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Effects of dust charge variation on electrostatic waves in dusty plasmas with temperature anisotropy

M.C. de Juli
Centro de Rádio-Astronomia e Astrofı́sica Mackenzie - CRAAM, Universidade Presbiteriana Mackenzie,

Rua da Consolação 896, CEP: 01302-907, São Paulo, SP, Brasil

R.S. Schneider † and L. F. Ziebell1
Instituto de Fı́sica, Universidade Federal do Rio Grande do Sul,
Caixa Postal 15051, CEP: 91501-970, Porto Alegre, RS, Brasil.

R. Gaelzer
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We utilize a kinetic approach to the problem of wave propagation in dusty plasmas, taking into account the
variation of the charge of the dust particles due to inelastic collisions with electrons and ions. The components
of the dielectric tensor are written in terms of a finite and an infinite series, containing all effects of harmonics
and Larmor radius. The formulation is quite general and valid for the whole range of frequencies above the
plasma frequency of the dust particles, which are assumed motionless. The formulation is employed to the
study of electrostatic waves propagating along the direction of the ambient magnetic field, in the case for which
ions and electrons are described by bi-Maxwellian distributions. The results obtained in a numerical analysis
corroborate previous analysis, about the important role played by the dust charge variation, particularly on the
imaginary part of the dispersion relation, and about the very minor role played in the case of electrostatic waves
by some additional terms appearing in the components of the dielectric tensor, which are entirely due to the
occurrence of the dust charge variation.
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1. INTRODUCTION

In the development of a proper kinetic formulation for the
analysis of wave propagation and damping in a plasma con-
taining a population of charged dust particles, it is necessary
to take into account the process of charging of the dust grains.
However, despite the recognized importance of this effect to
the propagation and damping of waves [1, 2], and despite the
recognized need of a kinetic formulation including effects due
to the dust charging for proper evaluation of the wave damp-
ing [3, 4], most of the published literature utilizes fluid theory
to describe the dusty plasmas, and only a small fraction of the
published papers take into account the collisional charging of
the dust particles [5–8].

Motivated by the importance of the use of a proper kinetic
formulation for the analysis of wave behavior in dusty plas-
mas with dust grains of variable charge, in a recent paper we
have developed a very general mathematical formulation, writ-
ing the expressions for the components of the dielectric tensor
in terms of an infinite and a finite summation, formally incor-
porating effects of all cyclotron harmonics and all orders of
Larmor radius, keeping effects due to the dust charge varia-
tion [9]. The formulation developed is very general in terms
of frequency range and direction of propagation, and it is ex-
pected to be very useful for application to the study of wave
propagation in dusty plasmas in a variety of situations. As an
example of application, in Ref. [9] we have also included a
brief discussion of the particular case of electrostatic waves
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propagating along the direction of the ambient magnetic field,
assuming the case of Maxwellian distributions for electrons
and ions in the equilibrium, including some results originated
from numerical solutions of the dispersion relation.

In the present paper, we resume the use of the formulation
developed and presented in Ref. [9], in order to investigate the
dispersion relation for electrostatic waves in a dusty plasma,
considering the case of bi-Maxwellian distribution functions
for ions and electrons. The analysis therefore includes simul-
taneously the effects of the presence of dust particles, includ-
ing the effect of the dust charge variation, and the effect of the
anisotropy in electron and ion temperatures.

The structure of the paper is the following. In Section 2
we briefly outline the model used to describe the dusty plasma
and present essential features of the kinetic formulation which
leads to the components of the dielectric tensor which are nec-
essary for the dispersion relation. We also present a discussion
of the dispersion relation of the electrostatic waves, emphasiz-
ing the particular case of waves propagating along the direction
of the ambient magnetic field, in the case of bi-Maxwellian
distributions for the electrons and ions in the equilibrium. In
Section 3 some results obtained from numerical solution of
the dispersion relation are presented and discussed. The con-
clusions are presented in Section 4. Appendix A shows details
of the evaluation of the basic integrals appearing in the com-
ponents of the dielectric tensor, for the case of bi-Maxwellian
distributions for electrons and ions. Appendix B presents some
details on the evaluation of the average frequency of inelastic
collisions between electrons and ions and dust particles, and
Appendix C briefly discusses some features related to the equi-
librium condition of the process of collisional charging of the
dust particles.
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2. THE HOMOGENEOUS MAGNETIZED DUSTY PLASMA
MODEL AND THE COMPONENTS OF THE DIELECTRIC

TENSOR

The present paper is an application of the general formalism
recently appeared in Ref. [9]. Since the formalism is easily
available, the whole set of necessary expressions and defini-
tions will not be repeated here, for the sake of economy of
space. Nevertheless, it may be useful to repeat here a short
account of basic features, which will be made in the following
paragraphs.

In our general kinetic formulation we consider a plasma in a
homogeneous ambient magnetic field B0 = B0 ez, in the pres-
ence of spherical dust grains with constant radius a and vari-
able electric charge qd . We assume that the electrostatic energy
of the dust particles is much smaller than their kinetic energy,
the so-called weakly coupled dusty magneto-plasmas. This
condition is not very restrictive, since a large variety of nat-
ural and laboratory dusty plasmas can be classified as weakly
coupled [10]. The charging of the dust grains is assumed to oc-
cur by the capture of plasma electrons and ions during inelastic
collisions between these particles and the dust particles. Since
the electron thermal speed is much larger than the ion ther-
mal speed, the equilibrium dust charge becomes preferentially
negative. The cross-section for the charging process of the dust
particles is modeled by we expressions derived from the OML
theory (orbital motion limited theory) [11, 12].

Although we assume the occurrence of a magnetic field, the
model which we use for the dust charging does not take into ac-
count the effect of the magnetic field, being valid only for pa-
rameters such that the size of the dust particles is much smaller
than the electron Larmor radius. This feature is important,
since it has been shown that the effect of the magnetic field
on the charging of the dust particles can be safely neglected
when the size of the dust particles is much smaller than the
electron Larmor radius [13, 14].

Moreover, dust particles are assumed to be immobile, and
consequently the validity of the proposed model will be re-
stricted to waves with frequency much higher than the charac-
teristic dust frequencies. In particular we consider the regime
in which |Ωd | � ωpd < ω, where ωpd and Ωd are the plasma
frequency and the cyclotron frequency of the dust particles, re-
spectively. This condition therefore excludes the analysis of
the modes which can arise from the dust dynamics, as the so-
called dust-acoustic wave.

Using this basic framework, we arrive to expressions for the
components of the dielectric tensor which can be separated
into two kinds of contributions [15, 16]

εi j = ε
C
i j + ε

N
i j . (1)

Repeating here the commentary which has already appeared
along with previous presentations of the formalism, the term
εC

i j is formally identical, except for the iz components, to the
dielectric tensor of a magnetized homogeneous conventional
plasma of electrons and ions, with the resonant denominator
modified by the addition of a purely imaginary term which
contains the inelastic collision frequency of dust particles with
electrons and ions. For the iz components of the dielectric
tensor, in addition to the term obtained with the prescription
above, there is a term which is proportional to this inelastic

collision frequency. The term εN
i j arises only due to the process

of variation of the charge of the dust particles, and vanishes
in the case of a dustless plasma. Although the formal con-
tribution due to this kind of term is already recognized in the
literature since at least the first years of the past decade, its
contribution to numerical analysis of the dispersion is usually
neglected. One notices that the form of the εN

i j components is
strongly dependent on the model used to describe the charging
process of the dust particles.

Explicit expressions for the components εC
i j and εN

i j can be
found in Refs. [9, 15, 16]. Particularly, in Ref. [9] the ex-
pressions appear according to the formulation and definitions
to be used in the present paper. According to this novel formu-
lation, the components of the dielectric tensor can be written
in terms of a double summation, one finite and another infi-
nite, in which the contribution of harmonics and Larmor radius
terms is shown explicitly. For the ‘conventional’ contribution,
a component εC

i j can be written as follows

ε
C
i j = δi j +δizδ jzezz +N

δiz+δ jz
⊥ χi j , (2)

while a component εN
i j is written as

ε
N
i j = UiS j . (3)

In the case of electrostatic waves (ES waves) and parallel
propagation, which the subject of the present application, the
dispersion relation is simply given by εzz = 0. Therefore, we
present here only the explicit expressions for the zz contribu-
tions to the dielectric tensor. For general distributions and ar-
bitrary directions of propagation, the contribution to the ‘con-
ventional’ part appears as follows

χzz =
v2
∗

c2 ∑
β

1
r2

β

ω2
pβ

Ω2
∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1)

(4)

×
m

∑
n=−m

a(|n|,m−|n|)
[

J(n,m,2; fβ0)+ iJν(n,m,1; fβ0)
]
,

ezz =− 1
z2 ∑

β

ω2
pβ

Ω2
∗

1
nβ0

Z
d3u

u‖
u⊥

L( fβ0) (5)

+
1
z2 ∑

β

ω2
pβ

Ω2
∗

1
nβ0

a(0,0)
[

J(0,0,2; fβ0)+ i Jν(0,0,1; fβ0)
]
,

where

J(n,m,h; fβ0)≡
Z

d3u
zuh
‖u

2(m−1)
⊥ u⊥L( fβ0)

z−nrβ−q‖u‖+ i ν̃0
βd

, (6)

Jν(n,m,h; fβ0) =
Z

d3u
ν̃0

βd uh
‖u

2(m−1)
⊥ u⊥L( fβ0)

z−nrβ−q‖u‖+ i ν̃0
βd

, (7)

L =
1
γ

[(
γ−

q‖
z

u‖

)
∂

∂u⊥
+

q‖
z

u⊥
∂

∂u‖

]
,
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L = u‖
∂

∂u⊥
−u⊥

∂

∂u‖
,

with the dimensionless variables

z =
ω

Ω∗
, q‖,⊥ =

k‖,⊥v∗
Ω∗

, u‖,⊥ =
p‖,⊥
mβv∗

,

rβ =
Ωβ

Ω∗
, ν̃

0
βd =

ν0
βd(u)

Ω∗
, u =

(
u2
‖+u2

⊥

)1/2
,

where the inelastic collision frequency between plasma parti-
cles and dust particles is given by

ν
0
βd(u) =

πa2nd0v∗
u

(
u2−

2qd0qβ

amβv2
∗

)
H
(

u2−
2qd0qβ

amβv2
∗

)
.

The quantities Ω∗ and v∗ are a characteristic frequency and
a velocity, respectively, which are considered convenient for
normalization in the case of a particular application. For the
present application, we use Ω∗ = ω0

pe0 and v∗ = cs, where
cs = (Te/mi)1/2 is the ion-sound velocity and ω0

pe0 is the equi-
librium electron plasma angular frequency in the absence of
dust. The quantity qd0 is the equilibrium value of the charge of
the dust particles, which we will denote as qd0 =−Zd0e.

The contribution of the ‘new’ part, for general distributions
and directions of propagation, appears as follows,

Uz =
1
z

1
z+ i(ν̃ch + ν̃1)

∑
β

ω2
pβ

Ω2
∗

1
nβ0

∞

∑
m=0

+m

∑
n=−m

(
q⊥
rβ

)2m

×a(|n|,m−|n|)JU (n,m,1,0; fβ0) , (8)

Sz =−aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2
∗

1
nβ0

∞

∑
m=0

+m

∑
n=−m

(
q⊥
rβ

)2m

×a(|n|,m−|n|)
[

JνL(n,m,1; fβ0)+ i Jνν(n,m; fβ0)
]

+
aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2
∗

1
nβ0

Jν0( fβ0) , (9)

ν̃ch =
aΩ∗
2v∗

∑
β

ω2
pβ

Ω2
∗

1
nβ0

Jch( fβ0) , (10)

ν̃1 =−i
aΩ∗
2v∗

∑
β

ω2
pβ

Ω2
∗

1
nβ0

∞

∑
m=0

+m

∑
n=−m

(
q⊥
rβ

)2m

×a(|n|,m−|n|)JU (n,m,0,1; fβ0) , (11)

where

JU (n,m,h, l; fβ0) =
Z

d3u
z(ν̃0

βd/z)l fβ0

z−nrβ−q‖u‖+ i ν̃0
βd

(12)

×
uh
‖u

2m
⊥

u
H
(

u2 +
2Zd0eqβ

amβv2
∗

)
,

JνL(n,m,h; fβ0) =
Z

d3u
ν̃0

βd uh
‖u

2m−1
⊥ L( fβ0)

z−nrβ−q‖u‖+ i ν̃0
βd

, (13)

Jνν(n,m; fβ0) =
Z

d3u
z(ν̃0

βd/z)2 u2m−1
⊥ L( fβ0)

z−nrβ−q‖u‖+ i ν̃0
βd

, (14)

Jν0( fβ0) =
Z

d3u
ν̃0

βd

z
L( fβ0)

u⊥
, (15)

Jch( fβ0) =
Z

d3u fβ0
1
u

H
(

u2 +
2Zd0eqβ

amβv2
∗

)
, (16)

with ν̃1 = ν1/Ω∗ and ν̃ch = νch/Ω∗ .
For the case of parallel propagation (q⊥ = 0), Eqs. (5), (8),

and (9), lead to

ezz =− 1
z2 ∑

β

ω2
pβ

Ω2
∗

1
nβ0

Z
d3u

u‖
u⊥

L( fβ0)

+
1
z2 ∑

β

ω2
pβ

Ω2
∗

1
nβ0

[
J(0,0,2; fβ0)+ i Jν(0,0,1; fβ0)

]
,

Uz =
1
z

1
z+ i(ν̃ch + ν̃1)

∑
β

ω2
pβ

Ω2
∗

1
nβ0

JU (0,0,1,0; fβ0) ,

Sz =−aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2
∗

1
nβ0

[
JνL(0,0,1; fβ0)+ i Jνν(0,0; fβ0)

]

+
aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2
∗

1
nβ0

Jν0( fβ0) ,

where, from Eqs. (10) and (11),

ν̃ch =
aΩ∗
2v∗

∑
β

ω2
pβ

Ω2
∗

1
nβ0

Jch( fβ0) ,

ν̃1 =−i
aΩ∗
2v∗

∑
β

ω2
pβ

Ω2
∗

1
nβ0

JU (0,0,0,1; fβ0) .

Further development can be made in the particular case of
bi-Maxwellian distributions for ions and electrons,

fβ0(u‖,u⊥) =
nβ0

(2π)3/2u2
β⊥uβ‖

e−u2
‖/(2u2

β‖)e−u2
⊥/(2u2

β⊥)
. (17)

For these distributions,

L( fβ0) =−
u‖u⊥
u2

β⊥

(
1−∆β

)
fβ0 , (18)
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and

L( fβ0) =− u⊥
γu2

β⊥

[
γ−

q‖
z

u‖
(
1−∆β

)]
fβ0 , (19)

where

∆β =
u2

β⊥

u2
β‖

=
Tβ⊥
Tβ‖

.

where uβ⊥ = vβ⊥/v∗ and uβ‖ = vβ‖/v∗, with vβ⊥ =
√

Tβ⊥/mβ

and vβ‖ =
√

Tβ‖/mβ.
For the case of these distributions and using as an approx-

imation the average value of the collision frequency instead
of the actual momentum-dependent value, the integrals which
are necessary for the components of the dielectric tensor can
be evaluated, leading to the following expressions,

J(0,0,2; fβ0) = (
√

2)2 nβ0

u2
β‖

u2
β⊥

{
ζ

0
β
ζ̂

0
β

[
1+ ζ̂

0
β
Z(ζ̂0

β
)
]

−(1−∆β)
{

1
2

+(ζ̂0
β
)2
[
1+ ζ̂

0
β
Z(ζ̂0

β
)
]}}

,

Jν(0,0,1; fβ0) = (
√

2)2(1−∆β)nβ0

×
u2

β‖

u2
β⊥

ν̃β

z
ζ

0
β
ζ̂

0
β

[
1+ ζ̂

0
β
Z(ζ̂0

β
)
]

,

JU (0,0,0,1; fβ0)'−Γ

(
1
2

)
(
√

2)−1
(

ν̃β

z

)
nβ0

×(uβ⊥)−1 (uβ‖)
0

ζ
0
β

Z(ζ̂0
β
) ,

JU (0,0,1,0; fβ0)'−Γ

(
1
2

)
(
√

2)0
(

ν̃β

z

)0

nβ0

×(uβ⊥)−1 (uβ‖)
1

ζ
0
β

[
1+ ζ̂

0
β
Z(ζ̂0

β
)
]

,

Jνν(0,0; fβ0) =
(

ν̃β

z

)2

(
√

2)1 (1−∆β

)
nβ0

×(uβ⊥)−2(uβ‖)ζ
0
β

[
1+ ζ̂

0
β
Z(ζ̂0

β
)
]

.

JνL(0,0,1; fβ0) =
ν̃β

z
J(0,0,1; fβ0) =

ν̃β

z
(
√

2)1 nβ0

×
(
uβ⊥
)−2 uβ‖

{
ζ

0
β

[
1+ ζ̂

0
β
Z(ζ̂0

β
)
]
− (1−∆β) ζ̂

0
β

[
1+ ζ̂

0
β
Z(ζ̂0

β
)
]}

,

Jν0( fβ0) = 0 ,

where

ζ̂
n
β

=
z−nrβ + i ν̃β√

2q‖uβ‖
, ζ

0
β

=
z√

2q‖uβ‖
,

ν̃i =
νi

Ω∗
= 2(

√
2π)(εni0)

c3

Ω3
∗

a2Ω2
∗

c2
v∗
c

ui‖
∆i

×
Z 1

0
dµ

∆i

1+µ2(∆i−1)

[
∆i

1+µ2(∆i−1)
+χ

i
‖

]
,

ν̃e =
νe

Ω∗
= 2(

√
2π)(εni0)

c3

Ω3
∗

a2Ω2
∗

c2
v∗
c

ue‖
∆e

×
Z 1

0
dµ
[

∆e

1+µ2(∆e−1)

]2

e−|χ
e
‖|[1+µ2(∆e−1)]/∆e .

Moreover, the first integral which contributes to ezz becomes
simply the following

Z
d3u

u‖
u⊥

L( fβ0) =−
(
1−∆β

)
nβ0

u2
β‖

u2
β⊥

.

Details of the evaluation can be found in appendix A. Using
these results, and using also Eq. (A16) for the Jch, the disper-
sion relation becomes

Λ
C +Λ

N = 0 , (20)

where

Λ
C = 1+

2
z2 ∑

β

ω2
pβ

Ω2
∗

ζ
0
β
ζ̂

0
β

[
1+ ζ̂

0
β
Z(ζ̂0

β
)
]

,
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Λ
N =

aΩ∗
2v∗

√
2π

z2

[
z+ i

aΩ∗
2v∗

∑
β

ω2
pβ

Ω2
∗

[
1

nβ0
Jch( fβ0)+ i

√
π

2

(
ν̃β

z

)
1

uβ⊥
ζ

0
β

Z(ζ̂0
β
)
]]−1

×

[
∑
β

ω2
pβ

Ω2
∗

uβ‖
uβ⊥

ζ
0
β

[
1+ ζ̂

0
β
Z(ζ̂0

β
)
]][

∑
β

ω2
pβ

Ω2
∗

uβ‖

u2
β⊥

ν̃β

z
∆βζ

0
β

[
1+ ζ̂

0
β
Z(ζ̂0

β
)
]]

.

3. NUMERICAL ANALYSIS

For the numerical analysis we consider parameters which
are in the range of parameters of interest for stellar winds:
ion temperature Ti = 1.0× 104 K, ion density ni0 = 1.0× 109

cm−3, ion charge number Zi = 1.0, and ion mass mi = mp,
where mp is the proton mass, with a = 1.0× 10−4 cm as the
radius of the dust particles. The ion density which has been as-
sumed is rather high when compared, for instance, with the so-
lar wind plasma, but is reported to occur in outbursts of carbon-
rich stars [17].

3.1. Ion-acoustic waves, isotropic Maxwellian distributions

Initially, we estimate the magnitude of the contribution of
the ‘new’ terms to the dispersion relation of ES waves, and
compare it with the ‘conventional’ contribution, for the case
of isotropic Maxwellian distributions. In order to do that we
assume the occurrence of weakly damped oscillations with fre-
quency in the range of ion-acoustic waves, choosing the values
z = (1× 10−2,−2× 10−4) for the numerical estimation. For
this value of z and for the parameters considered in the previ-
ous paragraph, and assuming Te/Ti = 10.0, we plot in Fig. 1
the quantities ΛC and ΛN , namely the ‘conventional’ and the
‘new’ contributions to the ES dispersion relation, as defined in
Eq. (20), versus normalized wave-number q and normalized
dust density ε. The upper panels of Fig. 1 show respectively,
from left to right, the real and the imaginary parts of ΛC, while
the bottom panels show from left to right the real and the imag-
inary parts of ΛN . It is seen that for most of the interval of q
and ε depicted in the figure the real and imaginary contribu-
tions of ΛN are about four orders of magnitude smaller than
the corresponding contributions of ΛC. Similar figures and re-
sults can be obtained for different values of the ratio Te/Ti, as
in the cases of Te/Ti = 1.0 and Te/Ti = 20.0, which appeared
in [9].

We further explore the role of the dust particles and of the
‘new’ contribution for the dispersion relation of ES waves in
the case of isotropic Maxwellian distributions, by numerically
solving the expanded form of Eq. (20) for the frequency range
of ion-acoustic waves. Fig. 2 shows the value of zr and the
corresponding values of the imaginary part zi, as a function of
q and five values of ε (0.0, 2.5×10−5, 5.0×10−5, 7.5×10−5,
and 1.0×10−4), for three values of the temperature ratio Te/Ti
(1, 10, and 20). Figure 2(a) shows that the quantity zr is rela-
tively insensitive to the presence of the dust, for Te = Ti. Fig-
ures 2(c) and 2(e) show that, for increasing values of the ratio
Te/Ti, the effect of the dust on the real part of the dispersion
relation becomes more and more pronounced. Regarding the

imaginary part, Figure 2(b) shows that Landau damping occurs
for the whole range of q values considered, namely the damp-
ing which occurs for absence of dust, ε = 0.0, and that the
presence of dust increases the damping for the whole range
appearing in the figure, for Te = Ti. On the other hand, Fig.
2(d) shows that for Te/Ti = 10 the increase of the dust popula-
tion increases the damping in the region of very small q, and
decreases the damping for sufficiently large q (q ≥ 0.008, for
the parameters utilized). There is an intermediate region for
which the presence of the dust population initially contributes
to decrease of damping, and then contributes to a renewed in-
crease of damping, for sufficiently large ε. Similar features
are seen more clearly with the increase of the ratio Te/Ti. Fig-
ure 2(f) shows that for small q the damping is appreciably in-
creased with the increase of ε, while for q≥ 0.015 the damping
is clearly decreased by the increase in the dust population.

The explanation for this behavior of the imaginary part zi is
as follows. The basic feature to be considered is that the pres-
ence of dust lead to two competitive effects. One of the effects
is the damping due to the dust charge variation, depending on
the frequency of inelastic collisions on the denominator of the
velocity integrals appearing in the dielectric tensor. Another
effect is the reduction in the electron population, due to the
capture of electrons by the dust particles, which contribute to
reduction of electron Landau damping. For Te/Ti = 1.0 the
electron Landau damping is meaningful for large q, and de-
creases for small q, because the resonant velocity becomes
much larger than the electron thermal velocity. The dust charge
variation constitutes an additional damping mechanism. This
effect dominates over the decrease of Landau damping because
the capture of electrons is not very significant for Te/Ti = 1.0.
Figure 3 shows that for Te/Ti = 1.0 and ε = 1.0×10−4 the elec-
tron density is still more than 80 % of the population in a dust-
less plasma. The consequence is that the damping is increased
by the process of dust charge variation, for the whole range
of q, with the increase of the dust density. For Te/Ti = 10.0,
on the other hand, electron Landau damping is significant for
the higher end of the q range considered, but less important
for small q, if compared with the case of Te/Ti = 1.0. With
the increase in the dust population, the damping is enhanced
for small q, since in the region of small Landau damping the
damping due to the dust charge variation is dominant. This
possibility of damping due to collisional charging has already
been noticed by other authors [3, 18]. In the higher end of
the q region, however, Landau damping is sufficiently high to
become dominant. Although the presence of dust introduces
damping due to the dust charge variation, the dominant effect
is the reduction of Landau damping due to the reduction of the
electron population. Figure 3 shows that for Te/Ti = 10.0 the
electron density is reduced to nearly 30 % of the original den-
sity, for the largest value ε considered in the calculation. These
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features are even more evident for Te/Ti = 20.0. For small q
the Landau damping is negligible in this case. With the in-
crease of the dust population, there is enhancement of damping
for small q, due to the mechanism of dust charge variation. For
the higher end of the q region, however, the damping due to the
dust charge variation is overcome by Landau damping. With
the increase of the dust population ε, the electron population is
severely reduced, as shown by Fig. 3, and the overall effect is
the reduction of the wave damping shown by Fig. 2(f).

We point out that in Fig. 2 we have plotted the results ob-
tained with the dispersion relation given by Eq. (20). We have
also plotted in the same figure the results obtained from a dis-
persion relation given by ΛC = 0, obtained by neglecting the
‘new’ contribution to the dielectric tensor. The results hardly
can be distinguished in the scale of the figure, reflecting the
fact that for the range of frequency and for the parameters uti-
lized the effect of the ‘new’ contribution is negligible in the
dispersion relation of ES waves. In a color version of Fig. 2,
using blue color for the results obtained with the full dispersion
relation and red color for the results obtained considering only
the “conventional” contribution to the dispersion relation, the
two different results appear so close that the curves feature a
light purple color, result of the superposition of the results fea-
tured with blue color and the results featured with red color.
In a monochromatic version of Fig. 2, using two different line
styles, the two different results can hardly be distinguished.

3.2. Ion-acoustic waves, bi-Maxwellian distributions

At this point we proceed to the estimation of the magnitude
of the contribution of the ‘new’ terms to the dispersion relation
of ES waves in anisotropic plasmas, and compare it with the
‘conventional’ contribution. In order to do that we again as-
sume the occurrence of weakly damped oscillations with fre-
quency in the range of the ion-acoustic waves, assuming a typ-
ical normalized frequency z = (1.0× 10−2,−2× 10−4). For
this value of z and for the parameters considered in the previ-
ous paragraph, and assuming Te/Ti = 1.0, and considering the
case of Te⊥/Te‖ = 0.1 and Ti⊥/Ti‖ = 0.1, we plot in Fig. 4 the
quantities ΛC and ΛN versus normalized wave-number q and
normalized dust density ε. The upper panels of Fig. 4 show
respectively, from left to right, the real and the imaginary parts
of ΛC, while the bottom panels show from left to right the real
and the imaginary parts of ΛN . It is seen that for most of the
interval of q and ε depicted in the figure the real and imaginary
contributions of ΛN are much smaller than the corresponding
contributions of ΛC, similarly to what occurs in the case of
isotropic Maxwellian distributions.

In Fig. 5 we show the same quantities depicted in Fig. 4, for
the case of Te⊥/Te‖ = 10.0 and Ti⊥/Ti‖ = 10.0, with the other
parameters all equal to those used for Fig. 1. The comments
which can be made about Fig. 5 are similar to those made
about Fig. 4, and also similar to those made about Fig. 1,
which was obtained for the case of isotropy of temperatures.

Figures 4 and 5 have been obtained assuming equal ion
and electron temperatures. In the case of electron temper-
ature larger than ion temperature, similar results can be ob-
tained. The only point to be observed is that, for increasing
ratio of perpendicular and parallel temperatures, the magni-
tudes of ΛC and ΛN at small q, which are seen to grow with

ε in the range depicted in Figs. 4 and 5, are seen to decrease
again at sufficiently large ε. This feature is illustrated in Figs.
6 and 7, which show the same quantities appearing in Figs.
4 and 5, for Te/Ti = 4.0 and Te/Ti = 10.0, respectively, with
Te⊥/Te‖ = 10.0 and Ti⊥/Ti‖ = 10.0, and the other parameters
all equal to those used for Fig. 1. The opposite side of the
anisotropy range is illustrated by Fig. 8, which shows the case
of Te/Ti = 10.0, with Te⊥/Te‖ = 0.1 and Ti⊥/Ti‖ = 0.1, and the
other parameters all equal to those used for Fig. 1.

Both in the case of ∆β = 0.1, shown in Fig. 4, in the case of
∆β = 10.0, shown in Figs. 5 and 6, and in the case of ∆β = 1.0,
illustrated in Fig. 1, the comparison between the magnitude of
the ‘conventional’ and ‘new’ contribution becomes more dif-
ficult in the region of the graphics where these contributions
both approach zero. In order to improve the accuracy of obser-
vation, we show in Fig. 9 the ratio between the ‘new’ and the
‘conventional’ contributions, for one of the cases discussed. In
the upper line of Fig. 9 we show at the left-hand side the ratio
between the real parts of the contributions, and in the right-
hand side the ratio between the imaginary parts, for the case
Te⊥/Te‖ = 0.1 and Ti⊥/Ti‖ = 0.1, with Te/Ti = 1.0, and other
parameters as in Fig. 1. At the bottom line, we show the cor-
responding figures for the case of perpendicular temperatures
much above parallel temperatures, with Te⊥/Te‖ = 10.0 and
Ti⊥/Ti‖ = 10.0, with Te/Ti = 1.0, and other parameters as in
Fig. 1.

The conclusion to be drawn from Fig. 1, for the case of plas-
mas with isotropy of temperature, and from Figs. 4, 5, 6, and 9
is that, although the dust population may introduce significant
contribution to the dispersion relation of electrostatic waves in
the range of frequencies characteristics of ion-acoustic waves,
this contribution is mostly due to the ‘conventional’ part of the
dielectric tensor. At least for the parameter regime which has
been investigated, the ‘new’ contribution is shown to give only
a negligible contribution to the dispersion relation.

We continue with the investigation of the role played by the
dust particles and by the ‘new’ contribution for the dispersion
relation of ES waves in anisotropic plasmas, by discussing
the numerical solution of the dispersion relation. In Fig. 10
we consider the solution corresponding to ion-acoustic waves,
also for three situations of temperature anisotropy. Fig. 10(a)
shows the value of zr for ion-acoustic waves, as a function of
qz and five values of ε (0.0, 2.5×10−5, 5.0×10−5, 7.5×10−5,
and 1.0× 10−4), for Te = Ti and perpendicular temperature
much smaller than parallel temperature (Te⊥/Te‖ = Ti⊥/Ti‖ =
0.1), with other parameters as in Fig. 1. Figure 10(b) shows the
corresponding values of the imaginary part of the normalized
frequency, zi. It is is seen that the presence of the dust pop-
ulation modifies very significantly the imaginary part zi. The
damping, measured by the absolute value of zi, is enhanced for
small qz, due to the presence of the dust, but can be apprecia-
bly reduced for larger qz, also due to the presence of the dust.
For the real part zr, Fig. 10(c) shows that the effect of the dust
is not very significant, although not negligible.

The case of perpendicular temperature larger than the paral-
lel temperature is seen in Figs. 10(e) and 10(f), at the bottom
line of Fig. 10. Figure 10(e) shows the value of zr for ion-
acoustic waves, as a function of qz and five values of ε (0.0,
2.5×10−5, 5.0×10−5, 7.5×10−5, and 1.0×10−4), for Te = Ti
and Te⊥/Te‖ = Ti⊥/Ti‖ = 10.0, with other parameters as in Fig.
1. Figure 10(e) shows that in this case of larger perpendicular
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FIG. 1: (upper left) Real part of the “conventional” contribution to the dispersion relation, vs. q and ε = nd/ni0; (upper right) imaginary part
of the “conventional” contribution; (bottom left) Real part of the “new” contribution; (bottom right) imaginary part of the “new” contribution;
z = (1.0×10−2,−2.0×10−4), in the range of ion-acoustic waves. Isotropic Maxwellian distributions for ions and electrons, with Ti = 1.0×104

K and Te/Ti = 10. Other parameters: ni0 = 1.0×109 cm−3, Zi = 1.0, mi = mp, where mp is the proton mass, and a = 1.0×10−4 cm.

temperature the real part of the normalized frequency is much
more affected by the presence of the dust than in the case of
smaller perpendicular temperature. The imaginary part zi is
also affected significantly by the presence of the dust popula-
tion, as shown by Fig. 10(f). Qualitatively, it is seen that the
effect is similar to that occurring in the case of perpendicular
temperature smaller than parallel shown in Fig. 10(b), in the
sense that the damping, measured by the absolute value of zi, is
enhanced for small qz, due to the presence of the dust, but can
be appreciably reduced for larger qz, also due to the presence
of the dust.

The middle line of Fig. 10 shows the case of isotropy of
temperatures, in between the cases depicted at the top line and
at the bottom line. Figures 10(c) and 10(d) show the values of
zr and zi, respectively, for ion-acoustic waves, as a function of
qz and five values of ε (0.0, 2.5×10−5, 5.0×10−5, 7.5×10−5,
and 1.0×10−4), for Te = Ti and Te⊥/Te‖ = Ti⊥/Ti‖ = 1.0, with
other parameters as in Fig. 1.

Additional information may be obtained by considering the
dependence of the electron density and of the equilibrium
value of the charge of the dust particles, as a function of the
dust density. In Fig. 11 we show the values of the dust charge
Zd0 and of the electron density ne0 as a function of ε, for five
values of the ratio T⊥/T‖, considering Te‖ = 20 Ti‖, for fixed
ion density, for the case of ion-sound waves. It is seen that
for T⊥ = 0.2T‖ the value of Zd0 reduced by nearly 30 % when
ε is changed between 0.0 and 1.0× 10−4, while it is reduced
in the same range to nearly 15 % of the original value in the
case of T⊥ = 5.0T‖. It is also seen that the value of ne0 changes

by approximately 60 % when ε is changed between 0.0 and
1.0× 10−4, in the case of T⊥/T‖ = 0.2, and is reduced to al-
most 5 % of the original value in the case T⊥/T‖ = 5.0.

The dependence of Zd0 and ne0 on the ratio of electron and
ion temperatures, for anisotropic situations, is illustrated in
Fig. 12. Figure 12(a) shows the values of Zd0 as a function of ε,
for four values of the ratio Te‖/Ti‖, for a case with anisotropy
of temperatures, with T⊥/T‖ = 5.0. Figure 12(b) shows the
values of the ratio ne0(ε)/ne0(0), as a function of ε, for four
values of the ratio Te‖/Ti‖, for T⊥/T‖ = 5.0. It is seen that the
density of electrons decrease with the increase of ε, substan-
tially faster for the case of high values of the ratio Te‖/Ti‖ than
for the case in which this ratio is equal to the unity.

3.3. Langmuir waves, bi-Maxwellian distributions

We proceed by estimating the magnitude of the contribution
of the ‘new’ terms to the dispersion relation of ES waves in
anisotropic plasmas, now considering the case of waves with
frequency in the range of the Langmuir waves, assuming a typ-
ical normalized frequency z = (1.1× 100,−1× 10−3). For
this value of z and for the parameters considered in the pre-
vious paragraph, and assuming Te/Ti = 1.0, and considering
the case of Te⊥/Te‖ = 0.1 and Ti⊥/Ti‖ = 0.1, we plot in Fig. 13
the quantities ΛC and ΛN , namely the ‘conventional’ and the
‘new’ contributions to the ES dispersion relation, as defined in
Eq. (20), versus normalized wave-number q and normalized
dust density ε. The upper panels of Fig. 13 show respectively,
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FIG. 2: Real and imaginary parts of the normalized frequency (zr and zi) obtained from the dispersion relation for ion-acoustic waves in the case
of isotropic Maxwellian distributions for ions and electrons, vs. q, for several values of ε = nd/ni0 (0.0, 2.5× 10−5, 5.0× 10−5, 7.5× 10−5,
and 1.0×10−4); (a) zr, with Te/Ti = 1.0; (b) zi, with Te/Ti = 1.0; (c) zr, with Te/Ti = 10.0; (d) zi, with Te/Ti = 10.0; (e) zr, with Te/Ti = 20.0;
(f) zi, with Te/Ti = 20.0; other parameters the same as used to obtain Fig. 1.

from left to right, the real and the imaginary parts of ΛC, while
the bottom panels show from left to right the real and the imag-
inary parts of ΛN . It is seen that for most of the interval of q
and ε depicted in the figure the real and imaginary contribu-
tions of ΛN are several orders of magnitude smaller than the
corresponding contributions of ΛC.

In Fig. 14 we show the same quantities depicted in Fig. 13,
for the case of Te⊥/Te‖ = 10.0 and Ti⊥/Ti‖ = 10.0, with the
other parameters all equal to those used for Fig. 13. The com-
ments which can be made about Fig. 14 are similar to those
made about Fig. 13, and also similar to those made about Fig.
1 of Ref. [9], where the case of isotropic temperatures has

been discussed. The conclusion is that the dust population may
introduce significant contribution to the dispersion relation of
electrostatic waves in the range of frequencies characteristics
of Langmuir waves, but this contribution is mostly due to the
‘conventional’ part of the dielectric tensor. At least for the
parameter regime which has been investigated, the ‘new’ con-
tribution is shown to give only a negligible contribution to the
dispersion relation.

In Fig. 15 we consider the solution corresponding to Lang-
muir waves, for three situations of temperature anisotropy. Fig.
15(a) shows the value of zr as a function of qz and five values
of ε (0.0, 2.5×10−5, 5.0×10−5, 7.5×10−5, and 1.0×10−4),
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FIG. 3: Ratio between the electron density in a dusty plasma and the equilibrium electron density in the absence of dust, vs. ε = nd/ni0, for
three values of the ratio Te/Ti, in the case of isotropic Maxwellian distributions for ions and electrons, Other parameters the same as used to
obtain Fig. 1.

FIG. 4: (upper left) Real part of the ‘conventional’ contribution to the dispersion relation, vs. q and ε = nd/ni0; (upper right) imaginary part
of the ‘conventional’ contribution; (bottom left) Real part of the ‘new’ contribution; (bottom right) imaginary part of the ‘new’ contribution;
Te = Ti, ∆β = Tβ⊥/Tβ‖ = 0.1, for β = i,e, and z = (1.0×10−2,−2.0×10−4), in the range of ion-acoustic waves. Other parameters the same as
used to obtain Fig. 1.

for Te = Ti and perpendicular temperature much smaller than
parallel temperature (Te⊥/Te‖ = Ti⊥/Ti‖ = 0.1), with other pa-
rameters as in Fig. 13. Figure 15(b) shows the corresponding
values of the imaginary part of the normalized frequency, zi. It
is is seen that the presence of the dust population do not mod-
ifies appreciably the root of the dispersion relation, either the

real or the imaginary part.

Figure 15(e) shows the value of zr for Langmuir waves,
as a function of qz and five values of ε (0.0, 2.5× 10−5,
5.0× 10−5, 7.5× 10−5, and 1.0× 10−4), for Te = Ti and per-
pendicular temperature much larger than parallel temperature
(Te⊥/Te‖ = Ti⊥/Ti‖ = 10.0), with other parameters as in Fig.
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FIG. 5: (upper left) Real part of the ‘conventional’ contribution to the dispersion relation, vs. q and ε = nd/ni0; (upper right) imaginary part
of the ‘conventional’ contribution; (bottom left) Real part of the ‘new’ contribution; (bottom right) imaginary part of the ‘new’ contribution;
Te = Ti, ∆β = Tβ⊥/Tβ‖ = 10.0, for β = i,e, and z = (1.0×10−2,−2.0×10−4), in the range of ion-acoustic waves. Other parameters the same
as used to obtain Fig. 1.

13. Figure 15(e) shows that in this case of larger perpendic-
ular temperature the real part of the normalized frequency is
much more affected by the presence of the dust than in the
case of smaller perpendicular temperature. Particularly in the
region of small wave-number (small qz), the value of zr can
be reduced by a factor which goes up to almost 50%, for
dust population rising between the case ε = 0.0 and the case
ε = 1.0× 10−4. Figure 15(f) shows the corresponding values
of the imaginary part of the normalized frequency, zi. Con-
trarily to what happens in the case in which the perpendicular
temperature is smaller than the parallel temperature, shown in
Fig. 15(b), Fig. 15(f) shows that in the case of larger perpen-
dicular temperature the value of the imaginary part zi can be
very appreciably affected by the presence of the dust popula-
tion. For a given value of the normalized wave number qz, the
magnitude of the imaginary part of zi is significantly increased
by the presence of the dust.

In between the cases shown at the top line and at the bot-
tom line of Fig. 15, we consider the case of equal parallel and
perpendicular temperatures. Figure 15(c) shows the value of
zr for Langmuir waves, as a function of qz and five values of ε

(0.0, 2.5×10−5, 5.0×10−5, 7.5×10−5, and 1.0×10−4), for
Te = Ti and perpendicular temperature equal to parallel tem-
perature (Te⊥/Te‖ = Ti⊥/Ti‖ = 1.0), with other parameters as
in Fig. 13. Figure 15(d) shows the corresponding values of the
imaginary part of the normalized frequency, zi.

Let us now consider the dependence of the electron density
and of the equilibrium value of the charge of the dust particles,
as a function of the dust density. In Fig. 16 we show the val-
ues of the dust charge Zd0 and of the electron density ne0 as
a function of ε, for five values of the ratio T⊥/T‖, considering
Te‖ = Ti‖, for fixed ion density. The case of Te‖ = Ti‖ is the
case relevant for Langmuir waves. It is seen that the value of
Zd0 is basically independent of ε in the range considered, for
T⊥ < T‖, changing by less than 5 % when ε is changed between
0.0 and 1.0× 10−4, in the case T⊥ = T‖. For larger values of
this ratio the value of Zd0 becomes more dependent on ε, al-
though even for T⊥/T‖ = 5.0 the change obtained is only of
order of 20 %, in the range considered. It is also seen that the
value of ne0 changes by approximately 8 % when ε is changed
between 0.0 and 1.0× 10−4, in the case of T⊥/T‖ = 0.2, and
is reduced to almost 50 % of the original value in the case
T⊥/T‖ = 5.0. These results show that the electron density and
the dust charge are more and more sensitive to the dust density
for increasing values of the ratio T⊥/T‖, for fixed ion density.

4. CONCLUSIONS

In the present paper we have examined the influence of the
dust charge variation on the dispersion relation of electrostatic
waves, considering the case of waves propagating in the direc-
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FIG. 6: (upper left) Real part of the ‘conventional’ contribution to the dispersion relation, vs. q and ε = nd/ni0; (upper right) imaginary part
of the ‘conventional’ contribution; (bottom left) Real part of the ‘new’ contribution; (bottom right) imaginary part of the ‘new’ contribution;
Te/Ti = 4.0, ∆β = Tβ⊥/Tβ‖ = 10.0, for β = i,e, and z = (1.0× 10−2,−2.0× 10−4), in the range of ion-acoustic waves. Other parameters the
same as used to obtain Fig. 1.

FIG. 7: (upper left) Real part of the ‘conventional’ contribution to the dispersion relation, vs. q and ε = nd/ni0; (upper right) imaginary part
of the ‘conventional’ contribution; (bottom left) Real part of the ‘new’ contribution; (bottom right) imaginary part of the ‘new’ contribution;
Te/Ti = 10.0, ∆β = Tβ⊥/Tβ‖ = 10.0, for β = i,e, and z = (1.0×10−2,−2.0×10−4), in the range of ion-acoustic waves. Other parameters the
same as used to obtain Fig. 1.

tion of the ambient magnetic field. The most important motiva-
tion was the investigation of the effect of some contributions to
the dielectric tensor which usually appear in theoretical analy-
sis, but are commonly neglected in numerical analysis.

For the dielectric tensor, we have used a kinetic formulation
which takes into account the incorporation of electrons and

ions to the dust particles due to inelastic collisions, shaped in a
form in which the components of the dielectric tensor are writ-
ten in terms of double summations, related to harmonic and
Larmor radius contributions. The general expressions utilized
depend on a small number of integrals which depend on the
distribution function.
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FIG. 8: (upper left) Real part of the ‘conventional’ contribution to the dispersion relation, vs. q and ε = nd/ni0; (upper right) imaginary part
of the ‘conventional’ contribution; (bottom left) Real part of the ‘new’ contribution; (bottom right) imaginary part of the ‘new’ contribution;
Te/Ti = 10.0, ∆β = Tβ⊥/Tβ‖ = 0.1, for β = i,e, and z = (1.0× 10−2,−2.0× 10−4), in the range of ion-acoustic waves. Other parameters the
same as used to obtain Fig. 1.

One interesting point is that the dielectric tensor can be di-
vided into two parts. One of these parts is denominated ‘con-
ventional’, and is formally similar to the dielectric tensor of
dustless plasmas, modified by the presence of a collision fre-
quency related to the inelastic collision between dust particles
and plasma particles. The other part owes its existence to the
occurrence of the dust charge variation, and is denominated as
the ‘new’ contribution.

We have considered the case of anisotropic Maxwellian dis-
tributions for ions and electrons, and introduced an approxima-
tion which uses the average value of the inelastic collision fre-
quencies of electrons and ions with the dust particles, instead
of the actual momentum dependent expressions. This approx-
imation was adopted in order to arrive at a relatively simple
estimate of the effect of the dust charge variation, effect which
is frequently neglected in analysis of the dispersion relation
for waves in dusty plasmas. After the choice of bi-Maxwellian
distributions, and after the use of an approximation for the mo-
mentum dependent collision frequencies, the integrals which
appear in the components of the dielectric tensor were written
in terms of the very familiar Z function, whose analytic prop-
erties are well known.

As an application of the formulation, we have considered
the case of electrostatic waves propagating in the direction of
the ambient magnetic field, and performed a numerical investi-
gation comparing the magnitudes of the ‘conventional’ and of
the ‘new’ contributions to the dispersion relation, for frequen-
cies in the range of the ion-sound and Langmuir waves. The
study expands previous analyses in which the case of Lang-

muir waves and isotropic Maxwellian distributions has been
considered [9]. To our knowledge, this is one of the first in-
stances of numerical analysis including the effect of the ‘new’
contribution, which usually only appears in formal analysis of
wave propagation in dusty plasmas [4, 15, 16, 19–21]. For
this investigation we have considered parameters which are in
the range of parameters typical of stellar winds, and the re-
sults obtained have shown that the contribution of the ‘new’
components is very small compared to the ‘conventional‘ con-
tribution.

The results obtained show that, for a wide range of tem-
perature anisotropy, the ‘new’ contribution results in negligi-
ble effect to the dispersion relation of Langmuir and ion-sound
waves, the latter also considering a wide range of the electron
to ion temperature ratio.

These findings about the negligible effect of the ‘new’ con-
tribution can not be generalized without further analysis to
other situations, like other frequency regimes and other forms
of the distribution function. For instance, the analysis of low-
frequency modes like the Alfvén wave mode would be an in-
teresting subject for future research. We intend to proceed with
the investigation of these topics in the near future.
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FIG. 9: Ratio between the real and imaginary parts of the ‘new’ and the ‘conventional’ contributions to the dispersion relation, vs. q and
ε = nd/ni0; (upper left) ratio between the real parts (Re ΛN /Re ΛC), for ∆β = Tβ⊥/Tβ‖ = 0.1, for β = i,e; (upper right) ratio between the
imaginary parts (Im ΛN /Im ΛC), for ∆β = Tβ⊥/Tβ‖ = 0.1, for β = i,e; (bottom left) ratio between the real parts (Re ΛN /Re ΛC), for ∆β =
Tβ⊥/Tβ‖ = 10.0, for β = i,e; (bottom right) ratio between the imaginary parts (Im ΛN /Im ΛC), for ∆β = Tβ⊥/Tβ‖ = 10.0, for β = i,e; Te = Ti,
and z = (1.0×10−2,−2.0×10−4), in the range of ion-acoustic waves. Other parameters the same as used to obtain Fig. 1.

APPENDIX A: DETAILS OF THE EVALUATION OF
INTEGRALS APPEARING IN THE EXPRESSIONS FOR
THE COMPONENTS OF THE DIELECTRIC TENSOR

As we have seen, the ‘conventional’ contributions to the
components of the dielectric tensor depend on integrals de-
noted as J and Jν, defined by Eqs. (6) and (7). The ‘new’
contributions depend on integrals JU , JνL, Jνν, Jν0 and Jch, de-
fined by Eqs. (12), (13), (14), (15), and (16).

In what follows, we consider the case of bi-Maxwellian dis-
tributions for ions and electrons. Moreover, as an approxima-
tion we assume that the momentum-dependent collision fre-
quency is replaced by the average value. This approximation is
adopted in order to arrive at a relatively simple estimate of the
effect of the dust charge variation, effect which is frequently
neglected in analysis of the dispersion relation for waves in
dusty plasmas.

1. Evaluation of the integrals J(n,m,h; fβ0)

We start from Eq. (6),

J(n,m,h; fβ0)≡
Z

d3u
zuh
‖u

2(m−1)
⊥ u⊥L( fβ0)
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As we have seen, for a bi-Maxwellian distribution,

L( fβ0) =− u⊥
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[
1−

q‖
z

u‖
(
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)]
fβ0 .

Using this result and assuming that the collision frequency is
replaced by the average value, νβ =

R
d3uν0

βd(u) fβ0(u)/nβ0,
we obtain

J(n,m,h; fβ0) =−ω
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FIG. 10: Real and imaginary parts of the normalized frequency (z) obtained from the dispersion relation for ion-acoustic waves, vs. q, for
several values of ε = nd/ni0 (0.0, 2.5×10−5, 5.0×10−5, 7.5×10−5, and 1.0×10−4); (a) zr, for Te⊥/Te‖ = Ti⊥/Ti‖ = 0.1; (b) zi, for Te⊥/Te‖ =
Ti⊥/Ti‖ = 0.1; (c) zr, for Te⊥/Te‖ = Ti⊥/Ti‖ = 1.0; (d) zi, for Te⊥/Te‖ = Ti⊥/Ti‖ = 1.0; (e) zr, for Te⊥/Te‖ = Ti⊥/Ti‖ = 10.0; (f) zi, for
Te⊥/Te‖ = Ti⊥/Ti‖ = 10.0; In all cases, Te/Ti = 20.0. Other parameters the same as used to obtain Fig. 1.

×
Z

∞

−∞

du‖
uh
‖

[
1− q‖

z u‖
(
1−∆β

)]
e−u2

‖/(2u2
β‖)

ω−nΩβ− v∗k‖u‖+ iνβ

=
ω

v∗k‖

2m(m!)
(2π)1/2

nβ0

uβ‖
u2(m−1)

β⊥

×
Z

∞

−∞

du‖
uh
‖

[
1− q‖

z u‖
(
1−∆β

)]
e−u2

‖/(2u2
β‖)

u‖−u‖,res
,

where

u‖,res =
ω−nΩβ + iνβ

v∗k‖
.

Introducing a change of variables such that u‖ =
√

2uβ‖ t,

J(n,m,h; fβ0) =
ω

v∗k‖

2m(m!)
(2π)1/2

nβ0

uβ‖
u2(m−1)

β⊥

(√
2uβ‖

)h

×

(Z
∞

−∞

dt
th e−t2

t− t‖,res
−

q‖
z

(1−∆β)
√

2uβ‖

Z
∞

−∞

dt
th+1 e−t2

t− ζ̂n
β

)
,
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FIG. 11: (a) Zd0 as a function of ε for the case of ion-sound waves,
for five values of the ratio T⊥/T‖, (b) ne0 as a function of ε for the
case of ion-sound waves, for five values of the ratio T⊥/T‖. For ion-
sound waves, it is assumed that Te‖/Ti‖ = 10.0. From the thinnest to
the thickest, the curves show the cases of T⊥/T‖ = 0.2, 0.5, 1.0, 2.0,
and 5.0, for other parameters as in Fig. 1.

where

ζ̂
n
β

=
z−nrβ + i ν̃β√

2q‖uβ‖
.

Re-arranging the expression, we obtain,

J(n,m,h; fβ0) = nβ0 (m!)(
√

2)2m+hu2(m−1)
β⊥ uh

β‖
1√
π

×

(
ζ

0
β

Z
∞

−∞

dt
th e−t2

t− ζ̂n
β

− (1−∆β)
Z

∞

−∞

dt
th+1 e−t2

t− ζ̂n
β

)
, (A1)

where ζ0
β

= z/(
√

2q‖uβ‖). We note that the integral over u⊥
was made assuming that m is integer.

In order to proceed, we consider the integral appearing in
Eq. (A1), which depend on an integer power of t, t`.

For ` = 0,

1√
π

Z
∞

−∞

dt
e−t2

t− ζ̂n
β

= Z(ζ̂n
β
) . (A2)
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FIG. 12: (a) Zd0 as a function of ε for the case of ion-sound waves,
for four values of the ratio Te‖/Ti‖, with T⊥/T‖ = 5.0. (b) ne0 as a
function of ε for the case of ion-sound waves, for four values of the
ratio Te‖/Ti‖, with T⊥/T‖ = 5.0. From the thinnest to the thickest, the
curves show the cases of Te‖/Ti‖ = 1.0, 5.0, 10.0, and 20.0, with other
parameters as in Fig. 1.

For ` = 1,

1√
π

Z
∞

−∞

dt
t e−t2

t− ζ̂n
β

=
1√
π

Z
∞

−∞

dt
(t− ζ̂n

β
+ ζ̂n

β
)e−t2

t− ζ̂n
β

=
1√
π

[Z
∞

−∞

dt e−t2
+ ζ̂

n
β

Z
∞

−∞

dt
e−t2

t− ζ̂n
β

]

= 1+ ζ̂
n
β
Z(ζ̂n

β
) . (A3)

For ` = 2,

1√
π

Z
∞

−∞

dt
t2 e−t2

t− ζ̂n
β

=
1√
π

Z
∞

−∞

dt
t (t− ζ̂n

β
+ ζ̂n

β
)e−t2

t− ζ̂n
β

=
1√
π

[Z
∞

−∞

dt t e−t2
+ ζ̂

n
β

Z
∞

−∞

dt
t e−t2

t− ζ̂n
β

]

= ζ̂
n
β

[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]

. (A4)
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FIG. 13: (upper left) Real part of the ‘conventional’ contribution to the dispersion relation, vs. q and ε = nd/ni0; (upper right) imaginary part
of the ‘conventional’ contribution; (bottom left) Real part of the ‘new’ contribution; (bottom right) imaginary part of the ‘new’ contribution;
Te = Ti, ∆β = Tβ⊥/Tβ‖ = 0.1, for β = i,e, and z = (1.1×100,−1.0×10−3), in the range of Langmuir waves. Ti = 1.0×104 K, ni0 = 1.0×109

cm−3, Zi = 1.0, mi = mp, where mp is the proton mass, and a = 1.0×10−4.

For ` = 3,

1√
π

Z
∞

−∞

dt
t3 e−t2

t− ζ̂n
β

=
1√
π

Z
∞

−∞

dt
t2 (t− ζ̂n

β
+ ζ̂n

β
)e−t2

t− ζ̂n
β

=
1√
π

[Z
∞

−∞

dt t2 e−t2
+ ζ̂

n
β

Z
∞

−∞

dt
t2 e−t2

t− ζ̂n
β

]

=
{

1
2

+(ζ̂n
β
)2
[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]}

. (A5)

The result is (for integer m),

J(n,m,0; fβ0) = (m!)(
√

2)2m nβ0u2(m−1)
β⊥

×
{

ζ
0
β
Z(ζ̂n

β
)− (1−∆β)

[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]}

,

J(n,m,1; fβ0) = (m!)(
√

2)2m+1 nβ0u2(m−1)
β⊥ uβ‖

×
{

ζ
0
β

[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]
− (1−∆β) ζ̂

n
β

[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]}

, (A6)

J(n,m,2; fβ0) = (m!)(
√

2)2m+2 nβ0u2(m−1)
β⊥ u2

β‖

×
{

ζ
0
β
ζ̂

n
β

[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]
− (1−∆β)

{
1
2

+(ζ̂n
β
)2
[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]}}

.

2. Evaluation of the integrals Jν(n,m,h; fβ0)

We start from Eq. (7),

Jν(n,m,h; fβ0) =
Z

d3u

[
ν0

βd(u)

Ω∗

]
uh
‖u

2(m−1)
⊥ u⊥L( fβ0)

z−nrβ−q‖u‖+ i ν̃0
βd

.

Using the average value of the collision frequency, consid-
ering a bi-Maxwellian distribution, and using Eq. (18),

Jν(n,m,h; fβ0) =−
ν̃βnβ0

(
1−∆β

)
(2π)1/2u4

β⊥uβ‖

Z
∞

0
du⊥ u2m+1

⊥ e−u2
⊥/(2u2

β⊥)

×
Z

∞

−∞

du‖
uh+1
‖ e−u2

‖/(2u2
β‖)

z−nrβ−q‖u‖+ i ν̃β

=−
ν̃βnβ0

(
1−∆β

)
(2π)1/2u4

β⊥uβ‖

m!
2

(
2u2

β⊥

)m+1

×
Z

∞

−∞

du‖
uh+1
‖ e−u2

‖/(2u2
β‖)

z−nrβ−q‖u‖+ i ν̃β

.

= (
√

2)2m+h(m!)
ν̃β

q‖
nβ0
(
1−∆β

)
u2(m−1)

β⊥ uh
β‖
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FIG. 14: (upper left) Real part of the ‘conventional’ contribution to the dispersion relation, vs. q and ε = nd/ni0; (upper right) imaginary part
of the ‘conventional’ contribution; (bottom left) Real part of the ‘new’ contribution; (bottom right) imaginary part of the ‘new’ contribution;
Te = Ti, ∆β = Tβ⊥/Tβ‖ = 10.0, for β = i,e, and z = (1.1× 100,−1.0× 10−3), in the range of Langmuir waves. Other parameters the same as
used to obtain Fig. 13.

× 1√
π

Z
∞

−∞

dt
th+1 e−t2

t− ζ̂n
β

. (A7)

The result is, for some values of h,

Jν(n,m,0; fβ0) = (m!)(
√

2)2m(1−∆β)nβ0

×u2(m−1)
β⊥

ν̃β

q‖

[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]

,

Jν(n,m,1; fβ0) = (m!)(
√

2)2m+1(1−∆β)nβ0

×u2(m−1)
β⊥ uβ‖

ν̃β

q‖
ζ̂

n
β

[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]

, (A8)

Jν(n,m,2; fβ0) = (m!)(
√

2)2m+2(1−∆β)nβ0

×u2(m−1)
β⊥ u2

β‖
ν̃β

q‖

{
1
2

+(ζ̂n
β
)2
[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]}

.

3. Evaluation of ezz

From Eq. (5), we see that ezz features three terms. Two
of these terms can be evaluated with the use of the J and Jν

integrals. The other term will be evaluated here, for a bi-
Maxwellian distribution. We write

ezz = e1
zz +

1
z2 ∑

β

ω2
pβ

Ω2
∗

1
nβ0

a(0,0)
[

J(0,0,2; fβ0)+i Jν(0,0,1; fβ0)
]

,

e1
zz =− 1

z2 ∑
β

ω2
pβ

Ω2
∗

1
nβ0

Z
d3u

u‖
u⊥

L( fβ0) .

Using Eq. (18), the e1
zz term can be written as

e1
zz =

1
z2 ∑

β

ω2
pβ

Ω2
∗

(
1−∆β

)
(2π)1/2u4

β⊥uβ‖

×
Z

∞

0
du⊥ u⊥ e−u2

⊥/(2u2
β⊥)

Z
∞

−∞

du‖ u2
‖ e−u2

‖/(2u2
β‖)

=
1
z2 ∑

β

ω2
pβ

Ω2
∗

(
1−∆β

)
(2π)1/2u4

β⊥uβ‖

(
2u2

β⊥
2

)(√
π

2
(2u2

β‖)
3/2
)
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FIG. 15: Real and imaginary parts of the normalized frequency (z) obtained from the dispersion relation for Langmuir waves, vs. q, for several
values of ε = nd/ni0 (0.0, 2.5× 10−5, 5.0× 10−5, 7.5× 10−5, and 1.0× 10−4); (a) zr, for Te⊥/Te‖ = Ti⊥/Ti‖ = 0.1; (b) zi, for Te⊥/Te‖ =
Ti⊥/Ti‖ = 0.1; (c) zr, for Te⊥/Te‖ = Ti⊥/Ti‖ = 1.0; (d) zi, for Te⊥/Te‖ = Ti⊥/Ti‖ = 1.0; (e) zr, for Te⊥/Te‖ = Ti⊥/Ti‖ = 10.0; (f) zi, for
Te⊥/Te‖ = Ti⊥/Ti‖ = 10.0; In all cases, Te = Ti. Other parameters the same as used to obtain Fig. 13.

=
1
z2 ∑

β

ω2
pβ

Ω2
∗

u2
β‖

u2
β⊥

(
1−∆β

)
=

1
z2 ∑

β

ω2
pβ

Ω2
∗

(
1−∆β

)
∆β

.

Therefore,

ezz =
1
z2 ∑

β

ω2
pβ

Ω2
∗

(
1−∆β

)
∆β

+
1
z2 ∑

β

ω2
pβ

Ω2
∗

1
nβ0

×
[

J(0,0,2; fβ0)+ i Jν(0,0,1; fβ0)
]

. (A9)

4. Evaluation of the integrals JU (n,m,h, l; fβ0)

We start from Eq. (12),

JU (n,m,h, l; fβ0) = z
Z

d3u

(
ν̃0

βd

z

)l
fβ0

z−nrβ−q‖u‖+ i ν̃0
βd

×
uh
‖u

2m
⊥

u
H
(

u2 +
2Zd0eqβ

amβv2
∗

)
.

We assume, for simplicity, that the collision frequency is
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FIG. 16: (a) Zd0 as a function of ε for the case of Langmuir waves,
for five values of the ratio T⊥/T‖. (b) ne0 as a function of ε for
the case of Langmuir waves, for five values of the ratio T⊥/T‖. For
Langmuir waves, it is assumed that ion and electron temperatures are
equal. From the thinnest to the thickest, the curves show the cases of
T⊥/T‖ = 0.2, 0.5, 1.0, 2.0, and 5.0, with other parameters as in Fig.
13.

replaced by the average value, and also neglect the effect of
the Heaviside function in the numerator of the integrand. This
approximation can be understood as follows: The collision fre-
quency (for electrons) already contains a step function, which
therefore don’t need to be written explicitly in the integrand.
Afterwards, we replace the collision frequency by the average
value, and obtain

JU (n,m,h, l; fβ0)= z
(

ν̃β

z

)l Z
d3u

fβ0

z−nrβ−q‖u‖+ i ν̃β

uh
‖u

2m
⊥

u
.

We further approximate, by using u ' u⊥. For a bi-
Maxwellian distribution, we therefore obtain

JU (n,m,h, l; fβ0) =−
(

ν̃β

z

)l z
q‖

nβ0

(2π)1/2u2
β⊥uβ‖

×(
√

2uβ‖)
h

Z
∞

0
du⊥ u2m

⊥ e−u2
⊥/(2u2

β⊥)
Z

∞

−∞

dt
th e−t2

t− ζ̂n
β

,

=−
(

ν̃β

z

)l z√
2q‖uβ‖

nβ0

u2
β⊥

(2u2
β⊥)m+1/2

2

×Γ

(
m+

1
2

)
(
√

2uβ‖)
h 1√

π

Z
∞

−∞

dt
th e−t2

t− ζ̂n
β

,

JU (n,m,h, l; fβ0) =−Γ

(
m+

1
2

)
(
√

2)2m−1+h
(

ν̃β

z

)l

nβ0

×u2m−1
β⊥ uh

β‖ ζ
0
β

1√
π

Z
∞

−∞

dt
th e−t2

t− ζ̂n
β

. (A10)

The result is, for some values of h,

JU (n,m,0, l; fβ0)'−Γ

(
m+

1
2

)
(
√

2)2m−1+h
(

ν̃β

z

)l

×nβ0 u2m−1
β⊥ uh

β‖ ζ
0
β

Z(ζ̂n
β
) ,

JU (n,m,1, l; fβ0)'−Γ

(
m+

1
2

)
(
√

2)2m−1+h
(

ν̃β

z

)l

×nβ0 u2m−1
β⊥ uh

β‖ ζ
0
β

[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]

, (A11)

JU (n,m,2, l; fβ0)'−Γ

(
m+

1
2

)
(
√

2)2m−1+h
(

ν̃β

z

)l

×nβ0 u2m−1
β⊥ uh

β‖ ζ
0
β

ζ̂
n
β

[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]

.

5. Evaluation of the integrals JνL(n,m,h; fβ0)

We start from Eq. (13),

JνL(n,m,h; fβ0) = z
Z

d3u
ν̃0

βd

z

uh
‖u

2m−1
⊥ L( fβ0)

z−nrβ−q‖u‖+ i ν̃0
βd

.

Using the average value of the collision frequency, we ob-
tain

JνL(n,m,h; fβ0) =
ν̃β

z
z

Z
d3u

uh
‖u

2(m−1)
⊥ u⊥L( fβ0)

z−nrβ−q‖u‖+ i ν̃β

,

which, by comparison with Eq. (6), can be written as follows,

JνL(n,m,h; fβ0) =
ν̃β

z
J(n,m,h; fβ0) , (A12)

where the J(n,m,h; fβ0) are given by Eqs. (A1) and (A6).
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6. Evaluation of the integrals Jνν(n,m; fβ0)

We start from Eq. (14),

Jνν(n,m; fβ0) = z
Z

d3u

(
ν̃0

βd

z

)2
u2m−1
⊥ L( fβ0)

z−nrβ−q‖u‖+ i ν̃0
βd

.

Considering a bi-Maxwellian distribution, using Eq. (18),
and using the average value of the collision frequency, we ob-
tain

Jνν(n,m; fβ0) =−
(

ν̃β

z

)2

z

(
1−∆β

)
nβ0

(2π)1/2u2
β⊥uβ‖

×
Z

∞

0
du⊥ u⊥u2m−1

⊥
u⊥
u2

β⊥
e−u2

⊥/(2u2
β⊥)

×
Z

∞

−∞

du‖ u‖
e−u2

‖/(2u2
β‖)

z−nrβ−q‖u‖+ i ν̃β

,

=
(

ν̃β

z

)2

(m!)(
√

2)2m+1 (1−∆β

)
nβ0u2(m−1)

β⊥ uβ‖ ζ
0
β

× 1√
π

Z
∞

−∞

dt
t e−t2

t− ζ̂n
β

,

Jνν(n,m; fβ0) =
(

ν̃β

z

)2

(m!)(
√

2)2m+1 (1−∆β

)
nβ0

×u2(m−1)
β⊥ uβ‖ ζ

0
β

[
1+ ζ̂

n
β
Z(ζ̂n

β
)
]

. (A13)

7. Evaluation of the integrals Jν0( fβ0)

We start from Eq. (15),

Jν0( fβ0) =
Z

d3u
ν̃0

βd

z
L( fβ0)

u⊥
,

Considering a bi-Maxwellian distribution, using Eq. (18),
and using the average value of the collision frequency, one
readily obtains

Jν0( fβ0) =−
ν̃0

βd

z

(
1−∆β

)
nβ0

(2π)1/2u2
β⊥uβ‖

×
Z

∞

0
du⊥ e−u2

⊥/(2u2
β⊥)

Z
∞

−∞

du‖ e−u2
‖/(2u2

β‖)
u‖u⊥
u2

β⊥
.

It is seen that the integral over u‖ vanishes in the case of a
bi-Maxwellian distribution. Indeed, it vanishes for any distri-
bution which is even in the parallel component of the velocity,

Jν0( fβ0) = 0 . (A14)

8. Evaluation of the integrals Jch( fβ0)

The integral Jch is peculiar because it does not depend on
the collision frequency. We start from Eq. (16),

Jch( fβ0) =
Z

d3u fβ0
1
u

H
(

u2 +
2Zd0eqβ

amβv2
∗

)
.

Considering a bi-Maxwellian distribution function, and us-
ing spherical coordinates, with µ = cosθ, the integral can be
written as follows,

=
nβ0

(2π)1/2u2
β⊥uβ‖

Z 1

−1
dµ

Z
∞

uβ

lim

duue−u2/(2u2
β⊥) eu2µ2(1−∆β)/(2u2

β⊥)
,

where

ue
lim =

(
2Zd0(e2/a)

mev2
∗

)1/2

, ui
lim = 0 .

Introducing a change of variables, u2 = 2u2
β‖t, the integral is

written as

=
nβ0

(2π)1/2uβ‖∆β

Z 1

−1
dµ

Z
∞

tβ

lim

dt e−t[1+µ2(∆β−1)]/∆β ,

where

t i
lim = 0, te

lim = |χe
‖|,

where we introduce the quantity χ
β

‖ = qβ(Zd0e)/(aTβ‖), such
that

χ
i
‖ =

Zd0Ze2

aTi‖
, χ

e
‖ =−Zd0e2

aTe‖
. (A15)

Performing the integration over the t variable, and evaluat-
ing at the limits, we obtain

=
2nβ0

(2π)1/2uβ‖∆β

Z 1

0
dµ

∆β

1+µ2(∆β−1)
e−tβ

lim[1+µ2(∆β−1)]/∆β ,

where we have used the parity of the integrand on the µ vari-
able.

The electron and ion contributions are therefore written as
follows,

Jch( fe0)=
2ne0

(2π)1/2ue‖∆e

Z 1

0
dµ

∆e

1+µ2(∆e−1)
e−|χ

e
‖|[1+µ2(∆e−1)]/∆e ,

Jch( fi0) =
2ni0

(2π)1/2ui‖∆i

Z 1

0
dµ

∆i

1+µ2(∆i−1)
. (A16)

APPENDIX B: EVALUATION OF THE AVERAGE VALUE OF
THE COLLISION FREQUENCY, FOR A BI-MAXWELLIAN

DISTRIBUTION

The average value of the inelastic collision frequency is ob-
tained by integration of the velocity dependent collision fre-
quency over velocity space,

νβ =
1

nβ0

Z
d3uν

0
βd(u) fβ0(u) .
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Using the expression for the collision frequency, which was
introduced along with Eqs. (4) and (5), considering a bi-
Maxwellian distribution, and using spherical coordinates, we
obtain

νβ =
πa2nd0v∗

(2π)1/2u2
β⊥uβ‖

Z
π

0
dθ sinθ

Z
∞

0
due−u2

⊥/(2u2
β⊥)e−u2

‖/(2u2
β‖)

×u2

u

(
u2−

2qd0qβ

amβv2
∗

)
H
(

u2−
2qd0qβ

amβv2
∗

)
,

=
π√
2π

1
u2

β⊥uβ‖
(a2nd0v∗)

Z
π

0
dθ sinθ

×
Z

∞

uβ

lim

duue−u2 sin2
θ/(2u2

β⊥) e−u2 cos2 θ/(2u2
β‖)
(

u2−
2qd0qβ

amβv2
∗

)
.

Proceeding, with µ = cosθ,

νβ =
π√
2π

a2nd0v∗
u2

β⊥uβ‖

Z 1

−1
dµ

×
Z

∞

uβ

lim

duue−u2/(2u2
β⊥) eu2µ2(1−∆β)/(2u2

β⊥)
(

u2−
2qd0qβ

amβv2
∗

)
,

with

ue
lim =

(
2qd0qβ/a

mev2
∗

)1/2

=
(

2Zd0(e2/a)
mev2

∗

)1/2

, ui
lim = 0 .

Introducing a change of variables, u2 = 2u2
β‖t, as in the cal-

culation of (A16),

νβ =
π√
2π

a2nd0v∗
uβ‖∆β

Z 1

−1
dµ

×
Z

∞

tβ

lim

dt e−t/∆β etµ2(1−∆β)/∆β

(
2u2

β‖t +
2Tβ‖
mβv2

∗
χ

β

‖

)
,

= (
√

2π)
uβ‖
∆β

(a2nd0v∗)
Z 1

−1
dµ

×
Z

∞

tβ

lim

dt e−t[1−µ2(1−∆β)]/∆β

(
t +χ

β

‖

)
,

where tβ

lim was defined along with Eq. (A16). This expression
can be written as follows

νβ = 2(
√

2π)
uβ‖
∆β

(a2nd0v∗)
Z 1

0
dµ

×
(
− d

da

Z
∞

tβ

lim

dt e−at +χ
β

‖

Z
∞

tβ

lim

dt e−at
)

,

where a =
[
1−µ2(1−∆β)

]
/∆β. Performing the t integrals,

νβ = 2(
√

2π)
uβ‖
∆β

(a2nd0v∗)
Z 1

0
dµ
(

d
da

e−at

a
−χ

β

‖
e−at

a

)∞

tβ

lim

,

νβ = 2(
√

2π)
uβ‖
∆β

(a2nd0v∗)
Z 1

0
dµ
[

e−at

a

(
−t− 1

a
−χ

β

‖

)]∞

tβ

lim

,

νβ = 2(
√

2π)
uβ‖
∆β

(a2nd0v∗)
Z 1

0
dµ

∆β

1+µ2(∆β−1)

×e−tβ

lim[1+µ2(∆β−1)]/∆β

[
tβ

lim +
∆β

1+µ2(∆β−1)
+χ

β

‖

]
.

For ions,

νi = 2(
√

2π)(a2
εni0v∗)

ui‖
∆i

Z 1

0
dµ

∆i

1+µ2(∆i−1)

×
[

∆i

1+µ2(∆i−1)
+χ

i
‖

]
. (B1)

For electrons,

νe = 2(
√

2π)
ue‖
∆e

(a2nd0v∗)
Z 1

0
dµ

∆e

1+µ2(∆e−1)

×e−|χ
e
‖|[1+µ2(∆e−1)]/∆e

[
|χe
‖|+

∆e

1+µ2(∆e−1)
+χ

e
‖

]
,

νe = 2(
√

2π)(a2
εni0v∗)

ue‖
∆e

Z 1

0
dµ
[

∆e

1+µ2(∆e−1)

]2

×e−|χ
e
‖|[1+µ2(∆e−1)]/∆e . (B2)

Using the normalized variables,

ν̃β =
νβ

Ω∗
= 2(

√
2π)(εni0)

c3

Ω3
∗

a2Ω2
∗

c2
v∗
c

uβ‖
∆β

Iβ , (B3)

where

Ii =
Z 1

0
dµ

∆i

1+µ2(∆i−1)

[
∆i

1+µ2(∆i−1)
+χ

i
‖

]
, (B4)

Ie =
Z 1

0
dµ
[

∆e

1+µ2(∆e−1)

]2

e−|χ
e
‖|[1+µ2(∆e−1)]/∆e . (B5)
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APPENDIX C: ANALYSIS OF THE EQUILIBRIUM
CONDITION ON THE COLLISIONAL CHARGING OF THE

DUST PARTICLES

The condition of equilibrium for the collisional charging of
the dust particles can be expressed simply as ∑β qβnβ0νβ = 0,
which is equivalent to the expression using the normalized col-
lision frequencies, ∑β qβnβ0ν̃β = 0. Using the average colli-
sion frequencies, which are given by Eq. (B3), we can write
the equilibrium condition as follows,

∑
β

qβnβ0
uβ‖
∆β

Iβ = Z
ui‖
∆i

Ii− (Z− εZd0)
ue‖
∆e

Ie = 0 , (C1)

where we have used the ion charge qi = Ze, and the neutrality
condition to obtain the electron density,

ne0e = ni0Ze−nd0Zd0e .

Equation (C1) can be solved to provide the value of the equi-
librium charge of the dust particles, for a given value of the

dust density nd0 = εni0.
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