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Director profile of a nematic between two concentric cylinders with inhomogeneous boundary
conditions
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The tilt angle profile in a nematic cell limited by two concentric cylindrical surfaces with inhomogeneous
distribution of easy axes is investigated in the one-constant approximation. The results are presented in terms of
the Green function approach by considering the strong anchoring case and the presence of an external electric
field for small distortions.
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1. INTRODUCTION

Systems that involve liquid crystal alignment between two
concentric cylinders have been investigated in connection
with the flexoelectric instability [1], with the stability analy-
sis of the orientational profile [2], and the Fréedericksz tran-
sition occurring in the absence of external electric field [3].
The starting point of these analysis was the original problem
proposed by Meyer, solved in a special case by Parodi, and
then discussed in the book by de Gennes [4]. Subsequently,
the same problem was reexamined by Williams [5] by con-
sidering that the elastic constants of splay and bend are dif-
ferent, in the strong anchoring approximation. Very recently,
the equilibrium problem for a nematic liquid crystal confined
within two parallel eccentric cylinders with homeotropic an-
choring on the lateral boundaries has been rigorously ana-
lyzed by Rosso et al. [6] in the framework of a purely director
approach. In general, problems dealing with the equilibrium
orientational states of nematic liquid crystals are faced in the
framework of the elastic continuum theory for liquid crys-
talline materials. The basic principle of this theory is that the
distorted state can be described by the director n that is of
unit length but can be of variable orientation, and represents
the average molecular orientation. The equilibrium config-
uration is the one minimizing the total free energy of the
sample subjected to appropriate boundary conditions [7, 8].
The determination of the equilibrium director profile can be
formulated in terms of boundary value problems [9]. The
boundary value problem concerning the situation of strong
anchoring on the boundaries corresponds to the Dirichlet’s
problem, whereas the weak anchoring situation leads to the
mixed Dirichlet - Neumann problem. On the other hand, the
situation in which the easy axes characterizing the preferred
surface alignment change direction continuously with time
is relevant to investigate systems whose surfaces are covered
with photopolymeric films [10]. In these systems, the ori-
entational changes of the photochromic molecules promoted
by incident light lead to remarkable changes in the molecu-
lar orientation. In this direction, problems dealing with ori-
entational dynamics and surface viscosity have also been in-
vestigated by Mertely and Copic [11]. For this reason, in
order to account for these characteristics of a nematic sam-
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ple confined between two cylinders, we face here a gener-
alization of the model treated in Refs. [3, 5] by considering
a system formed by inhomogeneous surfaces, i.e., by con-
sidering that on each cylindrical surfaces the treatment has
ensured a spatial distribution of the easy directions. Further-
more, the present approach incorporates a time dependence
in the distribution of easy axes on the surfaces, in the situ-
ation of strong anchoring, which is a more difficult mathe-
matical problem, but can represent a more realistic physical
situation. In this manner, our analysis is quite general in the
framework of the usual approximation of one-elastic con-
stant; it takes into account an external field, directed along
the radius of the cylinders, in the limit of small distortions.
To face the dynamical reorientation problem in a complete
manner it is necessary to take into account that the motion of
the fluid is coupled with the fluid flow, i.e., to consider back-
flow effects. Thus, besides playing an important role in the
response of a nematic liquid crystal to an applied field, the
molecular reorientation can generate a flow which in turn af-
fect the reorientation [12, 13]. As underlined by Svensek and
Zumer, there has been little or no work done in the backflow
problems in severely confined geometry like the one we are
considering in this work. This happens because, in this case,
backflow is a consequence of the confinement. Therefore,
the resulting flow patterns are quite complicated and even
keeping the small distortion approximation as we are doing
in the present analysis, the set of equations to be solved are
hardly treatable in analytical manner [14]. For this reason,
we restrict the present analysis to the very simplified case
in which backflow effects are not taken into account. Any-
way, the formalism presented here in terms of Green func-
tion constitutes the appropriate mathematical framework to
explore orientational field effects in nematic samples in con-
fined geometries and can be extended to the situation of weak
anchoring on the boundaries without significant difficulty.

2. THE MODEL

Let us consider a nematic liquid crystal cell limited by two
concentric cylinders of radius a and b > a, whose cylindri-
cal reference frame is such that the z axis is parallel to the
cylinder axes, as shown in Fig. 1. For this geometry, the di-
rector can be written as n = cosψ(ρ,θ, t)eρ +sinψ(ρ,θ, t)eθ,
where the cylindrical unit vectors are related to the Cartesian
unit vectors by eρ = cosθ i + sinθ j, eθ = −sinθ i + cosθ j,
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FIG. 1: Nematic sample limited by two concentric cylinders of ra-
dius a and b. A uniform electric field is directed along a radial
direction (normal to the cylinder axes, ez). The director angle ψ is
also shown for a hypothetical distortion in the plane.

and ez = k. To make the problem analytically treatable, we
assume small distortions and only splay-bend deformations.
In this manner, our approach is valid for an applied field that
is near the Fréedericksz threshold field. Notice, however,
that the Fréedericksz transition in this system is actually a
Fréedericksz-like transition when the starting configuration
is a pure splay conformation, with a radial director. In the
presence of a radial electric field, for a nematic liquid crys-

tal with a negative dielectric anisotropy (εa = ε‖− ε⊥ < 0),
where ‖ and ⊥ refer to the direction of n, a bend distortion
can be found in the system only when the orientation on the
boundaries is homeotropic [3]. On the contrary, for strong
planar anchoring on the boundaries, a distortion can be found
only for εa > 0. Furthermore, a sample like the one we
consider could be prepared by firstly applying a very strong
uniform field along the cylinder axes in order to achieve a
homeotropic uniform alignment in a plane perpendicular to
the axes of the cylinders. After that, an electric field in the
radial direction should be considered. The electric field con-
sidered here appears when the surfaces of the sample, lo-
cated at ρ = a and ρ = b, are subjected to a constant potential
difference. A typical situation is obtained when the surface
ρ = a is subjected to an electric potential ϕ = V/2 and the
surface ρ = b to an electric potential ϕ = −V/2. For this
case, after solving the Maxwell equations, one obtains that
E =

(
C̃/ρ

)
eρ with C̃ = V/ ln(b/a). In this manner, in the

one-constant approximation, i.e., K11 = K22 = K33 = K, and
by taking the external field E =

(
C̃/ρ

)
eρ into account, the

total elastic free energy per unit length along the z axis is
given by

F [ψ(ρ,θ, t)] =
Z 2π

0
dθ

Z b

a
ρdρ

[
1
2

K (∇ψ(ρ,θ, t))2 +
1

2ρ2 εaC̃ 2
ψ

2(ρ,θ, t)
]

+
Z 2π

0
dθ

Z b

a
ρdρ

[
1
ρ2

(
2

∂

∂θ
ψ(ρ,θ, t)+1

)]
. (1)

To analyze the dynamics of the orientation induced by the
field we have to consider also a viscous torque. By mini-
mizing Eq. (1), taking into account a viscous torque, we find
that the dynamical evolution of the system is governed by the
equation

∂

∂t̃
ψ(r,θ, t̃ ) = ∇

2
ψ(r,θ, t̃ )− γ2

r2 ψ(r,θ, t̃ ) , (2)

written in a non-dimensional form by introducing a reduced
coordindate r = ρ/(b − a), and a reduced time t̃ = t/τv,
where τv = λ(b − a)2/K is a viscous relaxation time for
a sample in the shape of a slab of thickness b− a, when
λ is an effective viscosity coefficient of the liquid crys-
tal [15, 16]. Furthermore, in Eq. (2), γ2 = π2(E0/Ec)2, where
E0 = C̃/(b−a) and E2

c = π2K/εa(b−a)2 corresponds to the
threshold field for the Fréedericksz transition in a sample of
slab shape whose thickness is b− a, in the strong anchor-
ing situation at the surfaces [7]. The last term in (1) does
not enter in the Euler-Lagrange equation which contains the
elastic term only through the Laplace-operator acting on ψ.
This equation needs to be solved subjected to the boundary
conditions ψ(α,θ, t̃ ) = Φa(θ, t̃ ) and ψ(β,θ, t̃ ) = Φb(θ, t̃ )
which are relevant to the strong anchoring situations, where,

for simplicity, non-dimensional quantities α = a/(b−a) and
β = b/(b−a) have been introduced. Notice that these bound-
ary conditions account for inhomogeneous surfaces, i.e., the
distribution of easy directions is spatially dependent. Fur-
thermore, we have also generalized the calculation to incor-
porate a time dependent distribution of easy axes. As pointed
out above, a physical situation in which a time-dependent
easy direction can be achieved can be found in systems
formed by photochromic molecules that, under illumination,
can undergo substantial change in their orientation, and, in
turn, can produce a time dependent easy direction. The ini-
tial condition, i.e., how the system was initially prepared, is
ψ(r,θ,0) = ψ0(r,θ). In order to analyze this problem, we
first consider the absence of electric field and after we in-
corporate this field in our calculation. In absence of electric
field, Eq. (2) can be written as

∂

∂t̃
ψ(r,θ, t) = ∇

2
ψ(r,θ, t), (3)

with ψ(α|β,θ, t̃ ) = Φa|b(θ, t̃) and ψ(r,θ,0) = ψ0(r,θ). The
Green function approach [17] gives the solution for Eq. (3)
as follows:
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ψ(r,θ, t̃ ) = −
Z 2π

0
dθ

′
Z

β

α

dr′r′G(r,θ, t̃;r′,θ′,0)ψ0(r
′,θ′)

+
Z t̃

0
dt ′

Z 2π

0
dθ

′

[
βψ(β,θ′, t ′)

∂

∂r′
G

∣∣∣∣
r′=β

− αψ(α,θ′, t ′)
∂

∂r′
G

∣∣∣∣
r′=α

]
, (4)

where G = G(r,θ, t̃;r′,θ′, t ′) is obtained by solving

∇
2G(r,θ, t̃;r′,θ′, t ′)− ∂

∂t̃
G(r,θ, t̃;r′,θ′, t ′)

=
1
r

δ(r− r′)δ(θ−θ
′)δ(̃t − t ′), (5)

with

G(α,θ, t̃;r′,θ′, t ′)
= G(β,θ, t̃;r′,θ′, t ′) = 0 and G(r,θ, t̃;r′,θ′, t ′) = 0,

(6)

for t̃ < t ′. The Green function which satisfies Eq. (5) may be
obtained by using the eigenfunctions of the Sturm-Liouville
problem related to the spatial operator. Thus, we obtain that

G(r,θ, t̃;r′,θ′, t ′) = −π

4

∞

∑
n=1

N0nΨ0n(r,k0n)Ψ0n(r′,k0n)e−k2
0n (̃t−t ′)

− π

2

∞

∑
m=1

∞

∑
n=1

NmnΨmn(r,kmn)Ψmn(r′,kmn)cos
(
m(θ−θ

′)
)

e−k2
mn (̃t−t ′), (7)

with

Ψmn(r,kmn) = Jm(kmnr)Nm(kmnα)− J(kmnα)Nm(kmnr) and

Nmn =
k2

mn[
(Jm(kmnα)/Jm(kmnβ))2 −1

] , (8)

where Jm(x) and Nm(x) are the Bessel functions of first and
second species, and kmn are solutions of the eigenvalue equa-
tion

Jm(kmnβ)Nm(kmnα)− Jm(kmnα)Nm(kmnβ) = 0.

The first term of Eq. (4) gives the dynamical evolution of
the initial configuration of the system and the second term
represents the “surface effect” on the first term. In particular,

if the system, depending on the choice of the external field
and the boundary conditions, presents a stationary state, it is
manifested by the second term of Eq. (4). In this manner,
Eq. (4) shows how the surface plays an important role on the
time dependent behavior of the director angle of this system.
This result found for the ψ(r,θ, t̃ ) in a confined region, i.e.,
α ≤ r ≤ β, may be extended to a semi-infinite region, i.e.,
α ≤ r < ∞. For this case, it becomes

ψ(r,θ, t̃ ) =−
Z 2π

0
dθ

′
Z

∞

α

dr′r′G̃(r,θ, t̃;r′,θ′,0)ψ0(r′,θ′)

−
Z t̃

0
dt ′

Z 2π

0
dθ

′
αΦa(θ′, t ′)

∂

∂r′
G̃(r,θ, t̃;r′,θ′, t ′)

∣∣∣∣
r′=α

, (9)

where

G̃(r,θ, t̃;r′,θ′, t ′) = − 1
2π

Z
∞

0
dk ke−k2(t−t ′) Ψ(r,k)Ψ(r′,k)

J2
0(kα)+N2

0(kα)

− 1
π

∞

∑
m=1

cos
(
m(θ−θ

′)
)Z

∞

0
dk ke−k2(t−t ′) Ψ(r,k)Ψ(r′,k)

J2
m(kα)+N2

m(kα)
. (10)

It should be emphasized that while this limiting procedure
poses no mathematical problem, it can lead to a physical sit-

uation that is not very meaningful because mechanical in-
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stabilities should make the director escape out of the eρ,eθ

plane [18, 19].
Now, let us incorporate in our analysis the electric field,

E =
(

C̃/ρ

)
eρ. Even in this more difficult situation, we

can obtain the exact solution for the profile of the tilt an-
gle. In this scenario, Eq. (2) may also be analyzed by using
the Green function approach as in the previous case and has
as solution Eq. (4), with the Green function given by

G(r,θ, t̃;r′,θ′, t ′) = −π

4

∞

∑
n=1

Ñ0nΨ̃0n(r,k0n)Ψ̃0n(r′,k0n)e−k2
0n (̃t−t ′)

− π

2

∞

∑
m=1

∞

∑
n=1

ÑmnΨ̃mn(r,kmn)Ψ̃mn(r′,kmn)cos
(
m(θ−θ

′)
)

e−k2
mn (̃t−t ′), (11)

with

Ψ̃mn(r,kmn) = Jξm(kmnr)Nξm(kmnα)− Jξm(kmnα)Nξm(kmnr) and

Ñmn =
k2

mn[(
Jξm(kmnα)/Jξm(kmnβ)

)2 −1
] , (12)

ξm =
√

m2 + γ2, and the eigenvalues kmn determined by
equation Jξm(kmnβ) Nξm(kmnα)− Jξm(kmnα) Nξm(kmnβ) = 0.
It is interesting to note that Eq. (11) has formally the same
aspect of Eq. (7) and the difference is essentially in the eigen-
function Ψ̃mn(r,kmn), which for this case manifests the influ-
ence of the electric field.
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FIG. 2: Behavior of ψ versus r is illustrated in the absence of ex-
ternal field for typical values of t̃ by considering, for simplicity, the
initial condition ψ0(r,θ) = 0, α = 1, β = 2, and the boundary con-
ditions Φa(θ, t) = 1 and Φb(θ, t) = 0.
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FIG. 3: Behavior of ψ versus r is illustrated in the absence of ex-
ternal field for typical values of t̃ by considering, for simplicity,
the initial condition ψ0(r,θ) = 0, α = 1, β = 2, and the bound-
ary conditions Φa(θ, t) = Φ0e−δt , with Φ0 = 1 and δ = 1/τv, and
Φb(θ, t) = 0.

In Figs. 2-5, some particular behaviors of the complete tilt
angle distribution of Eq. (4) are exhibited for illustrative pur-
poses. In Figs. 2-3, the radial dependence is shown for the
initial condition ψ0(r,θ) = 0, for specific times and differ-
ent boundary conditions. In particular, in Fig. 3, we have
assumed a time dependent (periodic) easy direction on the
inner cylindrical surface. In Fig. 4, ψ(r,θ, t̃) at the posi-
tion r = (α + β)/2 (which coincides with the middle point
between the two cylinders) is shown as a function of the
field strength γ for two limiting situations t = 0 and t = ∞

(stationary situation) to show the effect of the electric field
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in the molecular orientation of the sample. Notice that
on the boundaries the easy direction is uniform and planar
(Φa(θ, t) = Φb(θ, t) = π/2), and for t̃ = 0 the entire sample
has this orientation. For large times, the field destroys the
planar orientation, as expected if εa > 0, and the orientation
at the middle point tends to be the homeotropic one. In Fig. 5,
the time dependence of the tilt angle is shown in a particular
position (r = 2.5) for specific values of the field strength, γ.
As expected, for relatively large times there is a saturation in
the value of the tilt angle. The sample tends to a saturated
distorted orientation, because we are assuming two different
easy direction on the boundaries.
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FIG. 4: Behavior of ψ versus γ is illustrated for two limiting situa-
tions t = 0 and t = ∞ (stationary situation) by considering, for sim-
plicity, α = 1, β = 2, r = 1.5, the initial condition ψ0(r,θ) = π/2,
the boundary condition Φa(θ, t) = Φb(θ, t) = π/2.

3. DISCUSSION AND CONCLUSIONS

We have worked out the time dependent boundary value
problem leading to the determination of the equilibrium di-
rector profile in a liquid crystalline sample confined between
two concentric cylindrical surfaces. To present an analysis
as general as possible for this kind of problem, we have also
considered the presence of an external field and a space and
time dependence boundary conditions. In principle, this sit-

uation could be physically relevant for liquid-crystalline sys-
tems confined between surfaces that are inhomogeneous and
have a space and time distribution of easy directions. A sce-
nario in which the easy axes change direction continuously,
even if difficult to experimentally realize, can be found in
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FIG. 5: Behavior of Eq. (4) versus t̃ is illustrated for typical values
of γ by considering, for simplicity, the initial condition ψ0(r,θ) = 0,
r = 2.5, α = 1/3, β = 4/3, and the boundary conditions Φa(θ, t) =
1/100 and Φb(θ, t) = 1/200.

those systems whose surfaces are covered with photopoly-
meric films. In these systems, the orientational changes of
the photochromic molecules promoted by incident light can
lead to remarkable changes in the molecular orientation. The
same formalism may also find applications in a diffusive pro-
cess in the presence of an adsorption phenomenon at the in-
terfaces [20, 21]. For this case, time dependent boundary
conditions may be used to represent the dynamical process
occurring between the bulk and the surfaces.
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