
Brazilian Journal of Physics, vol. 38, no. 3B, September, 2008 477

Z’ Model Discrimination at LHC
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We study three different variables that can be useful for Z′ model discrimination: the forward-backward
asymmetry, the rapidity ratio and the associated production. We also present two approaches to correct the
Forward-Backward Asymmetry, which is affected by the unknown initial quark direction in the proton-proton
collision. The study is performed for six different Z′ models, using Monte Carlo events and a fast detector
simulation. It is shown that the models studied here are distinguishable for a Z’ mass of 1 TeV after one year of
data taking in high luminosity.
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1. INTRODUCTION

It is common sense that the Standard Model (SM) is just
an effective theory, and a more complex gauge structure must
exist at TeV scale, since the SM does not answer various fun-
damental questions and there are many arbitrary parameters
in the theory. To solve such problems, several scenarios have
been proposed over the last 25 years, like Grand Unified The-
ories, 331 models, among others. All these models foresee the
existence of new neutral and charged gauge bosons, generally
called Z′ and W ′, respectively. Their discovery would be clear
signatures of physics beyond the SM. One of the most im-
portant goal of the LHC is to establish the model which best
describe the strong and electroweek interactions.

In this paper it will be assumed that a Z′ of 1 TeV mass has
been discovered at LHC. One will investigate the Z′ properties
via the decays Z′ −→ e+e− and Z′ −→ e+e−γ in the context
of six models and study a set of variables that can be used to
identify the correct theory. The leptonic decays are preferred
for this analysis because they have low background compared
with hadronic searches, and their energy and momentum can
be measured more precisely.

This document is organized as follows: In section 2 the
models will be briefly discussed. In section 3 details on the
simulation is given. Section 4 describes the variables used for
model discrimination, and in Section 5 a statistical treatment
is applied to the problem. The conclusions are presented in
the last section

2. Z’ MODELS

The most popular Z’ models are effective SU(2)L ⊗
U(1)Y ⊗U(1)Y ′ theories, which originate from the breaking of
the group E6 via E6 −→ SO(10)⊗U(1)−→ SU(5)⊗U(1)⊗
U(1), where the SU(5) contains the SM group. Two addi-
tional neutral gauge bosons appear when the E6 is broken
down to SM, but just one of them is expected to be detected at
LHC. It is defined as

Z′ = Z′χcosβ+Z′ψsinβ (1)

where the parameter β specifies the model. The values β = 0

and β = π/2 correspond to the Z′χ and Z′ψ models, respectively,
and β = arctg(−√5/2) corresponds to Z′η model, which ap-
pears when E6 is broken directly to a rank-5 group. For more
details about E6 breaking, see [1]. The couplings of SM
fermions to the new gauge boson as a function of β can be
found in [2].

Another possibility are the left-right models, which ex-
tend the SM group to SU(2)L ⊗ SU(2)R ⊗U(1) and restore
the parity symmetry at high energy. In this note we will be
concentrated in two kinds of left-right models with different
fundamental representations : the Mirror Left-Right Model
(MLRM) and the Symmetric Left-Right Model (SLRM). A
detailed study of these models and the couplings between the
fermions and the Z’ can be found in [3].

Interesting Z’ phenomenology also comes from SU(3)C ⊗
SU(3)L⊗U(1)X models, known as 3-3-1 models. These the-
ories foresee new charged bosons with leptonic number two
(bileptons), and in the minimal version, their mass is approxi-
mately MZ′/2, hence Z’ decay into bileptons are always kine-
matically allowed [4]. This model is take into account as an
example of a Z’ with an exotic decay. For the others models
mentioned above, it is assumed that the Z’ decays only into
SM particles.

3. SIMULATION

The present study has been preformed by simulating the
processes pp −→ e+e− and pp −→ e+e−γ (including the t-
channel) at the LHC design center of mass energy of 14 TeV,
with full interference between γ, Z0 and Z′. The Z’ widths and
cross sections are found in Table I. The Monte Carlo program
CompHep [5] was used for parton level calculation and event
generation, using CTEQ6L as proton structure function. A
cut on the dielectron invariant mass of Mee > 500 GeV was
applied since the current Z′ lower limit is 600 - 900 GeV,
depending on the model[6]. For hadronization and decays
PYTHIA [7] was used. The samples were generated for an
integrated luminosity of 100fb−1, which corresponds to one
year of data taking in high luminosity. A fast simulation of
a typical LHC detector was applied in order to simulate the
detector response.
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TABLE I: Z’ Mass, widths and Cross Sections.
MZ′ = 1TeV

Model ΓZ′ [GeV ] σ(pp−→ e+e−)[fb] σ(pp−→ e+e−γ)[fb]
Z′χ 11.70 416.2 73.3
Z′η 6.50 268.1 49.7
Z′ψ 5.40 247.1 46.5

Z′SLR 21.06 448.9 83.7
Z′MLR 6.67 494.9 101.6
Z′331 177.0 377.5 68.8

TABLE II: Generated and observed asymmetries at generated level.
Model Agen

FB Aobs
FB Dilution

Z′χ −0.330±0.006 −0.109±0.006 67%
Z′η −0.044±0.009 −0.015±0.008 66%
Z′ψ 0.043±0.009 0.021±0.009 51%

Z′SLR 0.258±0.006 0.116±0.006 55%
Z′MLR 0.354±0.006 0.202±0.006 43%
Z′331 −0.030±0.008 −0.019±0.008 37%

4. VARIABLES FOR MODEL DISCRIMINATION

The variables employed in this study are the forward-
backward asymmetry, the rapidity ratio and the associated
production ratio. Their definition and a detailed analysis of
them are given in the next subsections.

4.1. The Forward-Backward Asymmetry

The forward-backward asymmetry is defined as

AFB =
NF −NB

NF +NB
(2)

where

NF =
∫ 1

0

dσ
dcosθ?

dcosθ?, NB =
∫ 0

−1

dσ
dcosθ?

dcosθ? (3)

The angle θ? is taken between the negative charge lepton
and the incoming quark in the dilepton center of mass frame.
For spin-1 particles, the AFB can also be obtained with a fit to
the cosθ? distribution given by

dσ
dcosθ?

∝
3
8
(1+ cos2θ?)+AFBcosθ? (4)

The forward-backward asymmetry provides information on
the Z’ couplings to the quarks and leptons, and it can be ex-
pressed in terms of the normalized couplings. Furthermore,
Dittmar[8] has shown that it is almost insensitive to uncertain-
ties in the structure function for dilepton masses above 400
GeV.

In this paper the AFB is obtained in the main production
channel pp −→ e+e− and on-peak, which means that one
takes just the events with 900 < Mee < 1400 GeV . This in-
variant mass range was chosen in order to provide reason-
able statistics and because it is above the interference region.
The events are pre-selected by keeping two electrons with
|η|< 2.5, which represents the LHC detectors acceptance, and
pe

T > 20 GeV.
The issue in the AFB measure is that, at hadron colliders,

the inicial quark direction is not known. In such case, the
dilepton boost direction is taken as the quark direciton in the
observed asymmetry calculation. Table II shows the gener-
ated and observed asymmetry (Agen

FB , Aobs
FB ) for each considered

model. Agen
FB is calculated using Equation 2 and quark direction

known, with its error given by

δAgen
FB =

2
NT

√
NF NB

NT
(5)

where NT = NF + NB, while Aobs
FB is obtained from the un-

binned likelihood fit of Equation 4. The probability ν of
misdetermining the quark direction is approximately 25%,
and its impact on the Aobs

FB is measured by the dilution d =
1−Aobs

FB/Agen
FB . Although ν is model independent, d is strongly

model dependent, as one can see in Table II, because of the
different Z’ couplings to the fermions.

The probability ν can be parametrized as a function of
dilepton rapidity y, namely ν(y). Figure 1A shows the dilep-
ton rapidity distribution for all the events and for those where
the quark direction was wrongly determined. The ratio ν(y)
between the second and the first histograms is shown in Fig-
ure 1B. As one can see, ν(y) increases as y decreases, reach-
ing 50% at y = 0. This uncertainty on quark direction is due
to events with low longitudinal momentum. At high rapidi-
ties values, the Z’ mainly comes from the valence and the sea
quark aniquilation, and the boost moves in the valence quark
direction since it carries a larger momentum fraction than does
the sea quark. Therefore ν(y)→ 0 when y increases.
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FIG. 1: (A)Rapidity distribution for all the events(clear histogram)
and for those where the quark direction was misdetermined(dashed
histogram). (B) Ratio between the second and the first histogram.
The full line is the fit result using Equation 6.

For the ν parametrization as a function of y, one uses the
expression
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TABLE III: Generated and corrected asymmetries using model inde-
pendent(MI) and model dependent(MD) corrections.

Model Agen
FB Acor

FB - MI Acor
FB - MD

Z′χ −0.330±0.006 −0.236±0.022 −0.325±0.011
Z′η −0.044±0.009 −0.045±0.029 −0.048±0.015
Z′ψ 0.043±0.009 0.050±0.030 0.035±0.016

Z′SLR 0.258±0.006 0.259±0.020 0.263±0.010
Z′MLR 0.354±0.006 0.391±0.017 0.356±0.010
Z′331 −0.030±0.008 −0.011±0.029 −0.017±0.015

ν(y) = A|y|2 +B|y|+0.5 (6)

where the constants A and B are obtained by fitting the ν(y)
distribution from MC samples in the mass range 900 < Mee <
1400 GeV . This information will be used to correct the asym-
metry.

In order to correct the dilution effect, one can rewrite Equa-
tion 4 as

dσ
dcosθ?

∝
3
8
(1+ cos2θ?)+AFB[1−2ν(y)]cosθ? (7)

with ν(y) given by Equation 6. The unbinned likelihood fit
of Equation 7 gives us the corrected asymmetries Acor

FB and
their errors as shown in Table III. Notice that, in this new
fit, not only cosθ? but also y are input data in each event. As
one can see, this approach presents a good performance in
recovering the true asymmetry and has the advantage of being
model independent.

Another way to correct the asymmetry is to apply model
dependent correction, since the dilution is model dependent.
One can get this correction by noticing that when the Z′ and
quark directions are opposite, one has in fact two possibilities:
there is a probability ν1 of taking an event as backward when
it is forward, and a probability ν2 of taking an event as forward
when it is backward. Thus ν = ν1 +ν2, and it is easy to show
that the corrected asymmetry is given by

Acor
FB = Arec

FB +2(ν1−ν2) (8)

Unlike ν, ν1,2 are strongly model dependent. The quan-
tity (ν1 − ν2) is determined from MC for each model. The
goal of this method is to provide these correction factors, and,
once one has the measure Arec

FB, the different corrections can
be applied to it in order to identify the underlying model. This
approach can also be used as a cross-check to the model inde-
pendent method described above.

The model dependent correction results are shown in the
last column of the Table III. As one can see, the corrected
asymmetries errors obtained with this method are about half
of those from the model independent correction. In Figure 2
the true and the corrected asymmetries for both methods are

compared. They show equivalent performance, but the model
dependent approach presents better results for Z′χ and Z′MLR
models. We have not taken into account the structure func-
tions uncertainties in this study, and as the corrections depend
on this, further investigation will be needed.

It is clear that most of the models can be well distinguished
using Acor

FB , but others like Z′331 and Z′η have asymmetry values
very close to each other. This problem will be discussed in
more details in section 5.
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FIG. 2: True and corrected asymmetries. The triangles represet the
true asymmetry, the circles the model independent correction and the
squares the model dependent correction.

4.2. The Rapidity Ratio

The rapidity ratio ry1 is an useful variable because it is sen-
sitive to Z′ couplings to quarks. It is defined as

ry1 =

∫ y1−y1
dσ
dy dy

[
∫ y1−ymax

+
∫ ymax

y1
] dσ

dy dy
(9)

where y is the dilepton rapidity. For this study the values
y1 = 1 and ymax = 2.5 have been chosen. The theoretical val-
ues of ry1 for the here considered models were numerically
calculated using CompHep, and only for Z′ diagram. The ob-
served values of ry1 is determined by robs

y1
= N1/N2, where N1,2

are the number of events in the range |y| < 1, 1 < |y| < 2.5,
respectively. The events were taken in the same mass win-
dow 900 < Mee < 1400 GeV that was used for the asymmetry
studies.

In Table 4 the theoretical and observed values of ry1 are
compared. There is a good agreement between expected and
observed values, with the Z′χ been the worst case (the recon-
structed values is 1σ away from the expected). Notice that
this variable provides a good discrimination for some models
like Z′χ and Z′SLR, but it is not as powerful as the asymmetry.
However, it can be used as a consistency check.

4.3. The Associated Production

The associated production ratio RZ′γ can be defined as
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TABLE IV: Theoretical and reconstructed values of ry1.

Model rtheo
y1 robs

y1
Z′χ 1.83 1.76±0.07
Z′η 1.38 1.36±0.06
Z′ψ 1.47 1.45±0.06

Z′SLR 1.57 1.59±0.06
Z′MLR 1.28 1.32±0.05
Z′331 1.42 1.46±0.06

RZ′γ =
σ[pp→ Z′γ→ e+e−(γ)]

σ[pp→ Z′→ e+e−]
(10)

This variable has the advantage of being insensitive to the par-
ton densities choice[9], and various systematics uncertainties
are canceled out when one takes ratio of cross sections.

In this channel, the main backgrounds come from two
sources: the s-channel decays Z′/Z/γ −→ e+e−γ and jets
misidentified as photons. The last background is not signifi-
cant because the probability of misidentifying a jet as a photon
in the LHC detectors is about 10−4 for jet ET > 40 GeV [10].
The first one can be removed by applying a cut on photon
ET of Eγ

T > 50 GeV , and constraining the dielectron invariant
mass in the range 999−ΓZ′ < MZ′ < 1003 + ΓZ′ , where ΓZ′
is the Z′ width. The t-channel events selection according to
these cuts is illustrated in Figure 3 for Z′χ model, where the
reconstructed invariant mass Mee is plotted for the events with
two electrons and one photon in the final state. Note that the
cut on photon ET allows a good separation between s and t
channel.

500 600 700 800 900 1000 1100 1200 13000

5

10

15

20

25

30  ModelχZ’

2
#E

ve
nt

s 
/ 8

 G
eV

/c

]2 [GeV/ceeM

 > 50 GeVT
γ

E

γ ee→pp 

FIG. 3: t-channel events selection. A cut on photon ET > 50GeV
is applied and the events are selected in the mass range 999−ΓZ′ <
MZ′ < 1003+ΓZ′ .

In order to obtain ΓZ′ and MZ′ , we follow the method pro-
posed in[11]. A function F(Mll) is fitted to the dielectron
invariant mass at reconstructed level. This function is a rela-
tivistic Breit-Wigner with multiplicative and additional expo-
nentials that take into account the Drell-Yan background

F(Mll) =
AM2Γ2

Z′

(M2
ll −M2

Z′)
2 +Γ2

Z′M
2
Z′

e−BMll +Ce−DMll (11)

TABLE V: Fitted ΓZ′ and MZ′ . The theoretical values are found in
Table 1.

Model Mobs
Z′ [GeV] Γobs

Z′ [GeV]
Z′χ 1001.4±0.1 13.68±0.25
Z′η 1001.6±0.1 8.35±0.28
Z′ψ 1001.6±0.1 8.10±0.26

Z′SLR 1000.8±0.1 22.58±0.36
Z′MLR 1000.9±0.1 8.80±0.16
Z′331 1013.4±0.9 150.48±3.53

TABLE VI: Theoretical and reconstructed values of RZ′γ.

Model Rtheo
Z′γ ×103 Robs

Z′γ ×103

Z′χ 2.8 3.1±0.5
Z′η 4.8 4.7±0.9
Z′ψ 4.0 3.9±0.8

Z′SLR 4.2 5.7±0.6
Z′MLR 5.2 5.6±0.6
Z′331 5.7 12.2±0.9

where A,B,C,D,MZ′ and ΓZ′ are the fitted parameters. The Z′
widths and masses obtained for all the models are shown in
Table V.

The denominator in Equation 10 is estimated in the chan-
nel pp −→ e+e− by the difference between the total number
of events selected and the number expected for the SM, i.e.,
N(pp → Z′→ e+e−) ∼= Ntotal −NSM , where Ntotal represents
all the events observed above Mee = 500 GeV. In spite of in-
terference effects, this approximation reproduces reasonably
well the cross section σ(pp→ Z′→ e+e−).

The variable RZ′γ is determined by the ratio between the
number of events selected according to the described above
for t and s channels. The theoretical and observed values of
RZ′γ are compared in Table 6. Again, the theoretical values
were obtained numerically.

As one can see, it is very difficult to determine RZ′γ if ΓZ′
is too large, as exemplified by the 331 model. However, if
the Z’ width is around 10 GeV, it is possible to get a good
reconstruction as one can see in Table VI for Z′χ, Z′η, and Z′ψ
models.

5. STATISTICAL TESTS

In the previous sections a set of variables was proposed for
model discrimination. However, in order to quantify how well
a model agrees with an observation, it is needed to apply sta-
tistical tests. One will use two kinds of statistical test for the
present study: the Neyman-Pearson test and the χ2 test.
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5.1. The Neyman-Pearson Test

We will apply the Neyman-Pearson test to the models con-
sidered above using the forward-backward asymmetry as our
measure. For details about the test, see [12]. To make the no-
tation simpler, the reconstructed and model independent cor-
rected asymmetry will be called a. Let us suppose, for exam-
ple, that one observes a = −0.045± 0.030. In such case, the
model Z′η could be taken as null hypothesis H0, and the model
Z′ψ as the alternative hypothesis H1. It will be assumed that the
p.d.fs associated to each hypothesis are Gaussians centered in
the true values of the asymmetries with their widths given by
the experimental error σa = 0.030. Assuming that there is the
same probability of rejecting/accepting H0 if it is true/false
(called α and β, respectivily), the cut value Acut that defines
the critical region is given by Acut = 1/2(Aη +Aψ), where Aη
and Aψ are the true asymmetries for the models Z′η and Z′ψ, re-
spectively. This situation is illustrated in Figure 4. As one can
see, the value a =−0.045 lies in the acceptance region, lead-
ing us to identify Z′η as the underlying model for the observed
Z′, with a power of (1−β) = 93%. The compatibility between
the observed asymmetry and the null hypothesis is measured
by the P-value

P(AFB ≥ a) =
∫ ∞

a
Gauss(Aη,σa)dAFB = 0.51 (12)

which means that one has a probability of 51% of the hypoth-
esis H0 be compatible with the data.
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FIG. 4: Neyman-Person test for the models Z′η and Z′ψ. The cut
values that defines the critical region is Acut = 0.0005.

Table VII shows the power (1−β) and the P-values for the
situation where the difference between the corrected asym-
metry to a prediction given by the considered models was less
than 5σ. The H0 hypothesis was always taken as that one with
the true asymmetry closest to the observed a. Notice that one
gets a power of discrimination around 90% for most of the
tested models, and P-values greater than 45%, except for Z′331.
However, for the pair Z′η/Z′331 this test is no longer efficient,
since in this case the probability of wrongly reject(accept) H0
is 60%. It is needed thus, apply another approach.

TABLE VII: Power of discrimination and P-values for the tested hy-
pothesis using the Neyman-Pearson test.

Hypothesis
H0 H1 1−β P-value
Z′η Z′ψ 0.93 0.51
Z′ψ Z′η 0.93 0.59
Z′ψ Z′331 0.89 0.59

Z′331 Z′ψ 0.89 0.26
Z′331 Z′η 0.41 0.26
Z′η Z′331 0.41 0.51

Z′SLR Z′MLR 0.99 0.48
Z′MLR Z′SLR 0.99 0.98

5.2. The χ2 test

Instead of testing a single value using different variables
as was done before, one can compare a given distribution for
two different models and compute a χ2 value for them. For
this task, it will be used the dilepton rapidity distribution and
a χ2 function given by[13]

χ2 = ∑χ2
i = ∑2(ki−ni)+(2ni +1)ln

(
2ni +1
2ki +1

)
(13)

This χ2 was chosen because it shows better performance
than the usual one, even for low bin content or when the bin
content is zero. This test consist in comparing two rapidity
distributions from different models and calculating the χ2

i in
each bin, where ni and ki are the number of events in the ith bin
in each correspondent distribution. A larger χ2 corresponds to
larger discrepancies between the models. The probability of
the two histograms be compatible is given by the P-value

P =
∫ ∞

χ2
f (z;nd)dz, (14)

where f (z;nd) is the χ2 distribution and nd is the number of
degrees of freedom or the number of bins when one compares
histograms. If P → 0, the histograms are incompatible, but
if P → 1, one says that they are compatible and there is no
significant difference between the models.

Figure 5 shows the reconstructed dilepton rapidity distribu-
tions for the models Z′η and Z′331. The events were taken in
the mass window 900 < Mee < 1400 GeV and distributed in
a histogram of 100 bins. Although the histograms seem to be
very similar, the χ2 calculated for them using Equation 13 was
191.84, which give us a P-value of 10−9, i.e,the histograms
are statistically very distinguishable.

Notice that when one has real data, they can be compared
with the predicted MC rapidity distribution for each model by
applying this approach. The underlying model then is identi-
fied as that one with the greatest P-value obtained from equa-
tion Equation (14).
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FIG. 5: Reconstructed dilepton rapidity distribution for the models
Z′η and Z′331.

6. CONCLUSIONS

Methods and variables to identify the corrected SM ex-
tension if a new neutral gauge boson is found at LHC have

been investigated. We have shown that the Forward-Backward
asymmetry, the rapidity ratio and the associated production is
a powerful set of variables for model discrimination. The ap-
proaches presented to correct the asymmetry showed good and
similar results, but the model dependent correction showed
better performance for Z′χ and Z′MLR models. Using the
Neyman-Person test, one can distinguish the models with a
power of discrimination of 90%, except the pair Z′η/Z′331. In
this case a χ2 test was applied, giving us good results. It is
important to mention that the errors were calculated for an in-
tegrated luminosity of 100 fb−1, and a lower luminosity will
lead to bigger errors and consequently the variables sensibility
to model discrimination will decrease.
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