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Using the methods for optimal simulation of quantum logic gates, we perform a quantitative estimation
of the time resources involved in the execution of universal gate sets for the case of three representative
models of quantum computation based on global control. The importance of such models stems from the
solution to the problem of experimentally addressing and locally manipulating the qubits in a given quantum
register. The numerical estimation of the temporal efficiency for each model is performed by assuming that
the qubits in the register can be coupled to each other via the Ising and the Förster interactions. Finally, we
discuss the feasibility of the physical realization of such architectures under quantum error correction conditions.
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1. INTRODUCTION

Quantum computation stands as one of the outstanding in-
novations of current technologies. As Feynman pointed out
almost five decades ago [1], the development of smaller elec-
tronic devices ultimately leads to a consideration of quantum
mechanical effects in electronic and computer designs [2].
Moreover, it became clear after the works of Deutsch [3] and
Shor [4] that quantum mechanics could provide the means
for a radical new way of computing, allowing the compu-
tation of many intractable computational problems in “clas-
sical machines” (computers running under “classical” phe-
nomenology), such as factoring of large numbers [4] or the
exact simulation of large quantum systems [5]. Aside from
the usual model of quantum circuits for quantum computation
(QC) [3] there are other models under current investigation,
such as one-way QC [6], adiabatic QC [7], quantum cellular
automata [8], and others. Although these models are equiva-
lent in the sense that they can simulate each other with polyno-
mial slowdown in its time and space resources, when it comes
to physical realizations, polynomial differences between mod-
els become a relevant issue regarding error robusticity [9].

A problem of central importance is the necessity to charac-
terize the efficiency of such models in different computational
problems and for different physical systems. Qubit chains as-
sociated with two level quantum systems interacting with their
nearest neighbours are a common array for many QC mod-
els. In these arrays, the input information is stored along with
the subsequent evolution of the system. In order to perform
any quantum computation on the register, it is sufficient to be
able to realize a universal set of one and two-qubit quantum
gates [10]. There are two main mechanisms for the implemen-
tation of localized multi-qubit gates in a quantum register: the
traditional ‘local’ control (LC) and the so-called ‘global’ con-
trol (GC). In LC quantum computation (LCQC), an induced
evolution in the system requires the direct individual localiza-
tion of the computational qubits. A problem common to such
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a strategy is the difficulty in its physical implementation, es-
pecially at scales where the manipulation invokes more than
a few qubits register. By contrast, in GC quantum computing
(GCQC) the induced evolution of the system doesn’t require
direct individual localization of the computational qubits to
be targeted by the logic gates; the model manages to induce a
localized gate by using the instructions stored in the register’s
initial configuration. Thus, from the viewpoint of quantum in-
formation technologies, it may be more promising to be able
to realize unitary manipulations within the quantum register
in a global fashion.

In this work, we evaluate the additional temporal resources
required for the execution of three relevant architectures for
GCQC [11–13]. Our results are based on a precise determi-
nation of temporal resources by means of techniques based
on time-optimal simulation of quantum gates [14, 15]. More-
over, we also estimate the spatial resources involved in the
conditional dynamics performance and discuss the feasibility
of such architectures for implementing quantum error correc-
tion over the computational and the auxiliary qubits consid-
ered in Refs. [11–13].

2. TIME-OPTIMAL SIMULATION OF QUANTUM GATES

Calculation of optimal times for the execution of quan-
tum gates depends specifically on the form of the interacting
Hamiltonian between qubits. The optimal time execution of
an n-qubits gate U, using a Hamiltonian H , is defined as the
minimal time T executing U in the controllable system [16]:

U̇(t) =−iH (t)U(t) ; U(0) = I ; U(T ) = U, (1)

where U(t) belongs to the special unitary group SU(2n), I is
the group’s identity element, T is the time it takes to go from
I to U along SU(2n), and

H (t)≡H0 +HCtrl(t), (2)

is a curve in the space of Hermitic matrices of dimension n,
decomposed as a sum of a time independent matrix H0 and
a dynamically controllable term HCtrl(t). A special case of
these systems, termed local control systems, occurs when H0
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is associated to a qubit-qubit interacting Hamiltonian (e.g.,
Eq. (6)) and the controllable term HCtrl(t) to a local (one
qubit) Hamiltonian, which could be physically realized, e.g.,
through the coupling with a controllable external magnetic
field. In this work, we apply the techniques introduced in
Refs. [14, 15] for treating quantum computer systems to the
case of globally controlled systems. A central consideration
here is the fast control limit [14, 15], by which the execution
time of local Hamiltonians is considered “arbitrarily fast”, an
assumption based on the experimental consideration that the
strength of the coupling between the qubit and the control-
lable external field can be raised high enough as to consider
negligible the time of one qubit rotations in comparison with
the time induced by the qubit-qubit interactions.

Formally, this means that if we let G = SU(2n), and K be
the subgroup of G associated to local unitary operations [16],
i.e., unitaries with the form exp(−iHCtrl), then

1. The execution time for U is equivalent to that for KU
and UK. U is said to be locally equivalent to Ũ if there
exist k1, k2 ∈ K such that U = k1Ũk2.

2. Finding the optimal time for simulating a quantum gate
U ∈ G is equivalent to finding the geodesic between I
and U in the coset space G/K.

Here, we focus on the results for two and three-qubit gates,
which are the core of the considered GCQC protocols. Opti-
mal time solutions for locally controlled systems of two-qubit
gates have already been reported [14]. The conditions for an
optimal simulation of a quantum gate U under an interacting
Hamiltonian H0 can be reduced to finding the minimum time
t [17], such that

~α≺S
~βt, (3)

where ~α and ~β are coefficients characterizing the unitaries
exp(−i∑αiσi ⊗ σi) and exp(−i∑βiσi ⊗ σi), which are lo-
cally equivalent to U and exp(−iH0) respectively, and the σi’s
denote the Pauli matrices. The special majorization relation
≺S is established in direct relation to the normal majoriza-
tion relation between the vectors ~λ and ~ν associated to the
eigenvalues of exp(−i∑αiσi ⊗ σi) and exp(−i∑βiσi ⊗ σi),
respectively. It is important to note that the previous ana-
lytic solution relies on the fact that SU(4)/(SU(2)× SU(2))
is a Riemannian symmetric space, which implies the exis-
tence of an abelian subalgebra. This assures the charac-
terization of locally equivalent operators based on unitaries
of the generic form exp(−i∑αiσi ⊗ σi). Regarding three-
qubit gates, optimal simulation results have only been found
under specific situations [15, 18]. Here, the previous ap-
proach is no longer valid: geodesics have to be solved in
SU(8)/(SU(2)× SU(2)), which is not Riemannian symmet-
ric. Important quantum gates such as the CNOT and SWAP
between the first and the third qubit have been solved by a
combination of analytical and numerical techniques [15, 18].
Other quantum gates, such as the ones we apply in this work,
are indirectly addressed by decomposition into already solved
quantum gates.

3. MODELS FOR QUANTUM COMPUTATION BASED ON
GLOBAL CONTROL

The GCQC models are arrays of two level quantum systems
interacting, in first approximation, with their nearest neigh-
bours. There exists a finite number of “qubit species” dis-
tributed in an alternate manner within the arrays, as shown
schematically in Fig. 1(a). Here, each species can be collec-
tively manipulated in an independent way. An example of
a physical realization of such architectures is a linear array of
coupled quantum systems which has associated a periodic and
finite set of frequencies (ωA,ωB,ωA, · · · ) that can be addressed
through resonant radiofrequency (RF) pulses. Between the
‘computational’ qubits, those effectively involved in the com-
putation, there are auxiliary qubits or “ancillae”, with purely
operative functions which are initialized in the computational
state |0〉⊗m. Besides the ancillae, there is a “special qubit”, the
“control unit”, whose role it is to localize and ‘transport’ in-
formation between the computational qubits. One qubit gates,
for example, are performed in two steps: first, the control unit
is taken near enough to the computational qubit to be modi-
fied, and then the desired gate is performed over the compu-
tational qubit, as a controlled gate, where the control unit acts
as the control qubit.

We next introduce the three architectures and the respective
operative protocols that we use in our calculations.

i) Model 1 (BM1). Proposed by Benjamin [11], this is
one of the simplest models for GCQC; it consists of two
species of physical qubits, A and B, as shown in Fig. 1. The
computational qubits are encoded in physical qubits (|0〉 ≡ |↑〉
and |1〉 ≡ |↓〉) belonging exclusively to a given species with
the exception of the “special qubit” or “control unit”, which
is initialized in a different species at the computational
state |1〉. There are arrays of three and five ancillae qubits
alternately distributed between the computational qubits
(see Fig. 1(b)). The generic Hamiltonian for this system is
given by H = ∑n

j=1 Hs
j + ∑n

j=1 H int
j, j+1, where the first term

is associated with the individual qubit energy and the latter
with the interaction energy between neighbouring qubits.
The particular characteristics of the system reduce the total
Hamiltonian to the form [11]:

H2 j = HA,

H2 j+1 = HB,

H2 j,2 j+1 = HAB,

H2 j+1,2 j = HBA. (4)

This model works as long as the following conditions are ful-
filled: a) it has to be possible to control the supression of
the interaction process due to HBA, in a way that the system
reduces to a set of pairs A-B interacting identically through
HAB; b) any quantum gate must be able to be realized, in the
A-B pairs, through the manipulation of the remaining terms:
HA, HB and HAB; c) as in the requirements a) and b), but
this time supressing the interaction HAB. These conditions
may, however, pose a challenge from an experimental point of
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view [19]. To alleviate such difficulties, a strategy that incor-
porates a third energy level as part of one of the qubit species
(a “barrier”), has been put forward in Ref. [19], at the cost of
increasing the number of species in the array.
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FIG. 1: (a) Schematic of a periodic array of two types of qubits (A
and B), present in the architectures BM1 and BM2 (see text) for quan-
tum computation based on global control. (b) Array of ancillae and
computational qubits in architecture BM1. (c) One qubit gate U act-
ing selectively on qubit Y. The gate is indirectly performed using the
controlled quantum gate CtrlB(A), which uses the HAB interaction
Hamiltonian. The “control unit” acts as the control qubit and assures
the localized action of U. Adapted from Ref. [11].

As an illustration, in Fig. 1(c) we show how to perform
a one computational qubit gate: the control unit is located
at an adjacent cell from the target qubit (Y). Making sure
that the interacting Hamiltonian between the target and the
control unit is turned on (HAB), any arbitrary controlled gate
(Ctrl−U) can be performed by means of using the species
where the control unit is located as the control qubit and the
species where the target computational qubit is located as the
target.

ii) Model 2 (BM2). This model actually precedes BM1 [12].
It has the same Hamiltonian configuration specified in
Eq. (4). Unlike BM1, this model doesn’t require the ability
to independently control the interacting Hamiltonians, HAB

and HBA. This benefit doesn’t come free; in this case the
computational qubits are encoded in four physical qubits, as
follows: |0〉 ≡ |↑↑↓↓〉 and |1〉 ≡ |↓↓↑↑〉. Between every en-
coded computational qubit there are four ancillae qubits. The
“control unit” is also encoded, but in a different configuration:
|↑↑↓↓↑↑〉 and |↑↑↑↑↑↑〉, representing the computational states
|1〉 and |0〉, respectively. The complete array is shown in
Fig. 2(a). The operational gates which, applied sequentially,
perform any computational gate, are symmetric three qubit
gates of the generic form

M(u00,u01,u10,u11) = |00〉〈00|⊗u00 + |01〉〈01|⊗u01 +
|10〉〈10|⊗u10 + |11〉〈11|⊗u11 ,

(5)

where M acts simultaneously over every physical qubit of a
given species and the symmetric condition u01 = u10 is ful-
filled. This condition is compatible with the fact that neigh-
bouring qubits are of the same species and therefore only sym-
metric gates are physically feasible.
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FIG. 2: (a) Array of ancillae and computational qubits in architecture
BM2. (b) Heuristic protocol for two-qubit (V and Y) computational
gates in models BM1 and BM2. Computational qubits are in light
gray and distinguished by letters. The white space between compu-
tational qubits corresponds to ancillae qubits, and the line in dark
grey corresponds to the control unit path. Adapted from Ref. [12].

Both models, BM1 and BM2, perform computational
two-qubit controlled gates using the control unit as the carrier
of information from the “control” qubit to the “target” qubit.
This is done through the entanglement between the control
unit and the control qubit, as illustrated in Fig. 2(b). A
calculation made in the present work shows that in order
to perform a more general two-qubit gate under the former
protocol, two controlled gates are required; a fact that triples
the computational time. To see why this is so, consider the
case where a general two-qubit gate is performed through
the scheme depicted in Fig. 2(b). In this case, the state of
the control unit (dark gray) approaching step (c) may carry
information about qubit state V, given the action of the
general two-qubit gate performed at step (b). This disables
the possibility of recovering the original localized qubit state
Y through the step (c) where the entanglement is destroyed.

iii) Model 3 (LM3). Introduced by Lloyd in 1993 [13],
this model is perhaps the first proposal for GCQC. It has three
different species distributed in a periodic array ABCABCABC.
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Here, there’s no need to control interacting Hamiltonians
and computational qubits are encoded in physical qubits
belonging exclusively to a given species, just as in BM1.
There are two ancillae qubits between the computational
qubits.

A B C B C A B C A B C

W 0 1 X 0 0 Y 0 0 Z 0 0

0 W 1 X 0 0 Y 0 0 Z 0 0

0 W X 1 0 Y 0 0 Z 0 0 0

0 X W 1 Y 0 0 Z 0 0 0 0

0 0 0 X 0 0 Y W 1 Z 0 0
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FIG. 3: Protocol for a two-qubit quantum gate between arbitrary
computational qubits W and Z, in architecture LM3. Every com-
putational qubit is initiated at qubit species A. (1) The control unit
is located at the neighbourhood of W, in this case W is at species A,
while the control unit is at species C. (2) A controlled SWAP gate
between species A and B is applied by using qubits at species C as
the control qubits. Given the location of the control unit, only the
computational qubit W will be transferred to species B. (3) A SWAP
gate is applied between species A and C. (4) A SWAP gate is applied
between species B and C. (5) Steps 2, 3, and 4 are applied again.
The register is ready to implement a two-qubit gate between com-
putational qubits W and Z using the control unit. This is done after
applying a controlled two-qubit gate between species A and B, where
the species C acts as the control qubit. Any other operation can be
reverted so that the modified computational qubits W and Z can go
to their initial locations in the register.

The operative gates that add up to perform computational
gates are non-symmetric three qubit gates of the generic form
given by Eq. (5). Unlike the models above, two-qubit gates are
performed by the transportation of one of the computational
qubits to a position adjacent to the second computational qubit
involved in the two-qubit gate. This process, illustrated in
Fig. 4, is performed by using the control unit to exclusively
transport the first computational qubit (W) through the regis-
ter. Once the control unit and the two computational qubits
(W and Z) are all in the same neighbourhood, ABC, the sys-
tem is ready to apply any two-qubit computational gate, where
only the former computational qubits are involved. This is as-
sured given that the control unit acts as a control qubit for the
action of the two-qubit gate over the former computational
qubits.

4. RESULTS AND DISCUSSION

For the evaluation of the growth of parameters regarding
the number of computational qubits, the number of ancillae
qubits between the computational qubits and the number of
physical qubits required to codify a computational qubit were
taken into account. The evaluation of the time performance
of computational gates in the three architectures is based on
the results of optimal simulation of quantum gates discussed
in Section 2 [14, 15]. In a general picture, we consider quan-
tum registers under global control, for which an anisotropic

Heisenberg interaction mediates the process of non-local gat-
ing:

Hint = ∑
i

JXY (σi
x⊗σi+1

x +σi
y⊗σi+1

y )+ JZσi
z⊗σi+1

z , (6)

which contains both the planar XY or Förster interaction (JZ =
0), and the isotropic Heisenberg interaction (JZ = JXY ) as lim-
its.

4.1. Space and time scaling factors

We first consider a register for which there is an effective
Ising interaction Hint ≡ HIsing between neighbouring qubits:
JZ ≡ J, JXY = 0. Spatial scaling analysis is concerned with
the relation between the number of computational qubits, N,
and the number of physical qubits, Np. The three models
scale linearly with respect to the total number of computa-
tional qubits, and the proportionality factor, k, between Np and
N is the unique parameter characterizing the spatial scaling in
the three architecures.

Model LM3 3 N
Model BM2 8 N
Model BM1 4 N

TABLE I: Average spatial scaling for the three architectures as func-
tion of the number, N, of computational qubits.

Spatial scaling factors, without taking into account quan-
tum error correction nor parallel processing, are given in Ta-
ble I. The model LM3 presents the best spatial efficiency
with a scaling factor k = 3, followed by BM1, with the aver-
age scaling factor k = 4. The model BM2 presents the worse
comparative efficiency, k = 8, due to the fact that besides the
ancillae qubits, every computational qubit is encoded in four
physical qubits.

architecture C∗HIsing
(U) time (µs)

LM3 [441.6(n+m)+92.0]J−1 10.7
BM2 (403.2 n+134.4 m+1065.6)J−1 24.0
BM1 (28.2 n+9.4 m+15.6)J−1 0.25

TABLE II: Additional cost for the realization of one (n = 0, neglect-
ing all constant terms) and two computational qubit gates for the
three models as a function of the Ising coupling strength J. The last
column reports the associated time for J = 50 MHz.

Table II shows the results of the calculation of the time per-
formance of general two-qubit computational gates i.e., gates
where both computational qubits may be affected, for each
architecture implemented under the Ising HIsing interaction
Hamiltonian. In this table, C∗HIsing

(U) represents the optimal
additional time spent in the execution of the arbitrary two-
qubit gate U under the coupling HIsing, and using GCQC pro-
tocols. When the asterisk is absent, this quantity has the same



Brazilian Journal of Physics, vol. 38, no. 4, December, 2008 555

meaning, but for LCQC arrays. This initial choice of an Ising
type of interaction is motivated by the following: i) given the
heterostructural nature of the GCQC models, a non-resonant
interaction is expected to be the most efficient interaction; ii)
results for optimal simulation of three qubit quantum gates has
only been developed for Ising type of interactions [15, 18].

There are two time scale factors in Table II: g1 and g2,
which are associated to the two transportation processes rep-
resented by n and m respectively. The variable m is associated
with the localization of one of the qubits involved in the com-
putational gate by the control unit, and n to the transportation
of the information between the two computational qubits in-
volved in the gate execution. The model BM1 exhibits the
best time efficiency with factors g1 = 28.2 and g2 = 9.4. The
fact that, for BM2 and BM1, general two-qubit computational
gates have to be realized by the action of two controlled gates,
triples the magnitude of the factor g1.

The additional times C∗HIsing
(U) are shown in Table II. For

the purpose of illustration, specific times were calculated for
the case m = 0 and n = 1 (control unit and computational
qubits adjacent to each other) under coupling strength J =
50 MHz≈ 33 neV, which is a common order of magnitude for
magnetic dipolar interactions in proposals such as fullerene-
based electron spin quantum computers [20, 21]. The results
are shown in Table II. For the three models, the one with lesser
additional time spent is BM1, with a specific value of 0.25 µs.
Just for the sake of comparison, this is equivalent to 5.3 times
the optimal time required in the direct realization of the SWAP
gate, which performs the exchange of quantum states between
qubits [22], and which, for J = 50 MHz, is 47.1 ns, as re-
ported in Table IV. In contrast, the greater additional time,
due to BM2, presents an extra cost equivalent to 509 times
the direct application of the SWAP gate. In the case of BM2
and BM1 the same rates are found in comparison with the di-
rect execution of the CNOT gate, given that C∗HIsing

(SWAP) =
3C∗HIsing

(CNOT ) and CHIsing
(SWAP) = 3CHIsing

(CNOT ). The
first equation comes from the observation that for BM1 and
BM2 the additional computational time of general two-qubit
gates, where both qubits are affected, triple that of a two-qubit
controlled gate. The latter equation is directly deduced from
Table IV.

model BM1 time (ps)
(14.1n+4.7m+15.6)J−1

F 13.3

TABLE III: Additional cost for the realization of one (n = 0, m = 1)
and two computational qubit gates in the model BM1 for the Förster
coupling strength JF . The second column gives the required time for
JF = 1.5 THz.

Next, we compute the optimal additional time for general
computational two-qubit gates for the case of a generic phys-
ical system where the qubits interact via the Förster coupling:
JXY ≡ JF , J = 0 in Eq. (6) [23–26]. We do so for the model
BM1. The calculation for the models LM3 and BM2 remains
an open question due to the fact that optimal simulation for
three qubit quantum gates under Förster interaction is still,
hitherto, an unsolved problem. The JF coupling appears in

many different physical systems, ranging from nanostructures
such as quantum dots and wells [23–26] through to biomolec-
ular systems [27–29]. The first column of Table III shows the
general result associated to an arbitrary coupling intensity JF .
The last column shows the result for JF = 1.5 THz ≈ 1 meV,
which is a representative estimate for exchange interactions
between quantum dots [23–26]. In this case, the parameters
of “transport” g1 and g2 decrease by a factor of one half, ex-
pressing the fact that the Förster interaction is a more efficient
interaction for energy transfer.

U CHIsing
(U) time (ns)

SWAP (3π/4)J−1 47.1
CNOT (π/4)J−1 15.7

U CHF
(U) time (fs)

SWAP (3π/8)J−1
F 775

CNOT (π/4)J−1
F 516

TABLE IV: General and specific temporal costs for the direct execu-
tion of the SWAP and CNOT quantum gates under the i) Ising and ii)
Förster interaction Hamiltonians. The last column is computed for
couplings i) J = 50 MHz (33 neV) and ii) JF = 1.5 THz (1 meV),
respectively.

To illustrate this point, in Table IV we show the optimal
time for the execution of the two-qubit logic gates SWAP and
CNOT. The SWAP gate is involved in the transportation of the
computational qubits along the quantum register in BM1. The
CNOT gate applies the quantum NOT gate (quantum version
of the classical NOT gate) conditioned by the computational
state of its neighbouring qubit. We see from Table IV that
CHF

(SWAP) is one half times CHIsing
(SWAP) for J = JF . The

factor 15.6 of Table III , which is independent of the processes
of transportation, remains the same as that of Table II be-
cause this only contains controlled gates which have the same
generic value for both, Ising and Förster, couplings (see Ta-
ble IV).

The additional time spent in the execution of a general two-
qubit gate between neighbouring computational qubits un-
der the Förster coupling JF = 1.5 THz is approximately 17.2
times the optimal time required for the execution of the SWAP
gate and 8.6 times the one required in the direct execution
of the CNOT gate, under the same coupling conditions (see
Table IV). The difference of five orders of magnitude in the
optimal time required for the direct two-qubit gate execution
between systems interacting under Ising and Förster coupling
relies on the difference in their corresponding coupling in-
tensities as taken from some representative systems such as
fullerene-based electron spin quantum computers [20, 21] and
systems of quantum dots coupled via exchange interactions
[23, 26].

Up to now we have compared the spatial scalability and
temporal efficency of the three architectures. A fundamental
requirement for any architecture, in order to support quantum
computation is its ability to implement quantum error correc-
tion over its computational and ancillae qubits. The following
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section is dedicated to a discussion of the implementation of
quantum error correction in the three GCQC models presented
above.

4.2. Quantum Error Correction

The overall additional resources required for these archi-
tectures have important effects on their ability to implement
quantum error correction codes (QECCs) [31]. In fact, fault-
tolerant thresholds impose minimal values for coupling inten-
sities between adjacent qubits. Calculation of these thresh-
olds depends on the specific architecture and error correction
strategies to be used [32], and some key observations can be
made in this respect. Quantum error correction in GCQC
models can be divided into two subproblems: i) quantum error
correction of computational qubits and ii) classical error cor-
rection of ancillae qubits. The problem of quantum correction
of computational qubits may be solved by QECCs [22] but the
implementation of QECCs in GCQC models is not a straight-
forward process. For example, contrary to what is suggested
in Ref. [33], computational qubits in the model BM2 cannot
be corrected by QECCs because their architectural encoding
doesn’t match with any QECC. To illustrate this, let us try to
correct one computational qubit from a bit-flip error using the
stabilizers formalism [22].

(a)

|q1〉 Z |p1〉
|q2〉 Z Z |p2〉
|q3〉 Z |p3〉
|0〉 H • H |d1〉
|0〉 H • H |d2〉

(b)

input diagnostic output
{|000〉 , |111〉} |00〉 {|000〉 , |111〉}
{|001〉 , |110〉} |01〉 {|000〉 , |111〉}
{|100〉 , |011〉} |10〉 {|000〉 , |111〉}
{|010〉 , |101〉} |11〉 {|000〉 , |111〉}

FIG. 4: (a) Error diagnostic code for the bit-flip one qubit error. (b)
Input, diagnostic, and output for the QECC.

Figure 4 shows the diagnostic circuit using the set
{Z2Z3,Z1Z2} as the stabilizer generators. One computational
qubit is encoded into three physical qubits in the following
form: |0〉c ≡ |000〉 and |1〉c ≡ |111〉. This circuit detects and
therefore corrects all one bit-flip errors. Figure 4(b) shows
the set (input) of correctable encoded qubits. However, in or-
der to implement the bit-flip QECC in BM2, one has to encode
each qubit, |qi〉, into four physical qubits following the alloca-
tion given by the architecture: |0〉 ≡ |↑↑↓↓〉, and |1〉 ≡ |↓↓↑↑〉.
This leads to a total of twelve physical qubits per computa-
tional qubit encoded. It is easy to check that any one phys-

ical qubit bit-flip error over an encoded computational qubit
doesn’t belong to the set of correctable encoded qubits de-
picted in Fig. 4(b). The same argument is valid to show the
inability of BM2 to correct computational qubits through any
other QECC. In fact, the only cases where QECC is possible
in QC models with architectural encoded qubits is when this
encoding matches that of the QECC.

For the other models analyzed here, QECC is possible as
long as a degree of parallelism of at least O(log(N)) is feasi-
ble [34]. This fact makes the design of complementary strate-
gies allowing parallel QECC processing in LM3 and BM1 a
must. A strategy has already been put forward for BM1 [32],
using periodically distributed “switching stations” where con-
trol units are activated and deactivated, except one, which is
always activated and is used for the computation of the ac-
tual algorithm. Parallel processing on LM3 hasn’t yet been
explored.

The second issue, that of ancillae qubit correction, is an in-
volved problem. As the aim of error correction on ancillae is
to keep the ancillae qubits in their ground state, |0〉, correc-
tion is in this case to be carried out by dissipative operations
over the register, also known as “resetting”. To achieve this, it
has recently been proposed to consider a third level for each
qubit, such that it could be populated from either of the states
|0〉 and |1〉, and would decay in a dissipative way into one
particular state, say |0〉 [12, 32]. Aside from this, one more
question remains: how to distinguish ancillae from computa-
tional qubits? In the case of LM3, computational qubits are
naturally distinguished by the species they are, in a given time
step. In BM1, this is not the case, because there are always
ancillae qubits in the same species where the computational
qubits are. A second alternative is to use the control unit
to localize ancillae corrections, an effective strategy but less
efficient compared to the one for LM3, where parallelism is
maximal. Thus, parallel processing is necessary for QECC
implementation in LM3 and BM1, and the physical require-
ment of a third energy level for each qubit will certainly be a
common requirement in BM1 and LM3 in order to allow par-
allel QECCs, if strategies such as those proposed in Refs. [12,
32] are to be implemented.

5. CONCLUSIONS

From the analysis given above, we conclude that BM1
presents the best overall efficiency in spatial and temporal
resources, without considering error correction of computa-
tional and ancillae qubits. The hierarchy of time efficiency of
two-qubit gate execution was determined assuming an Ising
type of interaction. In the case of BM1, it was also calcu-
lated for systems coupled via the Förster interaction. We also
conclude that only BM1 and LM3 remain as feasible candi-
dates for QECC implementation, discarding BM2 since their
computational qubits have an architectural encoding which
doesn’t match with any QECC.
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