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Chaos is a kind of nonlinear system response that has a dense set of unstable periodic orbits (UPOs) em-
bedded in a chaotic attractor. The idea of the chaos control is to explore the UPO stabilization obtaining dy-
namical systems that may quickly react to some new situation, changing conditions and their response. The
OGY (Ott-Grebogi-Yorke) method achieves system stabilization by using small perturbations promoted in the
neighborhood of the desired orbit when the trajectory crosses a specific surface, such as a Poincaré section.
This contribution proposes a multiparameter (MP) method based on OGY approach in order to control chaotic
behavior using different control parameters. As an application of the proposed multiparameter general formula-
tion it is presented an uncoupled approach where the control parameters do not influence the system dynamics
when they are not active. This method is applied to control chaos in maps using two control parameters. The
two-dimensional Hénon and Ikeda maps are of concern. Results show that the proposed procedure can be a
good alternative for chaos control since it provides a more effective UPO stabilization than the classical single-
parameter OGY approach.
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1. INTRODUCTION

Chaos control explores the intrinsic richness of the chaotic
behavior by stabilizing unstable periodic orbits (UPOs) em-
bedded in a chaotic attractor. This control method is based
on some chaotic behavior properties as the existence of a
dense set of UPOs embedded in a chaotic attractor; the er-
godicity property; and the sensitive dependence to initial con-
dition. Therefore, chaos is related to flexibility since, when
controlled, may allows the system to quickly change from one
kind of response to another.

Chaos control methods may be classified as discrete or con-
tinuous techniques. The modern study of chaos control starts
with the pioneer method proposed by Ott et al. [1], nowa-
days known as the OGY method as a tribute of their authors
(Ott-Grebogi-Yorke). This is a discrete technique that con-
siders small perturbations of a single-parameter applied in the
neighborhood of the desired orbit [2,3]. On the other hand, a
different approach explores the delayed feedback control pro-
posed by Pyragas [4] that states the stabilization of chaotic
systems by a feedback perturbation proportional to the differ-
ence between the present and a delayed state of the system.
The original limitations of the OGY method are overcome in
different references and, among others, one can cite: control
of high periodic and high unstable UPO [5-9], control using
time delay coordinates [10-13], control using different control
parameters [14,15].

Chaos control techniques are being used in different appli-
cations in order to stabilize UPOs. The first experimental ver-
ification of the OGY approach is applied to magneto-elastic
beams [16]. Andrievskii & Fradkov [17] present an overview
of chaos control applications in various scientific fields. Me-
chanical systems are included in this discussion presenting
control of pendulums, beams, plates, vibroformers, microcan-
tilevers, cranes and vessels.

This contribution considers a multiparameter chaos control

method built upon the OGY approach. The idea is to use dif-
ferent control parameters in order to perform the UPO sta-
bilization and, because of that, the map that establishes the
relation between the system responses in two subsequent con-
trol stations depends on all control parameters. The proposed
method assumes that only one control parameter is perturbed
in each control station, defining active (is perturbed in a con-
trol station) and passive (is not perturbed in a control station)
parameters. As an application of the general formulation, an
uncoupled approach is proposed where control parameters re-
turn to their reference value when they become passive and
therefore, they are not influencing the system dynamics. This
method is applied to control chaos in maps considering two
control parameters. Specifically, Hénon and Ikeda maps are
of concern. Hénon map is a simple two-dimensional map with
quadratic non-linearity that gave a first example of the strange
attractor with a fractal structure [18]. As suggested by Hénon
[19], this two-dimensional map is a simple version of the orig-
inal problem that describes fluid flow in three-dimensional
space, exhibiting the same properties. Ikeda map is also a
two-dimensional map that originally represents a string of
light pulses impinging on a partially transmitting mirror [20].
De Paula & Savi [14] use similar idea of the multiparameter
method in order to control chaos in a nonlinear pendulum us-
ing a semi-continuous method [21]. Lenz & Obradovic [22]
also perform a multiparameter control of Hénon and Ikeda
maps employing the locally linearized system representation.

All system dynamics may be treated from time series anal-
ysis. Here, the close-return (CR) method [23] is employed to
indentify the UPOs embedded in the attractor. Afterwards, the
local dynamics expressed by the Jacobian matrix and the sen-
sitivity matrix of the transition maps in a neighborhood of the
control points are determined using the least-square fit method
[6,8,13,23,24]. Moreover, the singular value decomposition
(SVD) technique is employed for determining the stable and
unstable directions near the control point. Results show that
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the uncoupled multiparameter approach can be a good alterna-
tive for chaos control since it provides a more effective UPO
stabilization when compared to those obtained from the clas-
sical single-parameter OGY approach.

2. MULTIPARAMETER CHAOS CONTROL METHOD

Chaos control method is a two stage technique where the
first step is the learning stage and the second one is the con-
trol stage. The learning stage identifies the unstable periodic
orbits and evaluates some system characteristics. The control
stage, on the other hand, controls the desirable UPOs promot-
ing their stabilization.

After the learning stage, one can proceed to the next stage
where a control process needs to be used to stabilize a desired
orbit. The OGY approach is an alternative to promote this
UPO stabilization. Its description considers a discrete system
equivalent to a parameter dependent map associated with a
general surface, usually a Poincaré section. Let F be the map-
ping of the system behavior from one Poincaré section Σn to
the next one Σn+1 and ξn be the intersection of the system tra-
jectory with the Poincaré section Σn. Therefore, it is possible
to write:

ξn+1 = F(ξn, p) (1)

where p ∈ℜ is an accessible parameter for control. The con-
trol idea is to monitor the system dynamics in these control
stations until the neighborhood of a desirable fixed point is
reached. After that, a proper small change in the parameter p
causes the next state ξn+1 to fall into the stable direction of the
fixed point. In order to find the proper variation in the control
parameter, perturbation δp, it is considered a linearized ver-
sion of the dynamical system near this control point. The lin-
earization has a homeomorphism with the nonlinear problem
that is assured by the Hartman-Grobman theorem [24].

The proposed multiparameter (MP) chaos control method
formulation, introduced in reference [14] as a semi-
continuous method, is now presented in order to provide a
better reading. The multiparameter control considers Np dif-
ferent control parameters, pi (i = 1, ...,Np). By considering a
specific control station, only one of those control parameters
is perturbed. Under this assumption, the map F , that estab-
lishes the relation of the system behavior between the con-
trol stations Σn and Σn+1, depends on all control parameters.
In general, although only one parameter is perturbed in each
section, it is assumed the influence of all control parameters
based on their positions in station, Σn. On this basis,

ξn+1 = F(ξn,Pn) (2)

where Pn is a vector that contains all control parameter po-
sitions. By using a first order Taylor expansion, one obtains
the linear behavior of the map F in the neighborhood of the
control point ξn

C, that consist in the intersection of the desired

UPO with control station Σn, and around the control parame-
ters reference positions, P0, as defined by Eq. (3).

δξn+1 ∼= DξnF(ξn,Pn)|ξn=ξn
C ,Pn=P0δξn+

DPnF(ξn,Pn)|ξn=ξn
C ,Pn=P0δPn (3)

This equation may be rewritten as follows

δξn+1 ∼= Jnδξn +W nδPn (4)

where δξn+1 = ξn+1 − ξn+1
C , δξn = ξn − ξn

C, δPn =
Pn − P0 is related to the parameter perturbations, W n =
DPnF(ξn,Pn)|ξn=ξn

C ,Pn=P0 is the sensitivity matrix in which
each column is related to a control parameter and Jn =
DξnF(ξn,Pn)|ξn=ξn

C ,Pn=P0 is the Jacobian matrix. Moreover,
from Jacobian eigenvalues (eu,es) it is possible to define a
contravariant basis vector ( fu, fs) given by fs.es = fu.eu = 1,
fs.eu = fu.es = 0. Therefore, the Jacobian can be written as:

Jn = λueu fu +λses fs (5)

By assuming that only one parameter is perturbed in each
control station, it is possible to define active parameters, repre-
sented by subscript a, δPn

a (is perturbed in station Σn), and pas-
sive parameters, represent subscript p,δPn

p (is not perturbed in
station Σn). Hence,

δξn+1 ∼= Jnδξn +W n
a δPn

a +W n
p δPn

p (6)

where W n
a is the sensitivity matrix column related to the active

parameter in control station Σn and W n
p consists on the sensi-

tivity matrix columns related to the passive parameters in the
same control station.

The foregoing formulation may be considered as a general
multiparameter control method where all parameters perturb
the system dynamics. A particular case of this general pro-
cedure has uncoupled control parameters meaning that each
parameter returns to its reference value when it becomes pas-
sive. Under this assumption, passive influence vanishes:

W n
p δPn

p = 0 (7)

Therefore, the map F is just a function of the active parameter,
ξn+1 = F(ξn,Pn

a ), and the linear behavior of the map F in the
neighborhood of the control point ξn

C and around the control
parameter reference positions, P0, is now defined by:

δξn+1 ∼= Jnδξn +W n
a δPn

a (8)

In order to pick δPn
a in such a way that δξn+1 falls on the

stable direction of the desired fixed point, it is considered the
following restriction:



Brazilian Journal of Physics, vol. 38, no. 4, December, 2008 539

fu ·ξn+1 = 0 (9)

Thus, for sufficiently small δξn and using the Jacobian de-
fined in (5), one obtains:

δPn
a =−λu

fu ·δξn

fu ·W n
a

(10)

where δPn
a corresponds to the perturbation that must be ap-

plied by the active parameter in control station Σn in order to
stabilize the system trajectory.

3. CONTROLLING MAPS

Numerical simulations considering maps are carried out
in order to evaluate the capability of the proposed uncou-
pled multiparameter chaos control method to stabilize desir-
able UPOs. System characteristics are evaluated from time
series generated by map iterations. Specifically, the two-
dimensional Hénon and Ikeda maps are of concern. Since both
cases are related to discrete-time nonlinear system, the system
dynamics automatically furnishes the Poincaré map construc-
tion. Therefore, the control action is directly applied in map
iterations.

In the first stage of the control strategy, UPOs embedded in
the chaotic attractor are identified. The close return method
[23] is employed with this aim. The UPO identification is
done by considering a number of map iterations and a pre-
scribed tolerance as follows:

‖Xn+P−Xn‖ ≤ tolerance (11)

where ‖Xn+P−Xn‖ is a function that returns the largest sin-
gular value of (Xn+P−Xn) and the subscript P indicates the
periodicity of the identified UPO.

After the UPO identification, the local dynamics expressed
by the Jacobian matrix and the sensitivity matrix of the tran-
sition maps in a neighborhood of the control points are de-
termined using the least-square fit method [6,8,13,23,24].
The sensitivity matrices are evaluated allowing trajectories to
come close to a control point and then one perturbs the pa-
rameters by proportional value of the maximum permissible.
After that, the singular value decomposition (SVD) technique
is employed for determining the stable and unstable directions
near the next control point. At this point, the first stage of
the control strategy is completed. In control stage, the per-
turbation is calculated and, when it is greater than the maxi-
mum value, it is assumed a perturbation equal to the maximum
value.

The uncoupled multiparameter approach is treated by eval-
uating a control rule considering a sequence of four different
UPOs for each analyzed system. Moreover, in order to es-
tablish a comparison between the uncoupled multiparameter
and the single-parameter method, the same control rule is ap-
plied to both approaches. Two different control parameters

FIG. 1: Chaotic attractor for the Hénon map with parameters values
α = 1.4 and β = 0.3.

are analyzed in the single-parameter approach considering the
isolated perturbation performed by each parameter employed
during multiparameter method.

As an application of the proposed formulation, it is an-
alyzed the uncoupled multiparameter chaos control method
applied to the Hénon and to the Ikeda maps using two con-
trol parameters. Under this assumption, each system itera-
tion represents the desired Poincaré map. Moreover, since in
each control station only one control parameter is perturbed,
it is considered that they are perturbed alternating each other.
Finally, the evaluation of the control parameter is given by
Eq.(10), considering the column of the sensitivity matrix as-
sociated with the active control parameter.

3.1. Controlling Hénon Map

The Hénon map is a simple two-dimensional map with
quadratic non-linearity. Mathematically, it can be expressed
as follows [19]:

Xn+1 = (α+δα)+(β+δβ)Yn−X2
n

Yn+1 = Xn (12)

where δα is the first control parameter while δβ is the second
control parameter.

By considering a chaotic strange attractor of the Hénon map
(Fig. 1) for parameter values β = 0.3 and α = 1.4, it is applied
the multiparameter control approach, with two control param-
eters, as well as the single-parameter approach.

The UPO identification is done by considering 10,000 map
iterations and a prescribed tolerance of 0.01. Under this as-
sumption, 32 UPOs are identified during the learning stage up
to periodicity 15. It is defined a control rule that considers the
following UPO sequence: a period-1 orbit during the first 500
iterations, a period-15 from iteration 500 to 1000, a period-4
from 1000 to 1500 and, finally a period-7, from period 1500
to 2000.
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FIG. 2: Hénon map stabilization using uncoupled multiparameter approach: (a) Displacement; (b) Control parameters perturbations.

FIG. 3: Hénon map stabilization using single-parameter δα: Displacement; (b) Control parameters perturbations.

FIG. 4: Hénon map stabilization using single-parameter δβ: (a) Displacement; (b) Control parameters perturbations.

In chaos control evaluation it is considered δαmax =
δβmax = 0.09 as maximum parameter perturbations. When
the calculated perturbation is greater than these values it is
assumed a perturbation equal to the maximum value. The
reference positions considered for both parameters are δα0 =
δβ0 = 0.

Figure 2 presents results for the cited control rule employ-
ing the uncoupled multiparameter control approach. On the
other hand, results for single-parameter approach, considering
the isolated perturbation performed by each control parame-

ter, are shown in Fig. 3 (where δα is the control parameter)
and in Fig. 4 (where δβ is the control parameter). All these
Figures present the evaluated control perturbation. In Fig. 2,
both parameter perturbations are presented together, however,
it is important to highlight that when one of the control pa-
rameters is perturbed the other is always at its reference posi-
tion. These results show that both multiparameter and single-
parameter approaches are effective to stabilize all UPOs of the
cited control rule.
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FIG. 5: Chaotic attractor for the Ikeda map with parameters values β = 0, γ = 7, µ = 0.9 and α = 1.25.

FIG. 6: Ikeda map stabilization using uncoupled multiparameter approach: Displacement; (b) Control parameters perturbations.

3.2. Controlling Ikeda Map

The Ikeda map is a two-dimensional map that represents
a string of light pulses entering at the partially transmitting
mirror [20], being mathematically expressed as:

Xn+1 = (α+δα)+(µ+δµ)(Xn cos[tn]−Yn sin[tn])
Yn+1 = (µ+δµ)(Xn sin[tn]+Yn cos[tn]) (13)

where tn = β− γ
1+X2

n +Y 2
n
, δα is the first control parameter while

δµ is the second control parameter.
In chaos control evaluation it is considered δαmax =

δµmax = 0.05 as maximum parameter perturbations. Once
again, when the calculated perturbation is greater than these
values it is assumed a perturbation equal to the maximum
value. The reference positions considered for both parame-
ters are δα0 = δµ0 = 0.

The uncoupled multiparameter approach, considering two
control parameters, as well as the single-parameter OGY
method, is now applied to the chaotic strange attractor of the
Ikeda map for the parameter values β = 0, γ = 7, µ = 0.9 and α
= 1.25 (Fig. 5) [25].

The UPO identification is now focused on by considering
30,000 map iterations and a tolerance of 0.005, assuming the
same procedure of the preceding section. Under this assump-
tion, 8 UPOs are identified during the learning stage up to
periodicity 15. The control rule considers the following se-
quence: a period-10 orbit during the first 500 iterations, a
period-14 from iteration 500 to 1000, a period-8 from 1000
to 1500 and, finally a period-5, from period 1500 to 2000.

Control rule sequence is now analyzed during the control
stage. Fig. 6 presents results of the control rule stabilization
employing the uncoupled multiparameter approach, while re-
sults for single-parameter approach, considering the isolated
perturbation performed by each control parameter, are shown
in Fig. 7 (where δα is the control parameter) and in Figure 8
(where δµ is the control parameter). Once again, these Figures
present the evaluated control perturbation. Both parameter
perturbations are presented together in Fig. 6 where it might
be highlighted that when one of the control parameters is per-
turbed the other is always at its reference position. This result
show that the uncoupled multiparameter control approach suc-
cessfully stabilize all UPOs of the control rule. By observing
the single-parameter results it must be noticed that the UPO
stabilization is not performed properly. Fig. 7 shows that the
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FIG. 7: Ikeda map stabilization using single-parameter δα: (a) Displacement; (b) Control parameters perturbations.

FIG. 8: Ikeda map stabilization using single-parameter δµ: Displacement; (b) Control parameters perturbations.

single-parameter method is not able to stabilize the first UPO
when the first parameter (δα) is employed as control parame-
ter. On the other hand, the OGY single-parameter method is
not able to stabilize the third UPO of the control rule when
the second parameter (δµ) is employed (Fig. 8). These results
are showing that the multiparameter approach may be more
effective in order to perform UPO stabilization.

4. CONCLUSIONS

This contribution presents a multiparameter chaos control
method built upon the OGY technique. The procedure as-
sumes that only one control parameter is perturbed in each
control station, defining active and passive control parameters.
As an application of the proposed multiparameter general for-
mulation, it is considered an uncoupled approach where con-
trol parameters return to their reference positions when they
are not active. The uncoupled multiparameter method is an-
alyzed by evaluating chaos control in Hénon and Ikeda two-

dimensional maps with two control parameters. Control rules
are defined from a sequence of four different UPOs for each
map. Results show that the uncoupled multiparameter proce-
dure successfully stabilizes all orbits controlled by the single-
parameter approach. On the other hand, there are situations
where the single-parameter approach fails. Therefore, one can
conclude that the uncoupled multiparameter procedure tends
to be more effective in order to stabilize unstable periodic or-
bits embedded in the chaotic attractor when compared with
the stabilization performed by the single-parameter approach.
The application of the general coupled approach is associated
with a non-trivial work on defining proper control parameters
but may present successful results as shown in De Paula &
Savi [14].
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Hübinger, and W. Martienssen, Chaos Sol. & Fract.8, 1559
(1997).

[8] F. H. I. Pereira-Pinto, A. M. Ferreira, and M. A. Savi, Chaos
Sol. & Fract. 22, 653 (2004).

[9] M. A. Savi, F H. I. Pereira-Pinto, and A. M. Ferreira, Shock
Vib. 13, 301 (2006).

[10] U. Dressler and G. Nitsche, Phys. Rev. Lett. 68, 1 (1992).
[11] P. So and E. Ott, Phys. Rev. E 51, 2955 (1995).
[12] R. J. de Korte, J. C. Schouten, and C. V. M. van den Bleek,

Phys. Rev. E 52, 3358 (1995).
[13] F. H. I. Pereira-Pinto, A. M. Ferreira, and M. A. Savi, Int. J. Bif.

and Chaos 15, 4051 (2005).
[14] A. S. De Paula and M. A. Savi, Chaos Sol. & Fract.

doi:10.1016/ j.chaos.2007.09.056 (2007).

[15] E. Barreto and C. Grebogi, Phys. Rev. E 54, 3553 (1995).
[16] W. L. Ditto, S. N. Rauseo, and M. L. Spano, Phys. Rev. Lett.

65, 3211 (1990).
[17] B. R. Andrievskii and A. L. Fradkov, Automation and Remote

Control 65, 505 (2004).
[18] M. Sonis, Chaos Sol. & Fract 7, 2215 (1996).
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