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The Wyman’s solution depends on two parameters, the mass M and the scalar charge σ. If one fixes M to a
positive value, say M0, and let σ2 take values along the real line it describes three different types of spacetimes.
For σ2 > 0 the spacetimes are naked singularities, for σ2 = 0 one has the Schwarzschild black hole of mass
M0 and finally for −M2

0 ≤ σ2 < 0 one has wormhole spacetimes. In the present work, we shall study quali-
tative and quantitative features of orbits of massive particles and photons moving in the naked singularity and
wormhole spacetimes of the Wyman solution. These orbits are the timelike geodesics for massive particles and
null geodesics for photons. Combining the four geodesic equations with an additional equation derived from
the line element, we obtain an effective potential for the massive particles and a different effective potential
for the photons. We investigate all possible types of orbits, for massive particles and photons, by studying the
appropriate effective potential. We notice that for certain naked singularities, there is an infinity potential wall
that prevents both massive particles and photons ever to reach the naked singularity. We notice, also, that for
certain wormholes, the potential is finite everywhere, which allows massive particles and photons moving from
one wormhole asymptotically flat region to the other. We also compute the radial timelike and null geodesics
for massive particles and photons, respectively, moving in the naked singularities and wormholes spacetimes.
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1. INTRODUCTION

The weak equivalence principle of general relativity tell us
that massive particles move along timelike geodesics and pho-
tons move along null geodesics [1]. Despite their fundamental
importance as one of the principles of general relativity, the
geodesics also help us learning more about different proper-
ties of a given spacetime. A textbook example comes from
the study of geodesics in Schwarzschild geometry [1]. With-
out actually computing the geodesics, just observing the effec-
tive potential diagram, one can see that both massive particles
and photons can never leave the event horizon once they enter
that surface. This is the case because the effective potential
for both massive particles and photons diverges to negative
infinity as one approaches the singularity located at the ori-
gin of the spherical coordinates. Therefore, once the massive
particles and photons enter the event horizon they are accel-
erated toward the singularity without any chance to turn back.
Many authors, over the years, have computed the effective
potential diagram and the geodesics of different spacetimes
in order to learn more about their properties. In particular,
we may mention some important works dealing with different
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black hole spacetimes [2]. Two other important gravitational
configurations besides black holes that may form due to the
gravitational collapse are naked singularities and wormholes.
Some authors have already investigated some of their proper-
ties by computing effective potential diagrams and geodesics
for those spacetimes [3–5]. A well-known spacetime geome-
try which may describe naked singularities as well as worm-
holes is the Wyman one [6]. Since, to the best of our knowl-
edge, nobody has ever computed effective potential diagrams
and geodesics for the Wyman spacetime, we decided to do that
in the present work.

The Wyman geometry describes the four dimensional
space-time generated by a minimally coupled, spherically
symmetric, static, massless scalar field and has been studied
by many authors [6–11]. From a particular case of the gen-
eral Wyman’s solution, M. D. Roberts showed how to con-
struct a time dependent solution [8]. The Roberts’ solution
has an important physical interest because it may represent
the gravitational collapse of a scalar field. Later, P. Brady
and independently Y. Oshiro et al. [12], [13] showed that
the Roberts’ solution could be derived from the appropriated,
time-dependent, Einstein-scalar equations by using a contin-
uous self-similarity. They also showed that the Roberts’ so-
lution exhibits a critical behavior qualitatively identical to the
one found numerically by M. W. Choptuik [14], studying the
same system of equations. In fact, the above results confirmed
early studies of D. Christodoulou who pioneered analytical
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studies of that model [15].
The Wyman’s solution is not usually thought to be of great

importance for the issue of gravitational collapse because it
is static and the naked singularities derived from it are unsta-
ble against spherically symmetric linear perturbations of the
system [9, 10]. On the other hand, as we saw above, from
a particular case of the Wyman’s solution one may derive
the Roberts’ one which is of great importance for the issue
of gravitational collapse. Also, it was shown that there are
nakedly singular solutions to the static, massive scalar field
equations which are stable against spherically symmetric lin-
ear perturbations [10]. Therefore, we think it is of great im-
portance to gather as much information as we can about the
Wyman’s solution for they may be helpful for a better under-
stand of the scalar field collapse.

The Wyman’s solution depends on two parameters, the
mass M and the scalar charge σ. If one fixes M to a posi-
tive value, say M0, and let σ2 take values along the real line
it describes three different types of spacetimes. For σ2 > 0
the spacetimes are naked singularities, for σ2 = 0 one has
the Schwarzschild black hole of mass M0 and finally for
−M2

0 ≤ σ2 < 0 one has wormhole spacetimes. Therefore,
we have an interesting situation where we can study differ-
ent properties of naked singularities and wormholes together
through the effective potential diagrams and geodesics of mas-
sive particles and photons in the Wyman’s solution.

In the next Section, we introduce the Wyman solution and
identify the values of the parameters M and η that describes
naked singularities, wormholes and the Schwarzschild black
hole. In Section 3, we combine the geodesic equations to ob-
tain the effective potential equation for the case of massive
particles. We study the effective potential and qualitatively
describe the types of orbits for massive particles moving in
the naked singularities and wormholes spacetimes. In this sec-
tion, we also compute the radial timelike geodesics for parti-
cles moving in the naked singularities and wormholes space-
times. In Section 4, we combine the geodesic equations to
obtain the effective potential equation for the case of photons.
We study the effective potential and qualitatively describe the
types of orbits for photons moving in the naked singularities
and wormholes spacetimes. In this section, we also compute
the radial timelike geodesics for photons moving in the naked
singularities and wormholes spacetimes. Finally, in Section 5
we summarize the main points and results of our paper.

2. NAKED SINGULARITIES, WORMHOLES AND THE
SCHWARZSCHILD BLACK HOLE.

The Wyman line element and the scalar field expression are
given in coordinates (t, r, θ, φ) by equation (9) of [8],

ds2 =−
(

1− 2η
r

)M
η

dt2 +
(

1− 2η
r

)−M
η

dr2+

+
(

1− 2η
r

)1−M
η

r2dΩ2, (1)

where r varies in the range 2η < r < ∞ and dΩ2 is the line
element on the unit sphere. The scalar field is,

ϕ =
σ
2η

ln
(

1− 2η
r

)
. (2)

where σ is the scalar charge given by σ2 = η2−M2 and σ2 ≥
−M2. We are working in the unit system where G = c = 1.

In the line element (1), the function R(r),

R(r) = r
(

1− 2η
r

) 1
2 (1−M

η )
, (3)

is the physical radius which gives the circumference and area
of the two-spheres present in the Wyman geometry. Instead of
using the parameters M and σ to identify the different space-
times described by (1), we may also use the parameters M
and η, since they are all related by the equation just below
(2). Each different spacetime will have a different behavior of
R(r). R(r) has a single extremal value which is a minimum
located at r = M + η. Since, the line element (1) is valid for
r > 2η, only when M > η there will be a minimum inside the
domain of r. Based on that result we have three different cases
for a positive M. As a matter of simplicity we shall use, also,
the positive parameter λ≡M/η.

Case M < η or 0 < λ < 1.
In this case we have the following important values of R(r)

(3),

lim
r→2η+

R(r) = 0, lim
r→∞

R(r) = ∞. (4)

Here, the solution represents spacetimes with a physical
naked timelike singularity located at R = 0 [7]. It is easy to
see that this singularity is physical because, the Ricci scalar R
computed from the line element (1),

R =
2(M2−η2)

r4

(
1− 2η

r

)M
η −2

, (5)

diverges there. It is also easy to see that this singularity is
naked with the aid of the quantity Q = gαβ ∂R

∂xα
∂R
∂xβ . The roots of

Q determine the presence of event horizons in spherical sym-
metric spacetimes [12]. For the Wyman solution Q is given
by,

Q =
(

1− 2η
r

)−1(
1− M +η

r

)2
. (6)

The only root of Q is located at r = M +η which confirms that
the singularity located at R = 0 is naked for all spacetimes in
the present case.

This singularity is sometimes called a ‘central singularity’
and is similar to that appearing in the ‘extreme’ Reissner-
Nordstrøm black hole and in the negative mass Schwarzschild
spacetime. From equation (2), the scalar field vanishes
asymptotically as R→ ∞ and diverges at the singularity.
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Case M = η or λ = 1.
In this case we have R(r) = r and σ = 0. This last condi-

tion implies that the scalar field (2) vanishes and one gets the
Schwarzchild solution. Here, the minimum of R(r), located at
R = 2M, is outside the domain of r and the line element (1)

describes only the spacetime exterior to the event horizon.

Case M > η or 1 < λ < ∞.

In this case we have the following important values of R(r)
(3),

lim
r→2η+

R(r) = ∞, Rmin = (M +η)
(M−η

M +η

) 1
2 (1−M

η )
, lim

r→∞
R(r) = ∞. (7)

Due to the fact that σ2 ≥ −M2 as stated just before (2), we
have that in the present case η ≥ 0. The case η = 0 is well
know in the literature as the Yilmaz-Rosen space-time [16].
In this case M > η, the physical radius R is never zero. If
one starts with a large value of R, for large values of r, and
starts diminishing R, reducing the values of r, one reachs the
minimum value of R (Rmin (7)) for r = M + η. Then, R starts
to increase again when we let r goes to 2η until it diverges
when r = 2η. Therefore, we may interpret these spacetimes
as wormholes connecting two asymptotically flat regions such
that they have a minimum throat radius given by Rmin (7) [11].
The spatial infinity (R→∞) of each asymptotically flat region
is obtained, respectively, by the limits: r → ∞ and r → 2η+.
An important property of this space-time is that the scalar field
(2) is imaginary. The imaginary scalar field also known as
ghost Klein-Gordon field [17] is an example of the type of
matter called exotic by some authors [18]. It violates most of
the energy conditions and is repulsive. This property helps
explaining the reason why the collapsing scalar field never
reaches R = 0.

As mentioned above, in the rest of the paper we shall restrict
our attention to the spacetimes representing naked singulari-
ties and wormholes.

3. TIMELIKE GEODESICS

3.1. Effective Potential

We have four geodesic equations, one for each coordinate
[1],

d2xα

dτ2 +Γα
βγ

dxβ

dτ
dxγ

dτ
= 0 , (8)

where α = 0,1,2,3, and xα represents, respectively, each of
the coordinates (t, r, θ, φ). τ is the proper time of the massive
particle which trajectory is described by (8).

The geodesic equation for θ tell us that, like in the
Schwarzschild case, the geodesics are independent of θ, there-
fore we choose the equatorial plane to describe the particle
motion (θ = π/2). In the equatorial plane, the geodesic equa-
tion for φ can be integrated to give,

r2
(

1− 2η
r

)1−M
η φ̇ = R2φ̇ = L , (9)

where the dot means derivative with respect to τ and L is the
integration constant that may be interpreted as the particle an-
gular momentum per unit rest mass. This result means that
φ is cyclic and its conjugated momentum (pφ = φ̇) is a con-
served quantity. Also, φ̇ may be written as a function of r.
Likewise, in the equatorial plane, the geodesic equation for t
can be integrated to give,

(
1− 2η

r

)M
η

ṫ = E , (10)

where E is the integration constant that may be interpreted as
the particle energy per unit rest mass. This result means that t
is cyclic and its conjugated momentum (pt = ṫ) is a conserved
quantity. Also, ṫ may be written as a function of r. Instead of
using the fourth geodesic equation for r, we use the equation
derived directly from the line element (1), ds2/dτ2 =−1 [19].
There, we introduce the expressions of φ̇ (9) and ṫ (10), in
order to obtain the following equation which depends only on
r,

(
dr
dτ

)2

+ V 2(r) = E2 . (11)

Where

V 2(r) =
(

1− 2η
r

)M
η

[
1+

L2

r2

(
1− 2η

r

)M
η −1

]
(12)

and V (r) is the effective potential for the motion of massive
particles in the Wyman geometry. The geodesic equation for
r plays the role of a control equation, where we substitute the
solutions to the other four equations, in order to verify their
correctness.

In order to have a qualitative idea on the orbits of mas-
sive particles moving under the action of V 2(r) it is impor-
tant to learn more about it. We may do it by, initially, com-
puting the extremal values of V 2(r). First, we calculate the
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first derivative of V 2(r) (12) and find the roots of the result-
ing equation. That equation may be simplified by the intro-
duction of the auxiliary quantities: x = (1−2η/r), 0 < x < 1;
A = η2/L2, 0 < A < ∞; B = (λ−1/2)/(λ+1/2),−1 < B < 1;
C = 2λ/(λ + 1/2), 0 < C < 2. Where λ was defined before
and the domains of A, B and C where determined by the fact
that λ is positive. The equation dV 2(r)/dr = 0, in terms of x,
λ, A, B and C is given by,

F(x)
(

ACx1−λ + B −Cx + x2
)

= 0, (13)

where F(x) = [λxλ−1(1− x)]2/2ACM. Since F(x) 6= 0, for
0 < x < 1, the term between parenthesis will give the roots of
eq. (13). Unfortunately, there are not algebraic expressions
for all these roots. The use of numerical techniques, in the
present case, would give the roots of eq. (13) only for precise
numerical values of all the parameters present in that equa-
tion. One would have to study each individual case, for each
case is described by a different set of values of the parameters
present in eq. (13). It is a possible way to solve eq. (13) but
it would take a lot of computational time and effort. On the
other hand, there is a mathematical treatment that allows the
derivation of the algebraic expression of one root of eq. (13),
in terms of λ. It, also, allows the identification of the exact
number and nature (if it is a maximum, a minimum or a point
of inflection of V 2(r)), besides the region in the λ domain, of
all the other roots of eq. (13). Furthermore, that mathematical
treatment reduces greatly the computational time and effort,
mentioned above. It starts with the definition of the following
two auxiliary functions,

p(x) = −x2 + Cx − B , h(x) = ACx1−λ . (14)

Now, the values of x where the two curves p(x) and h(x) meet
will be the roots of (13). p(x) is a set of parabolas which ver-
tices are all located above the x-axis and with two roots. The
larger one is located at x = 1 and the smaller one is located
at x = (λ− 1/2)/(λ + 1/2). For λ > 1/2, the smaller root is
positive; for λ = 1/2, it is zero and for λ < 1/2, it is nega-
tive. The precise nature of h(x) will depend on the value of λ,
present in the exponent of x, but whatever λ one chooses, all
values of h(x) will be located above the x-axis. For λ > 1, h(x)
diverges to +∞ when x → 0 and goes to zero when x → +∞.
For λ < 1, h(x) goes to zero when x→ 0 and diverges to +∞
when x→+∞.

An important root of (13) is defined by the value of x, say
x0, where the two curves p(x) and h(x) (14) just touch each
other. x0 is a point of inflection of V 2(r) (12), because there
the second derivative of V 2(r) is also zero. Associated to x0
there is an angular momentum, say L0, which originates an
unstable particle orbit. Due to the fact that L is present, only,
in the denominator of A in the expression of h(x) (14), if one
increases L, h(x) will assume smaller values for the same val-
ues of x. p(x) will not be altered because L is not present in
its expression. Therefore, L0 is the value of L for which h(x)
just touches p(x), if one takes values of L greater than L0, h(x)
will start intercepting p(x) in two or more points. They will

be extremal values of V 2(r): maximum, minimum or point of
inflection. It is possible to compute the value of L0 in terms
of x0 and the parameters λ and η. In order to do that, we
consider, initially, the fact that the first derivatives of h(x) and
p(x) (14), in x = x0, are equal and express ACx−λ

0 in terms of
other quantities. Then, we use the fact that x0 is a root of (13)
and rewrite that equation for x = x0 and substitute there the
value of ACx−λ

0 just obtained. It gives rise to the following
second degree polynomial equation in x0,

x2
0−

Cλ
λ+1

x0 +
λ−1
λ+1

B = 0, (15)

where λ 6= 1. It has the following roots,

x+
0 =

2λ2 +
√

5λ2−1
2(λ+1/2)(λ+1)

, x−0 =
2λ2−

√
5λ2−1

2(λ+1/2)(λ+1)
,

(16)
where x+

0 ≥ x−0 . Due to the fact that we have two distinct
values of x0, x+

0 and x−0 given by (16), we shall have, also,
two distinct values of L0, say L0+ and L0−. In order to obtain
them, we introduce x+

0 and x−0 , separately, in the equation that
equates the first derivatives of h(x) and p(x) and express L2

0 in
term of other quantities. It gives,

L2
0+ =

η2λ(1−λ)
(x+

0 )λ[λ− x+
0 (λ+1/2)]

,

L2
0− =

η2λ(1−λ)
(x−0 )λ[λ− x−0 (λ+1/2)]

, (17)

where L2
0− ≥ L2

0+.
Since x+

0 and x−0 vary in the range [0,1] and L2
0+ and L2

0−
must be positive, we will have to impose some restrictions
on the domain of λ. These restrictions lead to the following
distinct domains of λ, depending on which root one is using,

x−0 :
1√
5
≤ λ <

1
2
, (18)

x+
0 : λ ≥ 1√

5
. (19)

Therefore, this result tell us that V 2(r) (12) behaves differ-
ently, depending on the value of λ. We have the following
three different regions:

(i) λ≥ 1/2.
There will be just one point of inflection located at x+

0 for
L2

0+. If one chooses values of L2 > L2
0+, one will find other

extremal values of V 2(r) (12), which will be a maximum or a
minimum.

(ii) 1/
√

5≤ λ < 1/2.
There may be two different points of inflection. The first

is located at x+
0 for L2 = L2

0+. If one chooses values of L2 >
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L2
0+, one will find other extremal values of V 2(r) (12), which

will be a maximum or a minimum. When one reaches L2 =
L2

0−, one finds the other possible point of inflection located
at x−0 . If one chooses values of L2 > L2

0−, one will find just
one extremal value of V 2(r) (12), which will be a minimum.
Even for the case L2 < L2

0+, there will be a minimum. In fact,
this minimum will always be present for any value of L. Its
presence can be understood because, here, p(x) has a negative
root and h(x) is crescent and starts from x = 0. Therefore,
these two curves will always intercept each other.

(iii) λ < 1/
√

5.
There will be no point of inflection but there will be always

a minimum. The presence of this minimum can be understood
in the same way as the one in the previous case.

As we saw in the previous section, Sec. 2, naked singular-
ities and wormholes are characterized by certain subdomains
of λ. Therefore, based on the above result, we may describe
the effective potentials for naked singularities and wormholes.

3.2. Effective Potential for Naked Singularities

As we saw, in Sec. 2, the naked singularities are obtained
for 0 < λ < 1. We may still divide the naked singularities in
two classes, due to the behavior of V 2(r) (12) when r→ 2η+.
Since the present naked singularity is a physical singularity,
we expect that V 2(r) diverges there.

For 0 < λ < 1/2, limr→2η+ V 2(r) = ∞. Due to the fact that
this limit is consistent with an asymptotically flat naked sin-
gularity located at r = 2η, we call this class of ordinary naked
singularities.

On the other hand, for 1/2 ≤ λ < 1, limr→2η+ V 2(r) = 0.
Due to fact that this result is not consistent with a naked sin-
gularity located at r → 2η, we call this class of anomalous
naked singularities. Then, in what follows we shall restrict
our attention to the class of ordinary naked singularities with
0 < λ < 1/2. It is important to mention that observing the
scalar field expression (2), which in this case is real, one can
see that it diverges to −∞ as r → 2η+.

Taking in account the results of Subsec. 3.1 (ii) and (iii)
the effective potential V 2(r) (12) may have several different
shapes depending on the value of L2. Here, the points of in-
flection will be located at x−0 and x+

0 (16) and the relevant
angular momenta will be L2

0− and L2
0+ (17).

• For L2 < L2
0+, V 2(r) (12) has one minimum. In terms of

x it is located in the range (0,x−0 ) or in terms of r it is lo-
cated in the range (2η , r−0 ≡ 2η/(1−x−0 )). For E2 < 1,
the massive particles orbit around the naked singularity.
If the massive particle is located exactly at the minimum
the orbit is circular and stable. For E2 > 1, the massive
particles come in from infinity reach the infinity poten-
tial wall near the naked singularity and return to infinity
without ever reach the naked singularity.

• For L2 = L2
0+, V 2(r) (12) has two extremal values, a

minimum located in the range (2η , r−0 ) and a point of
inflection located at r = r+

0 ≡ 2η/(1−x+
0 ). In this point

the massive particles have unstable circular orbits. The
other possible trajectories for the massive particles are
exactly as in the previous case.

• For L2
0+ < L2 < L2

0−, V 2(r) (12) has three extremal val-
ues, a minimum located in the range (2η , r−0 ), a maxi-
mum located in the range (r−0 , r+

0 ) and another max-
imum located in the range (r+

0 , ∞). If the massive
particles are exactly in the maxima they have unstable
circular orbits. The other possible trajectories for the
massive particles are exactly as in the first case.

• For L2 = L2
0−, V 2(r) (12) has two extremal values, a

minimum located in the range (r+
0 , ∞) and a point of

inflection located at r = r−0 . In this point the massive
particles have unstable circular orbits. The other possi-
ble trajectories for the massive particles are exactly as
in the first case.

• For L2 > L2
0−, V 2(r) (12) has one minimum located in

the range (r+
0 , ∞). The possible trajectories for the mas-

sive particles are exactly as in the first case.

It is important to mention that, for sufficiently large values
of E, any massive particles will come in from infinity and it
will get reflected by the infinity potential wall near the naked
singularity. Then, it will return to infinity without ever reach
the naked singularity. This result is similar to the one found
in [4] for timelike geodesics of the naked singularity present
in the Reissner-Nordström spacetime. Let us consider, as an
example, the case where M = 10 and λ = 0.45. Therefore, we
have L2

0+ = 954.9308516 and x+
0 = 0.1875874406 which in

terms of r is given by r+
0 = 54.70674220. We also have, L2

0− =
960.0309665 and x−0 = 0.1064234487 which in terms of r is
given by r−0 = 49.73770224. In Fig. 1, we plot V 2(r) (12)
for each of the five cases discussed above. They have the five
different values of L2: 951, 954.9308516, 957, 960.0309665
and 962. The naked singularity is located at r = 44.44444444.

3.3. Effective Potential for Wormholes

As we saw, in Sec. 2, the wormholes are obtained for
1 < λ < ∞. In the spatial infinity of each asymptotically flat
region the effective potential V 2(r) (12) assumes the follow-
ing values,

lim
r→2η+

V 2(r) = 0, lim
r→∞

V 2(r) = 1. (20)

Although the above limits give consistent values for the ef-
fective potential at the two spatial infinities, the first limit is
not consistent with the value of the Ricci scalar evaluated at
r = 2η, for wormholes with 1 < λ≤ 2. For this class of worm-
holes the Ricci scalar R (5), diverges to ∞ when we take the
limit r → 2η+ or gives a positive constant when λ = 2. These
values are not consistent with the first limit of V 2(r) in (20)
and the idea of an asymptotically flat spatial region. Therefore
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L^2=951 L^2=954.9308516
L^2=957 L^2=960.0309665
L^2=962

r
40 50 60 70 80

V^2

0,845

0,846

0,847

0,848

0,849

0,850

0,851

0,852

0,853

FIG. 1: Five different effective potential diagrams V 2(r) (12), for
massive particles moving in a naked singularity with M = 10 and λ =
0.45. They have the five different values of L2: 951, 954.9308516,
957, 960.0309665 and 962. The naked singularity is located at r =
44.44444444.

we call this class of wormholes of anomalous wormholes. For
the rest of the wormholes where 2 < λ < ∞, the limit of R
(5) when r → 2η+ is zero. This value is consistent with the
first limit of V 2(r) in (20) and the idea of an asymptotically
flat spatial region. Then, in what follows we shall restrict our
attention to that class of ordinary wormholes with 2 < λ < ∞.

Taking in account the results of Subsec. 3.1 (i) the effective
potential V 2(r) (12) may have three different shapes depend-
ing on the value of L2. Here, the point of inflection will be
located at x+

0 (16) and the relevant angular momentum will be
L2

0+ (17).

• For L2 < L2
0+, V 2(r) (12) has no extremal values. In this

case, there is no stable orbits. For sufficiently high en-
ergies the massive particles may travel from one asymp-
totically flat region to the other. In fact, this type of orbit
is also present in the next two cases.

• For L2 = L2
0+, V 2(r) (12) has one point of inflection,

located at x+
0 (16) or in terms of r, r+

0 ≡ 2η/(1− x+
0 ).

In this point the massive particles have unstable circular
orbits.

• For L2 > L2
0+, V 2(r) (12) has two extremal values, a

maximum located at 2η < r < r+
0 and a minimum lo-

cated at r+
0 < r. There are closed and open orbits de-

pending on the values of the total energy and angular
momentum of the massive particles.

Let us consider, as an example, the case where M = 1
and λ =

√
1000. Therefore, we have L2

0+ = 12.41266 and

L^2=10 L^2=12.41266 L^2=14.5
r

2 4 6 8 10 12 14 16 18 20

V^2

0,6

0,7

0,8

0,9

FIG. 2: Three different effective potential diagrams V 2(r) (12), for
massive particles moving in a wormhole with M = 1 and λ =

√
1000.

They have the three different values of L2: 10, 12.41266 and 14.4.
The spatial infinities of each asymptotically flat region are located at
r = 0.06325 and r → ∞.

x+
0 = 0.98799 which in terms of r is given by r+

0 = 5.26747.
In Fig. 2, we plot V 2(r) (12) for each of the three cases dis-
cussed above. They have the three different values of L2: 10,
12.41266 and 14.4. The spatial infinities of each asymptoti-
cally flat region are located at r = 0.06325 and r → ∞.

3.4. Radial timelike geodesics

Unfortunately, there is not an algebraic expression for the
general timelike geodesics given by the solutions to Eqs. (9-
11), even the numerical solutions are very complicated. On
the other hand, one may restrict his attention to the case of
radial timelike geodesics, where the massive particle moves
only along the radial and time directions. It means that θ̇ =
φ̇ = L = 0 and (11) reduces to,

(
dr
dτ

)2

= E2 −
(

1− 2η
r

)M
η

. (21)

Although (21) is much simpler than (11), one still cannot
obtain an algebraic expression of τ as a function of r, after its
integration. Therefore, we shall perform a numerical study of
the solutions to (21) and present our results.

a. Naked singularities In this case, we integrated (21)
for many different values of E, M and η. We chose values of
M and η compatibles with naked singularities. We found that,
for E ≥ 1, the geodesics are all well behaved when r→ 2η. In
fact, τ goes to zero in that limit. The geodesics are such that



Brazilian Journal of Physics, vol. 38, no. 4, December, 2008 579

when r is large, r tends to a linear function of the proper time
τ. For E < 1, the geodesics are also well behaved when r→ 2η
and τ also goes to zero in that limit. On the other hand, they
do not extend to large values of r. It is clear from (21), that the
massive particles are subjected to a potential of the form: (1−
2η/r)M/η. This potential, increases from zero at r = 2η and
tends to one when r → ∞. Therefore, massive particles with a
total energy E < 1, get reflected by the potential. The value of
r, where the particle gets reflected by the potential is obtained
by solving the equation: E2 = (1− 2η/r)M/η. Then, based
on the above results, we may conclude that it always takes a
finite proper time interval to travel from any finite value of r
to the singularity located at r = 2η. We notice, also, that for
radial timelike geodesics there is not an infinity potential wall
near the naked singularity and the massive particles can reach
it.

b. Wormholes In this case, we integrated (21) for many
different values of E, M and η. We chose values of M and η
compatibles with wormholes. We found that, for E ≥ 1, the
geodesics are all well behaved when r → 2η. In fact, τ goes
to zero in that limit. The geodesics are such that when r is
large, r tends to a linear function of the proper time τ. For
E < 1, the geodesics are also well behaved when r → 2η and
τ also goes to zero in that limit. On the other hand, they do
not extend to large values of r because they get reflected by
the potential, as in the naked singularity case. The value of r,
where the particle gets reflected by the potential is obtained in
the same way as in the naked singularity case. Here, as in the
naked singularity case, for all cases studied it always takes a
finite proper time interval to travel from any finite value of r
to the spatial infinity located at r = 2η.

4. NULL GEODESICS

4.1. Effective Potential

The null geodesics for the Wyman solution are derived al-
most in the same way the timelike geodesics were derived
in the previous section. The only difference is that, here,
the null line element contributes a different additional equa-
tion to the four geodesic equations. The new equation reads:
ds2/dχ2 = 0, where χ is the affine parameter used in the
present case. Therefore, proceeding exactly as in the previous
section we obtain the following effective potential equation,

(
dr
dχ

)2

+ V 2(r) =
1
b2 , (22)

where

V 2(r) = r−2
(

1− 2η
r

) 2M
η −1

(23)

and b ≡ L/E is the photon impact parameter. V 2(r) (23) is
the effective potential for the motion of the photon in Wyman
geometry.

V 2(r) (23) has only one extremal value at r = 2M +η. Due
to the domain of r it can only exists if 2M > η or λ > 1/2
and when it exists it is a maximum. Therefore, we have three
different cases: (i) λ > 1/2, the effective potential has a maxi-
mum at r = 2M+η and goes to zero at r = 2η;(ii) λ = 1/2, the
effective potential has no extremal values and diverges to ∞ as
r → 0; (iii) λ < 1/2, the effective potential has no extremal
values and diverges to ∞ as r → 2η.

4.2. Effective Potential for Naked Singularities

As it was mentioned in Subsec. 3.2, we are only concerned,
here, with the class of ordinary naked singularities character-
ized 0 < λ < 1/2. For this class, V 2(r) (12) assumes the fol-
lowing values when r → 2η+ and r →+∞,

lim
r→2η+

V 2(r) = ∞, lim
r→+∞

V 2(r) = 0. (24)

V 2(r) (23) has no extremal values. In this case, whatever the
impact parameter b the photons come in from infinity, get re-
flected by the infinity potential wall near the naked singularity
and return to infinity without ever reach the naked singularity.

4.3. Effective Potential for Wormholes

As it was mentioned in Subsec. 3.3, we are only concerned,
here, with the class of ordinary wormholes characterized by
2 < λ < ∞. In the spatial infinity of each asymptotically flat
region V 2(r) (23) assumes the following values,

lim
r→2η+

V 2(r) = 0, lim
r→∞

V 2(r) = 0. (25)

V 2(r) (23) has a maximum located at r = 2M + η. In this
point the photons have unstable circular orbits. For suffi-
ciently small impact parameter b the photons may travel from
one asymptotically flat region to the other. Otherwise, they
come in from spatial infinity of an asymptotically flat region
get reflected by the effective potential and return to spatial in-
finity in the same asymptotically flat region.

4.4. Radial null geodesics

The description of the null geodesics in terms of the affine
parameter χ is trivial, when we consider radial geodesics
(θ̇ = φ̇ = L = 0). That is the case because the effective
potential equation for the radial motion of photons reduces
to (dr/dχ)2 = E2. It means that the effective potential is
zero and the photons move freely following straight lines:
r =±Eχ+q, where q is an integration constant and the + and
− signs mean, respectively, outgoing and ingoing geodesics.
This result is valid for photons moving in the naked singular-
ity as well as in the wormhole geometries.
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5. CONCLUSIONS.

In the present work, we studied qualitative and quantitative
features of orbits of massive particles and photons moving in
the naked singularity and wormhole spacetimes of the Wyman
solution. We investigated all possible types of orbits, for mas-
sive particles and photons, by studying the appropriate effec-
tive potential. We noticed that for certain naked singularities,
there is an infinity potential wall that prevents both massive
particles and photons ever to reach the naked singularity. This
result is similar to the one found in [4] for timelike geodesics
of the naked singularity present in the Reissner-Nordström
spacetime. We noticed, also, that for certain wormholes, the

potential is finite everywhere, which allows massive particles
and photons moving from one wormhole asymptotically flat
region to the other. We also computed the radial timelike and
null geodesics for massive particles and photons, respectively,
moving in the naked singularities and wormholes spacetimes.
It is important to mention that, the above description of the
radial timelike and null geodesics in terms of τ and χ may
also be done in terms of the time coordinate t, leading to few
different results [20].
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