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As an essential component in the demonstration of an atypical, q-deformed, statistical mechanical structure
in the dynamics of the Feigenbaum attractor we expose, at a previously unknown level of detail, the features of
the dynamics of trajectories that either evolve towards the Feigenbaum attractor or are captured by its matching
repellor. Amongst these features are the following: i) The set of preimages of the attractor and of the repellor are
embedded (dense) into each other. ii) The preimage layout is obtained as the limiting form of the rank structure
of the fractal boundaries between attractor and repellor positions for the family of supercycle attractors. iii) The
joint set of preimages for each case form an infinite number of families of well-defined phase-space gaps in the
attractor or in the repellor. iv) The gaps in each of these families can be ordered with decreasing width in accord
to power laws and are seen to appear sequentially in the dynamics generated by uniform distributions of initial
conditions. v) The power law with log-periodic modulation associated to the rate of approach of trajectories
towards the attractor (and to the repellor) is explained in terms of the progression of gap formation. vi) The
relationship between the law of rate of convergence to the attractor and the inexhaustible hierarchy feature of
the preimage structure is elucidated. We discuss the function of these properties in the atypical thermodynamic
framework existing at the period-doubling transition to chaos.
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1. INTRODUCTION

A fundamental question in statistical physics is to know
whether the structure of ordinary equilibrium statistical me-
chanics falters when its fundamental properties, phase space
mixing and ergodicity, breakdown. The chaotic dynamics dis-
played by dissipative nonlinear systems, even those of low
dimensionality, possesses these two crucial conditions, and
acts in accordance with a formal structure analogous to that
of canonical statistical mechanics, in which thermodynamic
concepts meet their dynamical counterparts [1]. At the transi-
tion between chaotic and regular behaviors, classically repre-
sented by the Feigenbaum attractor [1], the Lyapunov expo-
nent vanishes and chaotic dynamics turns critical. Trajecto-
ries cease to be ergodic and mixing; they retain memory back
to their initial positions and fluctuate according to complex
deterministic patterns [2]. Under these conditions it is of in-
terest to check up whether the statistical-mechanical structure
subsists, and if so, to examine if it is unchanged or if it has
acquired a new form.

With this purpose in mind, the exploration of possible lim-
its of validity of the canonical statistical mechanics, an ideal
model system is a one-dimensional map at the transition be-
tween chaotic and regular behaviors, represented by well-
known critical attractors, such as the Feigenbaum attractor.
So far, recent studies [3] have concentrated on the dynamics
inside the attractor and have revealed that these trajectories
obey remarkably rich scaling properties not known previously
at this level of detail [4]. The results are exact and clarify [4]
the relationship between the original modification [5] [2] of
the thermodynamic approach to chaotic attractors [6] [7] [8]
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for this type of incipiently chaotic attractor, and some aspects
of the q-deformed statistical mechanical formalism [9] [10]
[11]. The complementary part of the dynamics, that of ad-
vance on the way to the attractor, has, to our knowledge, not
been analyzed, nor understood, with similar degree of thor-
oughness. The process of convergence of trajectories into the
Feigenbaum attractor poses several interesting questions that
we attempt to answer here and elsewhere [12] based on the
comprehensive new knowledge presented below. Prominent
amongst these questions is the nature of the connection be-
tween the two sets of dynamical properties, within and out-
side the attractor. As it turns out [12], these two sets of
properties are related to each other in a statistical-mechanical
manner, i.e. the dynamics at the attractor provides the con-
figurations in a partition function while the approach to the
attractor is described by an entropy obtained from it. As we
show in [12], this statistical-mechanical property conforms to
a q-deformation [9] of the ordinary exponential weight statis-
tics.

Trajectories inside the attractor visit positions forming os-
cillating log-periodic patterns of ever increasing amplitude.
However, when the trajectories are observed only at spec-
ified times, positions align according to power laws, or q-
exponential functions that share the same q-index value [4]
[10]. Further, all such sequences of positions can be shifted
and seen to collapse into a single one by a rescaling oper-
ation similar to that observed for correlations in glassy dy-
namics, a property known as ‘aging’ [10] [13]. The struc-
ture found in the dynamics is also seen to consist of a fam-
ily of Mori’s q-phase transitions [2], via which the connec-
tion is made between the modified thermodynamic approach
and the q-statistical property of the sensitivity to initial condi-
tions [4] [10]. On the other hand, a foretaste of the nature of
the dynamics outside the critical attractor can be appreciated
by considering the dynamics towards the so-called supercy-
cles, the family of periodic attractors with Lyapunov expo-
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nents that diverge towards minus infinity. This infinite family
of attractors has as accumulation point the transition to chaos,
which for the period-doubling route is the Feigenbaum attrac-
tor. As described in Ref. [14], the basins of attraction for the
different positions of the cycles develop fractal boundaries
of increasing complexity as the period-doubling structure ad-
vances towards the transition to chaos. The fractal bound-
aries, formed by the preimages of the repellor, display hierar-
chical structures organized according to exponential cluster-
ings that manifest in the dynamics as sensitivity to the final
state and transient chaos. The hierarchical arrangement ex-
pands as the period of the supercycle increases [14].

Here we present details on the general procedure followed
by trajectories to reach the Feigenbaum attractor, and its com-
plementary repellor. We consider an ensemble of uniformly
distributed initial conditions x0 spanning the entire phase
space interval. This is a highly structured process encoded
in sequences of positions shared by as many trajectories with
different x0. There is always a natural dynamical ordering in
the x0 as any trajectory of length t contains consecutive posi-
tions of other trajectories of lengths t−1, t−2, etc. with ini-
tial conditions x′0, x′′0 , etc. that are images under repeated map
iterations of x0. The initial conditions form two sets, dense
in each other, of preimages each the attractor and the repel-
lor. There is an infinite-level structure within these sets that,
as we shall see, is reflected by the infinite number of families
of phase-space gaps that complement the multifractal layout
of both attractor and repellor. These families of gaps appear
sequentially in the dynamics, beginning with the largest and
followed by other sets consisting of continually increasing el-
ements with decreasing widths. The number of gaps in each
set of comparable widths increases as 2k, k = 0,1, . . . and their
widths can be ordered according to power laws of the form
α−k, where α is Feigenbaum’s universal constant α' 2.5091.
We call k the order of the gap set. Furthermore, by consider-
ing a fine partition of phase space, we determine the overall
rate of approach of trajectories towards the attractor (and to
the repellor). This rate is measured by the fraction of bins
W (t) still occupied by trajectories at time t [15]. The power
law with log-periodic modulation displayed by W (t) [15] is
explained in terms of the progression of gap formation, and
its self-similar features are seen to originate in the unlimited
hierarchy feature of the preimage structure.

Before proceeding to expand our description in the follow-
ing sections we recall [16] the general definition of the in-
terval lengths or diameters dN,m that measure the bifurcation
forks that form the period-doubling cascade sequence in the
logistic map fµ(x) = 1− µx2, −1 ≤ x ≤ 1, 0 ≤ µ ≤ 2. These
quantities are measured when considering the superstable pe-
riodic orbits of lengths 2N , i.e. the 2N-cycles that contain the
point x = 0 at µN < µ∞, where µ∞ = 1.401155189 . . . is the
value of the control parameter µ at the period-doubling accu-
mulation point [1]. The positions of the limit 2∞-cycle con-
stitute the Feigenbaum attractor. The dN,m in these orbits are
defined (here) as the (positive) distances of the elements xn,

m = 0,1,2, . . . ,2N−1, to their nearest neighbors f (2N−1)
µN

(xm),
i.e.

dN,m ≡
∣∣∣ f (m+2N−1)

µN
(0)− f (m)

µN
(0)

∣∣∣ . (1)

For large N, dN,0/dN+1,0 ' α. Notice that infinitely many

other sequences of superstable attractors appear at the period-
doubling cascades within the windows of periodic attractors
for values of µ > µ∞. At each of these period-doubling ac-
cumulation points occur replicas of the Feigenbaum attrac-
tor. We present explicit results for the logistic map, that has
a quadratic maximum, but the results are easily extended to
unimodal maps with general nonlinearity z > 1.

Central to our discussion is the following broad property:
Time evolution at µ∞ from t = 0 up to t→∞ traces the period-
doubling cascade progression from µ = 0 up to µ∞. Not only
is there a close resemblance between the two developments
but also quantitative agreement. For instance, the trajectory
inside the Feigenbaum attractor with initial condition x0 = 0,
the 2∞-supercycle orbit, takes positions xt such that the dis-
tances between appropriate pairs of them reproduce the diam-
eters dN,m defined from the supercycle orbits with µN < µ∞.
See Fig. 1, where the absolute value of positions and log-
arithmic scales are used to illustrate the equivalence. This
property has been key to obtain rigorous results for the sen-
sitivity to initial conditions for the Feigenbaum attractor [3],
[10].

FIG. 1: Left panel: Absolute value of attractor positions for the lo-
gistic map fµ(x) in logarithmic scale as a function of the logarithm
of the control parameter difference µ∞−µ. Right panel: Absolute
value of trajectory positions for the logistic map fµ(x) at µ∞ with
initial condition x0= 0 in logarithmic scale as a function of the log-
arithm of time t, also show by the numbers close to the circles. The
arrows indicate the equivalence between the diameters dN in the left
panel, and position differences DN with respect to x0= 0 in the right
panel.

2. PREIMAGE STRUCTURE OF ATTRACTOR AND
REPELLOR

A convenient way to visualize how the preimages for the
Feigenbaum attractor and repellor are distributed and orga-
nized is to consider the simpler arrangements for the preim-
ages of the supercycles’ attractors and repellors. These ar-
rangements have been characterized in detail recently [14] for
supercycles of small periods 2N , N = 1,2, . . ., and it was ob-
served how they become more complicated very rapidly as
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N grows [14]. For N = 1 the preimages of the attractor be-
long to only two basins, one for each position of the attractor,
separated by the positions of the fixed-point repellor and its
single preimage. For N = 2 the attractor preimages are dis-
tributed into four basins, one pair of them separated from the
other pair by a fractal boundary built around the positions of
the first or ‘old’ N = 1 repellor and its preimage. This fractal
boundary consists of the infinite number of preimages that the
old repellor has acquired and this in turn cluster exponentially
around it and around its ‘old’ preimage. For N = 3 the at-
tractor preimages are distributed into eight basins, four of the
basins are separated from the remaining four by a more com-
plex fractal boundary sector, built again about the positions
of the old N = 1 repellor and its old preimage. This sector is
made of an infinite number of replicas of the fractal bound-
ary for the case with N = 2, the increasingly more numerous
preimages of the old repellor form now an infinite set of clus-
ters, grouping themselves exponentially around it and around
its old preimage. The basins for the positions of the attractor
are also separated from each other in pairs via other fractal
boundary segments with the characteristics of the N = 2 case,
structures that appear centered now around the next genera-
tion of repellors (two) and their first preimages (two). In the
panels of Fig. 2 we show the relative times t f required to
reach the attractor as a function of the initial condition x0 for
the supercycles with N = 1, 2, and 3, respectively. The log-
arithmic horizontal scale in these figures relative to the posi-
tion of the old repellor reveals the main characteristic of the
preimage structure for each case. These figures illustrate our
description above. See Ref. [14] for the definition of t f and
further details.Brazilian Journal of Physics, vol. ??, no. ??, (mes), 2009 3

2. PREIMAGE STRUCTURE OF ATTRACTOR AND
REPELLOR

A convenient way to visualize how the preimages for the
Feigenbaum attractor and repellor are distributed and orga-
nized is to consider the simpler arrangements for the preim-
ages of the supercycles’ attractors and repellors. These ar-
rangements have been characterized in detail recently [14] for
supercycles of small periods 2N , N = 1,2, . . ., and it was ob-
served how they become more complicated very rapidly as
N grows [14]. For N = 1 the preimages of the attractor be-
long to only two basins, one for each position of the attractor,
separated by the positions of the fixed-point repellor and its
single preimage. For N = 2 the attractor preimages are dis-
tributed into four basins, one pair of them separated from the
other pair by a fractal boundary built around the positions of
the first or ‘old’ N = 1 repellor and its preimage. This fractal
boundary consists of the infinite number of preimages that the
old repellor has acquired and this in turn cluster exponentially
around it and around its ‘old’ preimage. For N = 3 the at-
tractor preimages are distributed into eight basins, four of the
basins are separated from the remaining four by a more com-
plex fractal boundary sector, built again about the positions
of the old N = 1 repellor and its old preimage. This sector is
made of an infinite number of replicas of the fractal bound-
ary for the case with N = 2, the increasingly more numerous
preimages of the old repellor form now an infinite set of clus-
ters, grouping themselves exponentially around it and around
its old preimage. The basins for the positions of the attractor
are also separated from each other in pairs via other fractal
boundary segments with the characteristics of the N = 2 case,
structures that appear centered now around the next genera-
tion of repellors (two) and their first preimages (two). In the
panels of Fig. 2 we show the relative times t f required to reach
the attractor as a function of the initial condition x0 for the su-
percycles with N = 1, 2, and 3, respectively. The logarithmic
horizontal scale in these figures relative to the position of the
old repellor reveals the main characteristic of the preimage
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As the period 2N increases the preimage structures for the
attractor and repellor become more and more involved, with
the appearance of new features made up of an infinite repeti-
tion of building blocks. Each of these new blocks is equivalent
to the more dense structures present in the previous 2N−1 case.
In addition all other structures in the earlier 2N−2, ..., 21 cases
are still present. Thus a hierarchical organization of preim-
ages is built upon as N increases, so that the preimage layout
for the Feigenbaum attractor and repellor is obtained as the
limiting form of the rank structure of the fractal boundaries
between the finite period attractor position basins. The fractal
boundaries consist of sub-basins of preimages for the attractor
positions separated by preimages of the repellor positions. As
N increases the sizes of these sub-basins decrease while their
numbers increase and the fractal boundaries cover a progres-
sively larger part of total phase space. See Fig. 2 and also
Figs. 3 and 6 of Ref. [14].
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FIG. 2: Time of flight t f (x), the number of iterations necessary for
a trajectory with initial condition at x to reach an attractor position
as a function of the distance, in logarithmic scale, between x and
the repellor position at y1. The top panel is for the twice-iterated
map f (2)

µ1
(x), µ1 = 1, y1 ' 0.6180340. The middle panel for f (4)

µ2
(x),

µ2 ' 1.31070264, y1 ' 0.571663. And the bottom panel for f (8)
µ3

(x),
µ3' 1.38154748, y1' 0.56264475. The values of x near the peaks
(open circles) correspond to initial conditions very close to the repel-
lor preimages. See text.

Interestingly, the sizes of all boundary sub-basins vanish in
the limit N → ∞, and the preimages of both attractor and re-
pellor positions become two sets - with dimension equal to the
dimension of phase space - dense in each other. In the limit
N → ∞ there is an attractor preimage between any two re-
pellor preimages and the other way round. (The attractor and
repellor are two multifractal sets with dimension d f ' 0.538...
[16]). To visualize this limiting situation consider that the po-
sitions for the repellor and their first preimages of the 2N-th

supercycle appear located at the inflection points of f (2N )
µN

(x),
and it is in the close vicinity of them that the mentioned frac-
tal boundaries form. To illustrate how the sets of preimage
structures for the Feigenbaum attractor and repellor develop

we plot in Fig. 3 the absolute value of ln
∣∣∣d f (2N)

µN
/dx

∣∣∣ for
N = 1,2, ...,4 vs. x. The maxima in this curve correspond

to the inflection points of f (2N)
µN

(x) at which the repellor posi-
tions or their first preimages are located. As shown in Fig. 3,
when N increases the number of maxima proliferate at a rate
faster than 2N .
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manifests in the dynamics is via the successive formation
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FIG. 3: The absolute value of d f (2N)
µN

(x)/dx, for N = 1,2,3 and 4,
in logarithmic scale as a function of x in the interval 0≤ x≤ 1. The
proliferation of maxima conveys the development of the hierarchical
structure of repellor preimages. See text.

itly this process we consider an ensamble of initial conditions
x0 spread out uniformly across the interval −1 ≤ x0 ≤ 1 and
keep track of their positions at subsequent times. In Figs. 4
to 6 we illustrate the outcome for the supercycles of periods
22, 23 and 24, respectively, where we have plotted the time
evolution of an ensemble composed of 10000 trajectories. In
the left panel of each figure we show the absolute value of
the positions |xt | vs time t, while, for comparison purposes,
in the right panel we show the absolute value of |x| both vs

f (2N)
µN

(x) and vs
∣∣∣d f (2N)

µN
/dx

∣∣∣ to facilitate identification of the
attractor and repellor positions. The labels k = 1,2,3, . . . indi-
cate the order of the gap set (or equivalently the order of the
repellor generation set [14]). In Fig. 4 (with µ = µ2) one ob-
serves a large gap opening first that contains the old repellor
(k = 0) in its middle region and two smaller gaps opening af-
terward that contain the two repellors of second generation
(k = 1) once more around the middle of them. In Fig. 5
(with µ = µ3) we initially observe the opening of a primary
and the two secondary gaps as in the previous µ = µ2 case,
but subsequently four new smaller gaps open each around the
third generation of repellor positions (k = 2). In Fig. 6 (with
µ = µ4) we observe the same development as before, however
at longer times eight additional and yet smaller gaps emerge
each around the fourth generation of repellor positions (k = 3).
Naturally, this process continues indefinitely as N →∞ and il-
lustrates the property mentioned before for µ∞, that time evo-
lution at fixed control parameter value resembles progression
from µ = 0 up to, in this paragraph, µN . It is evident in all
Figs. 4 to 6 that the closer the initial conditions x0 are to the
repellor positions the longer times it takes for the resultant
trajectories to clear the gap regions. This intuitively evident
feature is essentially linked to the knowledge we have gained
about the fractal boundaries of the preimage structure, and the
observable ‘bent over’ portions of these distinct trajectories in

the figures correspond to their passage across the boundaries.
(Since the ensemble used in the numerical experiments is fi-
nite there appear only a few such trajectories in Figs. 4 to
6).

FIG. 4: Phase-space gap formation for µ =µ2. Left panel: time evo-
lution of a uniform ensemble of 10000 trajectories as a function of |x|
(black areas and open circles). The values of the index k label the or-
der of the gap set. Right panel: Turned around plots of f (4)

µ2
(x)(grey)

and
∣∣∣d f (4)

µ2
(x)/dx

∣∣∣(black) vs |x| as guides for the identification of
attractor and repellor positions.

To facilitate a visual comparison between the process of gap
formation at µ∞ and the dynamics inside the Feigenbaum at-
tractor (as illustrated by the trajectory in Fig. 1b) we plot in
Fig. 7 the time evolution of the same ensemble composed of
10000 trajectories with µ = µ∞. We use this time logarithmic
scales for both |xt | and t and then superpose on the evolu-
tion of the ensemble the positions for the trajectory starting
at x0 = 0. It is clear from this figure that the larger gaps that
form consecutively have all the same width in the logarithmic
scale of the plot and therefore their actual widths decrease as
a power law, the same power law followed, for instance, by
the position subsequence xt = α−N , t = 2N , N = 0,1,2, . . . for
the trajectory inside the attractor starting at x0 = 0. This set of
gaps develop in time beginning with the largest one contain-
ing the k = 0 repellor, then followed by a second gap, one
of a set of two gaps associated to the k = 1 repellor, next
a third gap, one gap of a set of four gaps associated to the
k = 2 repellor, and so forth. The locations of this specific
family of consecutive gaps advance monotonically towards
the most sparse region of the multifractal attractor located at
x = 0. The remaining gaps formed at each stage converge, of
course, to locations near other regions of the multifractal but
are not easily seen in Fig. 7 because of the specific way in
which this has been plotted (and because of the scale used).
In Fig. 8 we plot the same data differently, with the variable
ln |x| replaced by ln |1− x| where now another specific family
of gaps, one for each value of k = 0,1,2, . . ., appear all with
the same width in the logarithmic scale, their actual widths
decrease now as α−2N , N = 0,1,2, . . . The locations of this
second family of consecutive gaps advance monotonically to-
wards the most crowded region of the multifractal attractor
located at x = 1. The time necessary for the formation of

FIG. 3: The absolute value of d f (2N)
µN

(x)/dx, for N = 1,2,3 and 4,
in logarithmic scale as a function of x in the interval 0≤ x≤ 1. The
proliferation of maxima conveys the development of the hierarchical
structure of repellor preimages. See text.
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3. SEQUENTIAL OPENING OF PHASE SPACE GAPS

One way wherein the preimage structure described above
manifests in the dynamics is via the successive formation
of phase space gaps that ultimately give rise to the attrac-
tor and repellor multifractal sets. In order to observe explic-
itly this process we consider an ensamble of initial conditions
x0 spread out uniformly across the interval −1 ≤ x0 ≤ 1 and
keep track of their positions at subsequent times. In Figs. 4
to 6 we illustrate the outcome for the supercycles of periods
22, 23 and 24, respectively, where we have plotted the time
evolution of an ensemble composed of 10000 trajectories. In
the left panel of each figure we show the absolute value of
the positions |xt | vs time t, while, for comparison purposes,
in the right panel we show the absolute value of |x| both vs
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attractor and repellor positions. The labels k = 1,2,3, . . . in-
dicate the order of the gap set (or equivalently the order of
the repellor generation set [14]). In Fig. 4 (with µ = µ2) one
observes a large gap opening first that contains the old repel-
lor (k = 0) in its middle region and two smaller gaps opening
afterward that contain the two repellors of second generation
(k = 1) once more around the middle of them. In Fig. 5
(with µ = µ3) we initially observe the opening of a primary
and the two secondary gaps as in the previous µ = µ2 case,
but subsequently four new smaller gaps open each around
the third generation of repellor positions (k = 2). In Fig. 6
(with µ = µ4) we observe the same development as before,
however at longer times eight additional and yet smaller gaps
emerge each around the fourth generation of repellor posi-
tions (k = 3). Naturally, this process continues indefinitely as
N → ∞ and illustrates the property mentioned before for µ∞,
that time evolution at fixed control parameter value resembles
progression from µ = 0 up to, in this paragraph, µN . It is evi-
dent in all Figs. 4 to 6 that the closer the initial conditions x0
are to the repellor positions, the longer times it takes for the
resultant trajectories to clear the gap regions. This intuitively
evident feature is essentially linked to the knowledge we have
gained about the fractal boundaries of the preimage structure,
and the observable ‘bent over’ portions of these distinct tra-
jectories in the figures correspond to their passage across the
boundaries. (Since the ensemble used in the numerical ex-
periments is finite there appear only a few such trajectories in
Figs. 4 to 6).

To facilitate a visual comparison between the process of
gap formation at µ∞ and the dynamics inside the Feigenbaum
attractor (as illustrated by the trajectory in Fig. 1b) we plot in
Fig. 7 the time evolution of the same ensemble composed of
10000 trajectories with µ = µ∞. We use this time logarithmic
scales for both |xt | and t and then superpose on the evolu-
tion of the ensemble the positions for the trajectory starting
at x0 = 0. It is clear from this figure that the larger gaps that
form consecutively have all the same width in the logarithmic
scale of the plot and therefore their actual widths decrease as
a power law, the same power law followed, for instance, by
the position subsequence xt = α−N , t = 2N , N = 0,1,2, . . .
for the trajectory inside the attractor starting at x0 = 0. This
set of gaps develops in time beginning with the largest one
containing the k = 0 repellor, then followed by a second gap,
one of a set of two gaps associated to the k = 1 repellor, next
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FIG. 3: The absolute value of d f (2N)
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(x)/dx, for N = 1,2,3 and 4,
in logarithmic scale as a function of x in the interval 0≤ x≤ 1. The
proliferation of maxima conveys the development of the hierarchical
structure of repellor preimages. See text.

itly this process we consider an ensamble of initial conditions
x0 spread out uniformly across the interval −1 ≤ x0 ≤ 1 and
keep track of their positions at subsequent times. In Figs. 4
to 6 we illustrate the outcome for the supercycles of periods
22, 23 and 24, respectively, where we have plotted the time
evolution of an ensemble composed of 10000 trajectories. In
the left panel of each figure we show the absolute value of
the positions |xt | vs time t, while, for comparison purposes,
in the right panel we show the absolute value of |x| both vs

f (2N)
µN

(x) and vs
∣∣∣d f (2N)

µN
/dx

∣∣∣ to facilitate identification of the
attractor and repellor positions. The labels k = 1,2,3, . . . indi-
cate the order of the gap set (or equivalently the order of the
repellor generation set [14]). In Fig. 4 (with µ = µ2) one ob-
serves a large gap opening first that contains the old repellor
(k = 0) in its middle region and two smaller gaps opening af-
terward that contain the two repellors of second generation
(k = 1) once more around the middle of them. In Fig. 5
(with µ = µ3) we initially observe the opening of a primary
and the two secondary gaps as in the previous µ = µ2 case,
but subsequently four new smaller gaps open each around the
third generation of repellor positions (k = 2). In Fig. 6 (with
µ = µ4) we observe the same development as before, however
at longer times eight additional and yet smaller gaps emerge
each around the fourth generation of repellor positions (k = 3).
Naturally, this process continues indefinitely as N →∞ and il-
lustrates the property mentioned before for µ∞, that time evo-
lution at fixed control parameter value resembles progression
from µ = 0 up to, in this paragraph, µN . It is evident in all
Figs. 4 to 6 that the closer the initial conditions x0 are to the
repellor positions the longer times it takes for the resultant
trajectories to clear the gap regions. This intuitively evident
feature is essentially linked to the knowledge we have gained
about the fractal boundaries of the preimage structure, and the
observable ‘bent over’ portions of these distinct trajectories in

the figures correspond to their passage across the boundaries.
(Since the ensemble used in the numerical experiments is fi-
nite there appear only a few such trajectories in Figs. 4 to
6).

FIG. 4: Phase-space gap formation for µ =µ2. Left panel: time evo-
lution of a uniform ensemble of 10000 trajectories as a function of |x|
(black areas and open circles). The values of the index k label the or-
der of the gap set. Right panel: Turned around plots of f (4)

µ2
(x)(grey)

and
∣∣∣d f (4)

µ2
(x)/dx

∣∣∣(black) vs |x| as guides for the identification of
attractor and repellor positions.

To facilitate a visual comparison between the process of gap
formation at µ∞ and the dynamics inside the Feigenbaum at-
tractor (as illustrated by the trajectory in Fig. 1b) we plot in
Fig. 7 the time evolution of the same ensemble composed of
10000 trajectories with µ = µ∞. We use this time logarithmic
scales for both |xt | and t and then superpose on the evolu-
tion of the ensemble the positions for the trajectory starting
at x0 = 0. It is clear from this figure that the larger gaps that
form consecutively have all the same width in the logarithmic
scale of the plot and therefore their actual widths decrease as
a power law, the same power law followed, for instance, by
the position subsequence xt = α−N , t = 2N , N = 0,1,2, . . . for
the trajectory inside the attractor starting at x0 = 0. This set of
gaps develop in time beginning with the largest one contain-
ing the k = 0 repellor, then followed by a second gap, one
of a set of two gaps associated to the k = 1 repellor, next
a third gap, one gap of a set of four gaps associated to the
k = 2 repellor, and so forth. The locations of this specific
family of consecutive gaps advance monotonically towards
the most sparse region of the multifractal attractor located at
x = 0. The remaining gaps formed at each stage converge, of
course, to locations near other regions of the multifractal but
are not easily seen in Fig. 7 because of the specific way in
which this has been plotted (and because of the scale used).
In Fig. 8 we plot the same data differently, with the variable
ln |x| replaced by ln |1− x| where now another specific family
of gaps, one for each value of k = 0,1,2, . . ., appear all with
the same width in the logarithmic scale, their actual widths
decrease now as α−2N , N = 0,1,2, . . . The locations of this
second family of consecutive gaps advance monotonically to-
wards the most crowded region of the multifractal attractor
located at x = 1. The time necessary for the formation of

FIG. 4: Phase-space gap formation for µ =µ2. Left panel: time evo-
lution of a uniform ensemble of 10000 trajectories as a function of |x|
(black areas and open circles). The values of the index k label the or-
der of the gap set. Right panel: Turned around plots of f (4)

µ2
(x)(grey)

and
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∣∣∣(black) vs |x| as guides for the identification of
attractor and repellor positions.

a third gap, one gap of a set of four gaps associated to the
k = 2 repellor, and so forth. The locations of this specific
family of consecutive gaps advance monotonically towards
the most sparse region of the multifractal attractor located at
x = 0. The remaining gaps formed at each stage converge, of
course, to locations near other regions of the multifractal but
are not easily seen in Fig. 7 because of the specific way in
which this has been plotted (and because of the scale used).
In Fig. 8 we plot the same data differently, with the variable
ln |x| replaced by ln |1− x| where now another specific family
of gaps, one for each value of k = 0,1,2, . . ., appears all with
the same width in the logarithmic scale, their actual widths
decrease now as α−2N , N = 0,1,2, . . . The locations of this
second family of consecutive gaps advance monotonically to-
wards the most crowded region of the multifractal attractor
located at x = 1. The time necessary for the formation of
successive gaps of order k = 0,1,2, . . ., increases as 2k be-
cause the duration of equivalent movements of the trajecto-
ries across the corresponding preimage structures involve the

2k-th composed function f (2k)
µN

(x).

4. SCALING FOR THE RATE OF CONVERGENCE TO
THE ATTRACTOR AND REPELLOR

There is [15] an all-inclusive and uncomplicated way to
measure the rate of convergence of an ensemble of trajectories
to the attractor (and to the repellor) that consists of a single
time-dependent quantity. A partition of phase space is made
of Nb equally sized boxes or bins and a uniform distribution,
of Nc initial conditions placed along the interval −1≤ x≤ 1,
is considered again. The number r of trajectories per box is
r = Nc/Nb. The quantity of interest is the number of boxes
W (t) that contain trajectories at time t. This is shown in Fig.
9 in logarithmic scales for the first five supercycles of periods
21 to 25 where we can observe the following features: In all
cases W (t) shows a similar initial nearly constant plateau and
a final well-defined decay to zero. As it can be observed in the
left panel of Fig. 9 the duration of the final decay grows (ap-
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FIG. 6: Phase-space gap formation for µ = µ4. Left panel: time evo-
lution of a uniform ensemble of 10000 trajectories as a function of |x|
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der of the gap set. Right panel: Turned around plots of f (16)

µ4
(x)(grey)

and
∣∣∣d f (16)

µ4
(x)/dx

∣∣∣(black) vs |x| as guides for the identification of at-
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FIG. 7: Phase-space gap formation for µ = µ∞. The black dots corre-
spond to time evolution of a uniform ensemble of 10000 trajectories
as a function of |x| vs t, both in logarithmic scales. The open circles
are the positions, labeled by the times at which they are reached, for
the trajectory inside the Feigenbaum attractor with initial condition
x0= 0, same as right panel in Fig. 1.

FIG. 8: Same as Fig. 7 but with replacement of |x| by |1−x|. Notice
the change in slope with respect to Fig. 7 in the opening of gaps and
in the layout of the positions for the trajectory inside the attractor.
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cases W (t) shows a similar initial nearly constant plateau and
a final well-defined decay to cero. As it can be observed in
the left panel of Fig. 9 the duration of the final decay grows
(approximately) proportional to the period 2N of the supercy-
cle. There is an intermediate slow decay of W (t) that develops
as N increases with duration also (just about) proportional to
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is considered again. The number r of trajectories per box is
r = Nc/Nb. The quantity of interest is the number of boxes
W (t) that contain trajectories at time t. This is shown in Fig.
9 in logarithmic scales for the first five supercycles of periods
21 to 25 where we can observe the following features: In all
cases W (t) shows a similar initial nearly constant plateau and
a final well-defined decay to cero. As it can be observed in
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(approximately) proportional to the period 2N of the supercy-
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FIG. 6: Phase-space gap formation for µ = µ4. Left panel: time
evolution of a uniform ensemble of 10000 trajectories as a func-
tion of |x| (black areas and open circles). The values of the index
k label the order of the gap set. Right panel: Turned around plots
of f (16)

µ4
(x)(grey) and

∣∣∣d f (16)
µ4

(x)/dx
∣∣∣(black) vs |x| as guides for the

identification of attractor and repellor positions.

proximately) proportional to the period 2N of the supercycle.
There is an intermediate slow decay of W (t) that develops
as N increases with duration also (just about) proportional to
2N . For the shortest period 21 there is no intermediate fea-
ture in W (t), this appears first for period 22 as a single dip
and expands with one undulation every time N increases by
one unit. The expanding intermediate regime exhibits the de-
velopment of a power-law decay with the logarithmic oscilla-
tions characteristic of discrete scale invariance [17]. Clearly,
the manifestation of discrete invariance is expected to be as-
sociated to the period-doubling cascade. In the right panel of
Fig. 9 we show a superposition of the five curves in Fig. 9
(left panel) obtained via rescaling of both W (t) and t for each
curve according to repeated scale factors.

The limiting form W (t) for N → ∞ is shown in the left
panel of Fig. 10 for various values of r while in its right
panel we show, for r = 100, a scale amplification of W (t)
with the same factors employed in Fig. 9 for the supercycles
with small periods. The behavior of W (t) at µ∞ was originally
presented in Ref. [15] where the power law exponent s and
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the logarithmic oscillation parameter Λ in

W (t)' h
(

ln t
lnΛ

)
t−s (2)

were obtained numerically with a precision that corresponds
to r = 10. In Eq. (2) h(x) is a periodic function and Λ is the
scaling factor between the periods of two consecutive oscil-
lations. More recently, in Ref. [18] it was pointed out that
numerical estimates of W (t) are subject to large finite-size
corrections, and, also, that W (t) should scale with the inter-
vals in the triadic cantor set construction of the Feigenbaum
attractor [18][19], from which the value for s∼= 0.800138194
is reported. The values for the rescaling factors in our Figs.
9 and 10 suffer from these large finite size effects due to the
relatively small values of r used in the calculations. This is
evident since the time scaling factor obtained from these data
differs 10% from the exact value of Λ = 2 implied by the dis-
crete scale invariance property created by the period-doubling
cascade. In Fig. 11 we show the rate W (t) and the superposi-
tion of repeated amplifications of itself (as in the right panel
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of Fig. 10) for increasing values of Nc. We find that the scal-
ing factor Λ converges to its limit Λ = 2.6 Robledo et al.

2N . For the shortest period 21 there is no intermediate fea-
ture in W (t), this appears first for period 22 as a single dip
and expands with one undulation every time N increases by
one unit. The expanding intermediate regime exhibits the de-
velopment of a power-law decay with the logarithmic oscilla-
tions characteristic of discrete scale invariance [17]. Clearly,
the manifestation of discrete invariance is expected to be as-
sociated to the period-doubling cascade. In the right panel of
Fig. 9 we show a superposition of the five curves in Fig. 9
(left panel) obtained via rescaling of both W (t) and t for each
curve according to repeated scale factors.

The limiting form W (t) for N→∞ is shown in the left panel
of Fig. 10 for various values of r while in its right panel we
show, for r = 100, a scale amplification of W (t) with the same
factors employed in Fig. 9 for the supercycles with small pe-
riods. The behavior of W (t) at µ∞ was originally presented in
Ref. [15] where the power law exponent s and the logarithmic
oscillation parameter Λ in

W (t)' h
(

ln t
lnΛ

)
t−s (2)

were obtained numerically with a precision that corresponds
to r = 10. In Eq. (2) h(x) is a periodic function and Λ is the
scaling factor between the periods of two consecutive oscil-
lations. More recently, in Ref. [18] it was pointed out that
numerical estimates of W (t) are subject to large finite-size
corrections, and, also, that W (t) should scale with the inter-
vals in the triadic cantor set construction of the Feigenbaum
attractor [18][19], from which the value for s∼= 0.800138194
is reported. The values for the rescaling factors in our Figs.
9 and 10 suffer from these large finite size effects due to the
relatively small values of r used in the calculations. This is
evident since the time scaling factor obtained from these data
differs 10% from the exact value of Λ = 2 implied by the dis-
crete scale invariance property created by the period-doubling
cascade. In Fig. 11 we show the rate W (t) and the superposi-
tion of repeated amplifications of itself (as in the right panel of
Fig. 10) for increasing values of Nc. We find that the scaling
factor Λ converges to its limit Λ = 2.

We are now in a position to appreciate the dynamical mech-
anism at work behind the features of the decay rate W (t).
From our previous discussion we know that every time the
period of a supercycle increases from 2N−1 to 2N by shifting
the control parameter value from µN−1 to µN , the preimage
structure advances one stage of complication in their hierar-
chy. Along with this, and in relation to the time evolution of
the ensemble of trajectories, an additional set of 2N smaller
phase-space gaps develops and also a further oscillation takes
place in the corresponding rate W (t) for finite-period attrac-
tors. At µ = µ∞ time evolution tracks the period-doubling cas-
cade progression and the flow of trajectories undergo every
time t increases from 2N−1 to 2N equivalent passages across
stages in their itinerary through the preimage ladder structure,
in the development of phase-space gaps, and in logarithmic
oscillations in W (t). In Fig. 12 we show the correspondence
between the latter features quantitatively. Also, in this figure
we have added the results of a calculation of W (t) at times
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expression shown corresponds to the power-law decay with logarith-
mic oscillations. Right panel: Superposition of W (t), for r = 100,
with itself via the rescaling shown (the same as in Fig. 8) for the
horizontal x and vertical y axis.

t = 2N , N = 0,1,2, . . ., according to the expression

W (2N) =
N

∑
m=1

dN,m. (3)

This confirms the value s∼= 0.8001.

FIG. 9: Left panel: The rate W (t), divided by the number of boxes
Nb employed, of approach to the attractor for the supercycles of pe-
riods 2N , N = 1,2,3,4 and 5 in logarithmic scales. The expression
shown corresponds to the power-law decay of the developing loga-
rithmic oscillations. Right panel: Superposition of the five curves for
W (t) in the left panel via n-times repeated rescaling factors shown
for the horizontal x and vertical y axis.
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2N . For the shortest period 21 there is no intermediate fea-
ture in W (t), this appears first for period 22 as a single dip
and expands with one undulation every time N increases by
one unit. The expanding intermediate regime exhibits the de-
velopment of a power-law decay with the logarithmic oscilla-
tions characteristic of discrete scale invariance [17]. Clearly,
the manifestation of discrete invariance is expected to be as-
sociated to the period-doubling cascade. In the right panel of
Fig. 9 we show a superposition of the five curves in Fig. 9
(left panel) obtained via rescaling of both W (t) and t for each
curve according to repeated scale factors.

The limiting form W (t) for N→∞ is shown in the left panel
of Fig. 10 for various values of r while in its right panel we
show, for r = 100, a scale amplification of W (t) with the same
factors employed in Fig. 9 for the supercycles with small pe-
riods. The behavior of W (t) at µ∞ was originally presented in
Ref. [15] where the power law exponent s and the logarithmic
oscillation parameter Λ in

W (t)' h
(

ln t
lnΛ

)
t−s (2)

were obtained numerically with a precision that corresponds
to r = 10. In Eq. (2) h(x) is a periodic function and Λ is the
scaling factor between the periods of two consecutive oscil-
lations. More recently, in Ref. [18] it was pointed out that
numerical estimates of W (t) are subject to large finite-size
corrections, and, also, that W (t) should scale with the inter-
vals in the triadic cantor set construction of the Feigenbaum
attractor [18][19], from which the value for s∼= 0.800138194
is reported. The values for the rescaling factors in our Figs.
9 and 10 suffer from these large finite size effects due to the
relatively small values of r used in the calculations. This is
evident since the time scaling factor obtained from these data
differs 10% from the exact value of Λ = 2 implied by the dis-
crete scale invariance property created by the period-doubling
cascade. In Fig. 11 we show the rate W (t) and the superposi-
tion of repeated amplifications of itself (as in the right panel of
Fig. 10) for increasing values of Nc. We find that the scaling
factor Λ converges to its limit Λ = 2.

We are now in a position to appreciate the dynamical mech-
anism at work behind the features of the decay rate W (t).
From our previous discussion we know that every time the
period of a supercycle increases from 2N−1 to 2N by shifting
the control parameter value from µN−1 to µN , the preimage
structure advances one stage of complication in their hierar-
chy. Along with this, and in relation to the time evolution of
the ensemble of trajectories, an additional set of 2N smaller
phase-space gaps develops and also a further oscillation takes
place in the corresponding rate W (t) for finite-period attrac-
tors. At µ = µ∞ time evolution tracks the period-doubling cas-
cade progression and the flow of trajectories undergo every
time t increases from 2N−1 to 2N equivalent passages across
stages in their itinerary through the preimage ladder structure,
in the development of phase-space gaps, and in logarithmic
oscillations in W (t). In Fig. 12 we show the correspondence
between the latter features quantitatively. Also, in this figure
we have added the results of a calculation of W (t) at times
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We are now in a position to appreciate the dynamical mech-
anism at work behind the features of the decay rate W (t).
From our previous discussion we know that every time the
period of a supercycle increases from 2N−1 to 2N by shifting
the control parameter value from µN−1 to µN , the preimage
structure advances one stage of complication in their hierar-
chy. Along with this, and in relation to the time evolution of
the ensemble of trajectories, an additional set of 2N smaller
phase-space gaps develops and also a further oscillation takes

place in the corresponding rate W (t) for finite-period attrac-
tors. At µ = µ∞ time evolution tracks the period-doubling cas-
cade progression and the flow of trajectories undergo, every
time t increases from 2N−1 to 2N , equivalent passages across
stages in their itinerary through the preimage ladder structure,
in the development of phase-space gaps, and in logarithmic
oscillations in W (t). In Fig. 12 we show the correspondence
between the latter features quantitatively. Also, in this figure
we have added the results of a calculation of W (t) at times
t = 2N , N = 0,1,2, . . ., according to the expression

W (2N) =
N

∑
m=1
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FIG. 11: The same as in the right panel of Fig. 10 but obtained with
increased precision. In the left panel the number of initial condi-
tions is Nc= 106, while in the right panel Nc= 107. The distance ∆ is
∆ = (1 + | − 1/α|)/(1 + | − 1|), where α is Feigenbaum’s constant.
This stems from the fact that all initial conditions out of the interval
(−1/α,1) take a value inside this interval in the first iteration. As it
can be observed the scaling factor for the horizontal axis converges
to the exact value x = 2.

FIG. 12: Correspondence between the power-law decay with log-
periodic oscillation features of the rate W (t) with the sequential
opening of phase space gaps. Top panel: The solid line is W (t) from
Fig. 9 and the open circles values are obtained for W (t) from Eq. (3)
at times t = 2N , N = 1,2, . . . See text.

5. SUMMARY

We have examined the process followed by an ensemble
of uniformly distributed initial conditions x0 across the phase
space to arrive at the Feigenbaum attractor, or get captured
by its corresponding repellor. Significantly, we have gained
understanding concerning the dynamical ordering in the x0, in
relation to the construction of the families of phase-space gaps
that support the attractor and repellor, and about the rate of ap-
proach of trajectories towards these multifractal sets, as mea-
sured by the fraction of bins W (t) still occupied by trajectories
at time t. An important factor in obtaining this knowledge has
been the consideration of the equivalent dynamical properties
for the supercycles of small periods in the bifurcation cascade
[14].

As we have seen, a doubling of the period introduces well-
defined additional elements in the hierarchy of the preimage
structure, in the family of phase space gaps, and in the log-
periodic power law decay of the rate W (t). We have then
corroborated the wide-ranging correlation between time evo-
lution at µ∞ from t = 0 up to t → ∞ with the ‘static’ period-
doubling cascade progression from µ = 0 up to µ∞. As a result
of this we have acquired an objective insight into the complex
dynamical phenomena that fix the decay rate W (t). We have
clarified the genuine mechanism by means of which the dis-
crete scale invariance implied by the log-periodic property in
W (t) arises, that is, we have seen how its self-similarity orig-
inates in the infinite hierarchy formed by the preimage struc-
ture of the attractor and repellor. The rate W (t) can be ob-
tained quantitatively (see Eq. (3)) from the supercycle diam-
eters dN,m. This basic data descriptive of the period-doubling
route to chaos is also a sufficient ingredient in the determina-
tion of the anomalous sensitivity to initial conditions for the
dynamics inside the Feigenbaum attractor [10].

The case is made in Ref. [12] that there is a statistical-
mechanical property underlying the dynamics of an ensemble
of trajectories en route to the Feigenbaum attractor (and repel-
lor). There, Eq. (3) is identified as a partition function made
up of q-exponential weighted configurations, while the frac-
tion W (t) of phase space still occupied at time t is recognized
as the q-exponential of a thermodynamic potential function.
This is argued to be a clear manifestation of q-deformation of
ordinary statistical mechanics where arguments can be made
explicit [12].
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periodic power law decay of the rate W (t). We have then
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at times t = 2N , N = 1,2, . . . See text.

5. SUMMARY

We have examined the process followed by an ensemble
of uniformly distributed initial conditions x0 across the phase
space to arrive at the Feigenbaum attractor, or get captured
by its corresponding repellor. Significantly, we have gained
understanding concerning the dynamical ordering in the x0, in
relation to the construction of the families of phase-space gaps
that support the attractor and repellor, and about the rate of ap-
proach of trajectories towards these multifractal sets, as mea-
sured by the fraction of bins W (t) still occupied by trajectories
at time t. An important factor in obtaining this knowledge has
been the consideration of the equivalent dynamical properties
for the supercycles of small periods in the bifurcation cascade
[14].

As we have seen, a doubling of the period introduces well-
defined additional elements in the hierarchy of the preimage
structure, in the family of phase space gaps, and in the log-
periodic power law decay of the rate W (t). We have then
corroborated the wide-ranging correlation between time evo-
lution at µ∞ from t = 0 up to t → ∞ with the ‘static’ period-
doubling cascade progression from µ = 0 up to µ∞. As a result
of this we have acquired an objective insight into the complex
dynamical phenomena that fix the decay rate W (t). We have
clarified the genuine mechanism by means of which the dis-
crete scale invariance implied by the log-periodic property in
W (t) arises, that is, we have seen how its self-similarity orig-
inates in the infinite hierarchy formed by the preimage struc-
ture of the attractor and repellor. The rate W (t) can be ob-
tained quantitatively (see Eq. (3)) from the supercycle diam-
eters dN,m. This basic data descriptive of the period-doubling
route to chaos is also a sufficient ingredient in the determina-
tion of the anomalous sensitivity to initial conditions for the
dynamics inside the Feigenbaum attractor [10].

The case is made in Ref. [12] that there is a statistical-
mechanical property underlying the dynamics of an ensemble
of trajectories en route to the Feigenbaum attractor (and repel-
lor). There, Eq. (3) is identified as a partition function made
up of q-exponential weighted configurations, while the frac-
tion W (t) of phase space still occupied at time t is recognized
as the q-exponential of a thermodynamic potential function.
This is argued to be a clear manifestation of q-deformation of
ordinary statistical mechanics where arguments can be made
explicit [12].
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