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The slow convergence of chiral perturbation theory for heavy baryons (HBChPT) suggests that any attempt to
unitarize the amplitude following from this method will fail to describe the experimental phase shifts. However,
it was possible to obtain a ChPT pion nucleon amplitudes respecting exact unitarity relation by using the Inverse
Amplitude Method (IAM), but the resulting total amplitude violates the important property of crossing symmetry
[1] . On the other hand, the use of a dispersive calculation, starting directly from a result at second order in
the pion momentum, is an alternative approach to get unitarized scattering amplitude. By this method it was
possible to fit, with two parameters, the P33 partial wave to the experimental low energy phase shifts, and to
present the resulting S and P partial wave phase shifts [2]. This was done with a crossing symmetric amplitude,
that respect approximate elastic unitarity relation. In the present exercise, we do not impose crossing symmetry
for the amplitude obtained in the previous work, in order to verify the role played by crossing symmetry in
the dispersive approach. As in the previous work, our strategy was to perform a fit of the P33 amplitude to the
experimental phase shifts and then use the fixed parameters in the S and P partial waves to compare them with
the corresponding experimental phase shifts. We conclude that, when we do not impose crossing symmetry for
the total amplitude, more parameters are needed in the fitting procedure for P33, moreover the theoretical results
for S11, S31, P11, P31 and P13 are quite far from the experimental points.
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1. INTRODUCTION

Low energy hadron physics must still be described by phe-
nomenology even though nowadays the Quantum Chromo-
dynamics (QCD) is considered the correct description of the
strong interactions. A great theoretical improvement was
made by means of the method of Chiral Perturbation Theory
(ChPT) [3], which is an effective theory derived from the ba-
sis of QCD. The method consists of writing down chiral La-
grangian for the physical processes and uses the conventional
technique of the field theory for the calculations.

In order to deal with baryons the theory faced problems re-
lated to fixing the scale for momenta and quark mass expan-
sion and one issue known as Heavy Barion Chiral Perturba-
tion Theory have been applied for instance to describe pion-
nucleon scattering [4]. The method yields a total amplitude
and the corresponding partial waves satisfy approximate elas-
tic unitarity relation because the leading amplitude is a real
function of energy on the physical region. This lack of unitar-
ity calls for an unitarization method.

In another context, namely the hard-meson method of cur-
rent algebra, it was possible to obtain a low energy pion nu-
cleon real amplitude in second order in pion momentum, re-
producing Weinberg prediction for S-wave scattering length
[5]. Clearly this result also calls for some unitarization proce-
dure. The unitarization program of current algebra (UPCA),
where one starts from an approximate low energy amplitude
in order to construct corrected amplitudes, was applied to
this process[2]. The crossing symmetry property for the total
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Dirac amplitudes was imposed and auxiliary functions have
been constructed in order to respect approximate unitarity re-
lation. The method consider known the imaginary part of
partial-wave amplitudes as given by the lowest order ampli-
tude and uses the dispersion relation technique in order to ar-
rive at a quasi-unitarized amplitude written in terms of known
functions and a two free parameters polynomial part in energy.

The strategy was to fit of the isospin 3/2 P-wave phase-
shifts using two available parameters. Having fixed these two
parameters, one looks at the resulting phase-shifts for S11,
S31, P11, P13 and P31. Some model phase-shifts were seen
to keep similarities with the experimental results. The fact
that the violation of unitarity of the resulting amplitudes are
large, mainly in the resonance region, claims for a next order
approximation by the dispersion relation technique, using the
tools given in [2].

Instead of going to the next order of the calculation, our
aim in the present work is to verify the importance of crossing
symmetry for the amplitudes presented in the previous work.
This way, in the present work, the Dirac amplitudes depend
on s and t Mandelstan variables and we do not add any u de-
pendence for the total amplitudes.

In the next section we present the basic formalism and the
amplitude that we started from to construct first order cor-
rected in unitarity amplitudes. We show the fit of P33 to ex-
perimental phase shifts, by fixing three available parameters.
Once fixed the parameters, we compare the resulting S11, S31,
P11, P13 and P31 phases with those corresponding to the am-
plitudes that respect the crossing symmetry constraint. Finally
we present some conclusions.
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2. BASIC FORMALISM

We will consider the T-matrix for the reaction π(k) +
N(p)→ π(k′)+N(p′)

T±(p′,k′; p,k) =−A±(s, t,u)+
i
2
(k/+ k′/)B±(s, t,u),

The Dirac amplitudes exhibit the following symmetry proper-
ties under crossing:

A±(s, t,u) =± A
±
(u, t,s) and B

±
=∓ B

±
(u, t,s);

the amplitudes corresponding to definite isospin 1/2 and 3/2
are given by:

A1/2 = A
+

+2A
−
, A3/2 = A

+ −A
−

and similarly for B.
We work in the center of mass system, so that the

four momenta are defined as k = (~k,w), k′ = (~k′,w), p =
(−~k,E) and p′ = ( −~k′,E), with |~k| = |~k′| , w =

√
~k2 +m2

and E =
√

~k2 +M2, M and m being the nucleon and the pion
mass, respectively. The total energy and scattering angle are
given by W = E + w and |~k|2 cosθ =~k.~k′, thus, in terms of
these quantities, one has s = W 2, t =−2|~k|2(1− cosθ).

For each isospin I the Pauli amplitudes are:

F1 I =
E +M
8πW

[
AI (s,cosθ)+(W −M)BI (s,cosθ)

]
,

F2 I =
E−M
8πW

[−AI (s,cosθ)+(W +M)BI (s,cosθ)
]
.

Partial wave amplitudes f
±
I `

are defined as

f
±
I `

(s) = F1 I `
(s)+F2 I `±1(s), where

Fi I `
(s) =

1
2

∫ +1

−1
Fi I (s,x)P̀ (x)dx,

for i = 1,2 and I = 1/2,3/2.

For elastic scattering we have

Im f
±
I `

(s) = |~k| | f ±
I `

(s)|2,
which may be solved yielding

f
±
I `

(s) = 1/|~k|eiδ
I `(s) sinδI `

(s),

where δI `
(s) are real phase shifts.

The quasi-unitarized amplitude satisfies approximate uni-
tarity and, in this case, the definition of phase-shifts is quite
arbitrary. We will adopt the following definition

δI `
= tan

(−1) Im fI `

Re fI `
.

3. UNITARIZATION

Up to first-order in pion momenta, the amplitudes leading
to the well known Weinberg prediction for S−wave scattering
lengths are:

A(0)− =
µV

8M f 2 (u− s) and B(0)− =
1+µV

2 f 2 ,

where f = 94 MeV is the pion decay constant and µV ' 3.7.
From our previous analysis on meson scattering, we con-

jecture that the corrected amplitudes must satisfy

A(s)' A
(0)

(s)+A
(1)

(s)+O(ε2) for s' (mπ +mN)2

where ε is a small parameter characterizing the corrections
and is typically of order m2

π/m2
ρ and similarly for the B ampli-

tude.
By the optical theorem, one must have the first order cor-

rected partial-wave satisfying

Im f
(1)±
I `

(s) = |~k| | f (0)±
I `

(s)|2,

The first order amplitude have the following imaginary parts:

Im F
(1)

10
(s) = |~k|F (0)

10
(s)

(
F

(0)

10
(s)+2F

(0)

21
(s)

)

Im F
(1)

20
(s) = |~k|F (0)

20
(s)

(
F

(0)

20
(s)+2F

(0)

11
(s)

)

Im F
(1)

11
(s) = |~k|F (0) 2

11
(s)

Im F
(1)

21
(s) = |~k|F (0) 2

21
(s)

the amplitudes f± (0)
` I follow from the projection of A(0) and

B(0).
In order to compute the first order corrected Dirac ampli-

tudes we construct the auxiliary functions S , P and D, that
are obtained from

ImS(s) =
2|~k|
W

A(0)
0 (s), ImD(s) =

2|~k|
W

B(0)
0 ,

ImP (s) =
2|~k|
W

A(0)
1 (s),

by solving subtracted dispersion relation. This method intro-
duces free parameters (called λ) and the final expression be-
comes:

S(s) = A(0)
0 (s) G(s),

D(s) = B(0)
0 G(s),

P (s) = λ1 +λ2s+λ3s2 +A(0)
1 (s) G(s),

where

G(s) =
s3

π

∫ ∞

(M+m)2

√
R(x)

x4 (x− s)
dx,

R(s) =
[
s− (M +m)2][s− (M−m)2]

X2 = M2 +m2, and x2 = M2−m2,
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we obtain

G(s) = 1− X2

2x4 s+

√
R(s)
s

ln
−s−X2 +

√
R(s)

2Mm

+
(1

3
− X4

2x4

) s2

x4 +
1

2x10 ln
M
m

[
X2(X4− x4)s2+

+x4(X4− x4)s+2x8X2− 2x12

s

]
.

Expressing functions A and B in terms of Pauli amplitudes we
construct auxiliary functions:

A(s, t) =
1
4
[
a1(s)S +a2(s)D +3cosθa3(s)P

]
,

B(s, t) =
1
4
[
b1(s)S +b2(s)D +3cosθb3(s)P

]

where:

a1(s) = (W +M)
(
F

(0)

10
+2F

(0)

21

)

+ (W −M)(F
(0)

20
+2F

(0)

11

)

a2(s) = (W 2−M2)
(
F

(0)

10
+2F

(0)

21
−F

(0)

20
−2F

(0)

11

)
,

a3(s) = (W +M)F
(0)

11
+(W −M)F

(0)

21
,

b1(s) = F
(0)

10
+2F

(0)

21
−F

(0)

20
−2F

(0)

11
,

b2(s) = (W −M)
(
F

(0)

10
+2F

(0)

21

)

+ (W +M)
(
F

(0)

20
+2F

(0)

11

)
,

b3(s) = F
(0)

11
−F

(0)

21
.

At this point it starts the difference between the previous

FIG. 1: P33 phase-shifts as a function of center of mass energy.
Dashed line corresponds to the fit performed in the previous anal-
ysis and the solid line corresponds to the present analysis (without
crossing). The result for P31 phase-shifts is also presented, with the
same convention. Experimental data are from[5].

and the present work. In the previous work we have imposed
crossing symmetry by constructing

A±(s, t) = A(s, t)±A(u, t),
B±(s, t) = B(s, t)∓B(u, t),

in the present exercise we do not add the second terms in
the above expressions, in order to evaluate the importance of
crossing symmetry constraint. Another difference is that in
the previous work the free parameters were introduced also in
the expressions of S and D.

4. RESULTS AND CONCLUSION

FIG. 2: The results for S11 and S31 phase-shifts as a function of cen-
ter of mass energy. Dashed line corresponds to the previous result
solid line corresponds to the present analysis (without crossing). Ex-
perimental data are from[5].

In the Fig. 1 we have plotted the fits of the amplitudes ob-
tained by the two procedures to the experimental P33 phase-
shifts. Our first conclusion is that we need to introduce three
free parameters (λ1 = 10,86, λ2 = −31,16 and λ3 = 47,04)
for the P33 amplitude. Note that, in the previous analysis, by
crossing, P33 depends also on S and D . In this figure we also
show the resulting previous and present P13 phase shifts.

In the Fig. 2 we show the resulting phase shifts for S11 and
S31 and in the Fig. 3 those for P11 and P31 phase-shifts. It is
clear from the plots that the quality of the adjust to the exper-
imental phase shifts get worse when crossing symmetry is not
imposed in the model amplitudes. We would like to mention
that by the Inverse Amplitude Method [4], that respect exact
unitarity while violates crossing symmetry, the adjust to the
experimental phase shifts requires ten parameters.

In conclusion, in this work we have described a method to
construct π−N amplitudes which satisfy approximate uni-
tarity, and we do not impose crossing symmetry on the total



494 Walter Luiz Alda Jr and J. Sá Borges

FIG. 3: The results for P11 and P13 phase-shifts as a function of center
of mass energy. Dashed line corresponds to the previous result and
the solid line corresponds to the present analysis (without crossing).
Experimental data are from[5].

amplitudes. We follow the same procedure as in a previous
work [2] by starting from a soft-pion representation, that re-

produces pion-nucleon Weinberg S−wave scattering length,
and we do not include single-particle pole contribution. As
specific results, we have found that the fit of P33 to the exper-
imental phase shifts requires three parameters while only two
parameters were used when working with a crossing symmet-
ric amplitude. On the other hand the five resulting low energy
phase shifts are quite far from the experimental points. We
also observe that when S31 gets closer to the the experimental
phase-shifts, the S11 becomes wrong and vice-versa. It is clear
that this framework does not allow one to access the center of
mass energies corresponding to the Figs. 1, 2 and 3. However,
our aim is to compare our results with those published in the
previous work [2], where we adopted this wide range for the
center of mass energy.

To take a broader view, the power of the method can be
traced directly to the expression of corrected amplitudes that
allow one to reproduce the Delta resonance while leading to
S− and P−partial waves in qualitative agreement with data
for very low energies. The model fails in the description of
other resonant states as N(1440) and N(1535) and do not in-
clude addicional pion production that could be important for
the description of some of the partial waves.

However, going to higher-order corrections would probably
improve amplitude unitarity property. We believe that model
second-order approximation permits ` = 2 resonances. There-
fore only third-order will bring important F−wave and so on.
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