that Eq∗ can be
helpful as a new index, to be added to the classical ones, in
order to form a family of indices and to achieve a better de-
scription of the diversity. In Fig. 4, the diversity indices corre-
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Sec. 3.1: January, 2001 (dotted line), January, 2002 (solid line), and
February, 2003 (dashed line). The minima in these curves corre-
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samples shown in Table I. It is remarkable that q∗ remained
below the value q = 1 in every month, exhibiting oscillations
(minima in summer and maxima in winter). Notice that this
point q = q∗ defines the maximum deviation of the perfect
equitability (Eq = 1.0) of a given sample. For this reason
and because the negative relationship between q∗ and S was
demonstrated, the index Eq∗, defined for q = q∗, was inter-
preted as a parameter associated with species rarity[15].

For comparative purposes, in Fig. 3 Eq∗ and the usual even-
ness E (i.e., the evenness related to the Shannon’s index) are
shown for São Vicente River along time.

The absolute values of these indices are clearly different,
as expected, because they correspond to different values of q,
but their values were significantly correlated (Pearson = 0.66).
However, the new index Eq∗ enhanced the temporal variations
characterizing the sample. This behavior reinforces the con-

Brazilian Journal of Physics, vol. ??, no. ??, (mes), 200? 3

TABLE I: Periods in which the samples were collected in two the
arms of Itaipu Reservoir: São Vicente River and São João River. The
time for the first sample was fixed, for reference, as t1 = 0 and the
others are given in months on the right column.

Sampling Time (months)

January, 2001 t1 = 0
June, 2001 t2 = 5

January, 2002 t3 = 11
August, 2001 t4 = 18

February, 2003 t5 = 24
July, 2003 t6 = 29

January, 2004 t7 = 35
July, 2004 t8 = 41

January, 2005 t9 = 47
July, 2005 t10 = 53

February, 2006 t11 = 60
July, 2006 t12 = 65

January, 2007 t13 = 71
July, 2007 t14 = 77

pi =
ni

∑S
i=1 ni

,

where ni is the number of stands in which the species i was
recorded.

In Fig. 1, the evenness introduced in Eq. (8) is shown as
a function of the parameter q for illustrative samplings col-
lected along three consecutive years in the São Vicente arm
(see Sec. 3.1). The trend of the curve is the expected one,
showing the existence of a minimum that defines q∗. To each
sample, corresponding to a given arm, is associated a mini-
mum. The temporal variation of q∗ is depicted in Fig. 2 for all

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.94

0.96

0.98

1.00

Ev
en

ne
ss

 (E
q)

q

FIG. 1: Evenness indices Eq versus q for the data described in
Sec. 3.1: January, 2001 (dotted line), January, 2002 (solid line), and
February, 2003 (dashed line). The minima in these curves correspond
to q = q∗.

samples shown in Table I. It is remarkable that q∗ remained

below the value q = 1 in all months, exhibiting oscillations
(minima in summer and maxima in winter). Notice that this
point q = q∗ defines the maximum deviation of the perfect
equitability (Eq = 1.0) of a given sample. For this reason and
because it was demonstrated the negative relationship between
q∗ and S, the index Eq∗, defined for q = q∗, was interpreted
as a parameter associated with species rarity[15]. For com-

0 12 24 36 48 60 72

0.2

0.3

0.4

0.5

0.6

0.7

q*

tn (months)

FIG. 2: q∗ versus the tn (in months) corresponding to the samples de-
scribed in Sec. 3.1. A continuous line in this and subsequent graphs
was drawn to visualize trends.

parative purposes, in Fig. 3 Eq∗ and the usual evenness E (i.e.,
the evenness related to the Shannon’s index) are shown for
São Vicente River along time. The absolute values of these

0 12 24 36 48 60 72

0.90

0.93

0.96

0.99

Ev
en
ne
ss
es

tn (months)

FIG. 3: Evennesses indices Eq∗ (dotted line ) and E1 (solid line)
versus tn for the dataset described in Table I.

indices are clearly different, as expected, because they corre-
spond to different values of q, but their values were signifi-
cantly correlated (Pearson = 0.66). However, the new index
Eq∗ enhanced the temporal variations characterizing the sam-
ple. This behavior reinforces the conclusion that Eq∗ can be
helpful as a new index, to be added to the classical ones, in
order to form a family of indices and to achieve a better de-
scription of the diversity. In Fig. 4, the diversity indices corre-

FIG. 2: q∗ versus the tn (in months) corresponding to the samples de-
scribed in Sec. 3.1. A continuous line in this and subsequent graphs
was drawn to visualize trends.

Brazilian Journal of Physics, vol. ??, no. ??, (mes), 200? 3

TABLE I: Periods in which the samples were collected in two the
arms of Itaipu Reservoir: São Vicente River and São João River. The
time for the first sample was fixed, for reference, as t1 = 0 and the
others are given in months on the right column.

Sampling Time (months)

January, 2001 t1 = 0
June, 2001 t2 = 5

January, 2002 t3 = 11
August, 2001 t4 = 18

February, 2003 t5 = 24
July, 2003 t6 = 29

January, 2004 t7 = 35
July, 2004 t8 = 41

January, 2005 t9 = 47
July, 2005 t10 = 53

February, 2006 t11 = 60
July, 2006 t12 = 65

January, 2007 t13 = 71
July, 2007 t14 = 77

pi =
ni

∑S
i=1 ni

,

where ni is the number of stands in which the species i was
recorded.

In Fig. 1, the evenness introduced in Eq. (8) is shown as
a function of the parameter q for illustrative samplings col-
lected along three consecutive years in the São Vicente arm
(see Sec. 3.1). The trend of the curve is the expected one,
showing the existence of a minimum that defines q∗. To each
sample, corresponding to a given arm, is associated a mini-
mum. The temporal variation of q∗ is depicted in Fig. 2 for all

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.94

0.96

0.98

1.00

Ev
en

ne
ss

 (E
q)

q

FIG. 1: Evenness indices Eq versus q for the data described in
Sec. 3.1: January, 2001 (dotted line), January, 2002 (solid line), and
February, 2003 (dashed line). The minima in these curves correspond
to q = q∗.

samples shown in Table I. It is remarkable that q∗ remained

below the value q = 1 in all months, exhibiting oscillations
(minima in summer and maxima in winter). Notice that this
point q = q∗ defines the maximum deviation of the perfect
equitability (Eq = 1.0) of a given sample. For this reason and
because it was demonstrated the negative relationship between
q∗ and S, the index Eq∗, defined for q = q∗, was interpreted
as a parameter associated with species rarity[15]. For com-

0 12 24 36 48 60 72

0.2

0.3

0.4

0.5

0.6

0.7

q*

tn (months)

FIG. 2: q∗ versus the tn (in months) corresponding to the samples de-
scribed in Sec. 3.1. A continuous line in this and subsequent graphs
was drawn to visualize trends.

parative purposes, in Fig. 3 Eq∗ and the usual evenness E (i.e.,
the evenness related to the Shannon’s index) are shown for
São Vicente River along time. The absolute values of these

0 12 24 36 48 60 72

0.90

0.93

0.96

0.99

Ev
en
ne
ss
es

tn (months)

FIG. 3: Evennesses indices Eq∗ (dotted line ) and E1 (solid line)
versus tn for the dataset described in Table I.

indices are clearly different, as expected, because they corre-
spond to different values of q, but their values were signifi-
cantly correlated (Pearson = 0.66). However, the new index
Eq∗ enhanced the temporal variations characterizing the sam-
ple. This behavior reinforces the conclusion that Eq∗ can be
helpful as a new index, to be added to the classical ones, in
order to form a family of indices and to achieve a better de-
scription of the diversity. In Fig. 4, the diversity indices corre-

FIG. 3: Evennesses indices Eq∗ (dotted line ) and E1 (solid line)
versus tn for the dataset described in Table I.

clusion that Eq∗ can be helpful as a new index, to be added to
the classical ones, in order to form a family of indices and to
achieve a better description of the diversity.

In Fig. 4, the diversity indices corresponding to the data
of Table I are shown. The new index, Sq∗ (Fig. 4b) is
shown along with the classical ones of Shannon and Simp-
son (Fig. 4a). Again, it is remarkable that Sq∗ is the one
that best evidences the oscillations and the marked variations
along time. In fact, the Simpson index (S2) seems to remain
essentially constant (CV = 0.064) whereas the Shannon index
(S1) oscillates with low amplitude (CV = 0.339) as compared
with Sq∗ (CV = 8.99).

4. THE GENERALIZED KULLBACK INFORMATION
GAIN

As stated before, the Shannon’s entropy can be obtained as
a particular case of Eq. (5) when q→ 1, thus yielding Eq. (7),
which can be rewritten as

S =
W

∑
i=1

piIi, (9)
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FIG. 4: Diversity indices versus tn for the data of Table I: (a) the clas-
sical indices S1 = H (Shannon, circles) and S2 = D (Simpson, squares)
and (b) the new index, Sq∗.
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As stated before, the Shannon’s entropy can be obtained as
a particular case of Eq. (5) when q→ 1, thus yielding Eq. (7),
which can be rewritten as

S =
W

∑
i=1

piIi, (9)

where Ii = − ln pi, which is the information content of out-
come i. The change of information, ∆Ii, between two sets of
measurements can be defined as

∆Ii =−
(
ln p′i− ln pi

)
, (10)

where p′i denote the first set of measurements and pi the new
set of measurements. The so-called Kullback-Leibler infor-
mation gain or relative entropy is defined as [17]:

K(p, p′) =
W

∑
i=1

pi∆Ii =
W

∑
i=1

pi ln
pi

p′i
. (11)

Similarly, it is possible to show that a generalized Kullback-
Leibler measure follows naturally from the standard deviation
of the Kullback entropy by employing the nonextensive for-
malism. One obtains [17]:

Kq(p, p′) =
W

∑
i=1

pq
i

1−q

(
p1−q

i − p′1−q
i

)

=
W

∑
i=1

pi

1−q

[
1−
(

pi

p′i

)q−1
]

. (12)

When q→ 1, we get Eq. (11); for q = 0, Kq(p) = 0. It is pos-
sible also to introduce a distance connected with Simpson’s
measure (q = 2):

K2(p, p′) = 1−
W

∑
i=1

p2
i

p′i
. (13)

In ecology, α−diversity has been defined as the species
diversity within community plots [28]. Thus, the analy-
sis presented in previous section concerns specifically with
α−diversity. The β−diversity is, however, defined as the
amount of turnover in species composition from one loca-
tion to another [29]. To investigate β−diversity some indices
have been proposed. Among them, we mention the qualitative
Sorensen’s index, defined as

Cs =
2N

SA +SB
, (14)

where N is the number of species found in both sites and SA
and SB are the number of species found in sites A and B, re-
spectively. The other index is the quantitative Morita-Horn
index:

CmH =
2∑i NiANiB

(∑i N2
iA/N2

A +∑i N2
iB/N2

B)NANB
, (15)

where NA and NB are the total number of individuals and NiA,
NiB are the number of individuals of the ith species in sites
A and B, respectively. These are similarity indices, i.e., they
can be used for quantifying community changes due to natural
succession or environmental perturbations [30].

In another direction, dissimilarity measures between com-
munities have been proposed [29]. In particular, Tóthmérész
suggested to summarize β−diversity using the distribution of
plot-to-plot dissimilarities within a vegetation sample instead
of scalars [31]. Some years before, Wilson and Mohler [32]

FIG. 4: Diversity indices versus tn for the data of Table I: (a) the
classical indices S1 = H (Shannon, circles) and S2 = D (Simpson,
squares) and (b) the new index, Sq∗.
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mation gain or relative entropy is defined as [17]:

K(p, p′) =
W

∑
i=1

pi∆Ii =
W

∑
i=1

pi ln
pi

p′i
. (11)

Similarly, it is possible to show that a generalized Kullback-
Leibler measure follows naturally from the standard deviation
of the Kullback entropy by employing the nonextensive for-
malism. One obtains [17]:

Kq(p, p′) =
W

∑
i=1

pq
i

1−q

(
p1−q

i − p′1−q
i

)

=
W

∑
i=1

pi

1−q

[
1−
(

pi

p′i

)q−1
]

. (12)

When q→ 1, we get Eq. (11); for q = 0, Kq(p) = 0. It is pos-
sible also to introduce a distance connected with Simpson’s
measure (q = 2):

K2(p, p′) = 1−
W

∑
i=1

p2
i

p′i
. (13)

In ecology, α−diversity has been defined as the species
diversity within community plots [28]. Thus, the analy-
sis presented in previous section concerns specifically with
α−diversity. The β−diversity is, however, defined as the
amount of turnover in species composition from one loca-
tion to another [29]. To investigate β−diversity some indices
have been proposed. Among them, we mention the qualitative
Sorensen’s index, defined as

Cs =
2N

SA +SB
, (14)

where N is the number of species found in both sites and SA
and SB are the number of species found in sites A and B, re-
spectively. The other index is the quantitative Morita-Horn
index:

CmH =
2∑i NiANiB

(∑i N2
iA/N2

A +∑i N2
iB/N2

B)NANB
, (15)

where NA and NB are the total number of individuals and NiA,
NiB are the number of individuals of the ith species in sites
A and B, respectively. These are similarity indices, i.e., they
can be used to quantify community changes due to natural
succession or environmental perturbations [30].

In another direction, dissimilarity measures between com-
munities have been proposed [29]. In particular, Tóthmérész
suggested summarizing β−diversity using the distribution of
plot-to-plot dissimilarities within a vegetation sample instead
of scalars [31]. Some years before, Wilson and Mohler [32]
proposed to measure compositional change along gradients
with data on species relative abundance, by means of the
“gradient rescaling method”. By expanding on an idea
of Tóthmérész [31], Ricotta and Avena [29] proposed to
characterize β−diversity for data on species relative abun-
dances based on the distribution of Kullback’s information-
theoretical distance of single plots from the pooled sample.
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As a natural extension of this idea, in this paper we propose
to quantitatively investigate some aspects of the β−diversity
by using the generalized Kullback-Leibler distance, Eq. (12),
introduced above. To illustrate the usefulness of this ap-
proach, we applied this measure to the dataset presented in
Sec. 3.1. We used two close arms of the Itaipu Reservoir just
to emphasize the power of Kq to enhance the dissimilarities
among these two (in principle) similar communities (as shown
in Fig. 5). In Fig. 6, the logarithm of the Kullback-Leibler
distance correspondent to the Shannon and Simpson indices
are shown. Both indices have the same overall trend. How-
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FIG. 6: Logarithm of the Kullback-Leibler distance vs. time for
Shannon q→ 1 (circles) and Simpson q = 2 (squares) limits.

ever, the distance connected with q = 2 (Simpson) enhanced
the differences between the two systems. On the other hand,
it is clear that the similarity between the two sites is low for
January 2002, January 2005, and January 2007. This is the
summer period, in which the two systems present similar di-
versity. However, in the winter, represented by the months
June 2001, July 2003, and July 2005, the values of K2(p, p′)
are high, indicating that the species found in these arms are
different. These preliminary results confirm the potentiality
of a generalized distance to be associated with the β− diver-
sity investigations in ecology.

5. CONCLUDING REMARKS

As we have emphasized above, the idea of a family of di-
versity indices is not novice in ecology, but it has not been
explored in all its potentialities. After reviewing the main
families proposed in this endeavor, we used a family of in-
dices constructed in the framework of the Tsallis’s entropy
formalism to investigate diversity of aquatic macrophytes in
two arms of the Itaipu Reservoir. To accomplish this task, we
used the new indices linked with this formalism. In particular,
we used an index connected with the special value of q = q∗,
the parameter characterizing this family of entropy indices,
which meaning still deserves investigation. We found that the
indices associated to q∗, i.e., the value for which the evenness
presented its maximum deviation from the perfect equitability
can be particularly useful as an additional information to ex-
plore α−diversity in ecological samples. In addition, we also
discussed the possible role of a Kullback-Leibler distance in
investigations of β−diversity. In this sense, this paper rep-
resents a step further to carry on a detailed investigation of
a broad aspect of diversity, at least for two fundamental rea-
sons: i) it demonstrates the applicability of an unified tool to
describe α−diversity by means of a set of unified parameters,
embodying diversity from richness to dominance and species
rarity; ii) it permits us to face aspects of β−diversity in the
same framework and with the same mathematical tools used
for α−diversity. We are then convinced that this approach,
based on a nonextensive formalism, can be relevant not only
in the framework of statistical physics but will also find broad
applications in ecological systems.
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As a natural extension of this idea, in this paper we propose
to quantitatively investigate some aspects of the β−diversity
by using the generalized Kullback-Leibler distance, Eq. (12),
introduced above. To illustrate the usefulness of this ap-
proach, we applied this measure to the dataset presented in
Sec. 3.1. We used two close arms of the Itaipu Reservoir
just to emphasize the power of Kq to enhance the dissimilar-
ities among these two (in principle) similar communities (as
shown in Fig. 5). In Fig. 6, the logarithm of the Kullback-
Leibler distance correspondent to the Shannon and Simpson
indices is shown.
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ever, the distance connected with q = 2 (Simpson) enhanced
the differences between the two systems. On the other hand,
it is clear that the similarity between the two sites is low for
January 2002, January 2005, and January 2007. This is the
summer period, in which the two systems present similar di-
versity. However, in the winter, represented by the months
June 2001, July 2003, and July 2005, the values of K2(p, p′)
are high, indicating that the species found in these arms are
different. These preliminary results confirm the potentiality
of a generalized distance to be associated with the β− diver-
sity investigations in ecology.
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embodying diversity from richness to dominance and species
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