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Integrable Inhomogeneous Spin Chains in Generalized Lunin-Maldacena Backgrounds
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We obtain through a Matrix Product Ansatz the exact solution of the most general inhomogeneous spin chain
with nearest neighbor interaction and with U(1)2 and U(1)3 symmetries. These models are related to the one
loop mixing matrix of the Leigh-Strassler deformed N = 4 SYM theory, dual to type IIB string theory in the
generalized Lunin-Maldacena backgrounds, in the sectors of two and three kinds of fields, respectively. The
solutions presented here generalizes the results obtained by the author in a previous work for homogeneous
spins chains with U(1)N symmetries in the sectors of N = 2 and N = 3.
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1. INTRODUCTION

String theory was first introduced in the 60’s years, as a ten-
tative to describe the big amount of mesons and hadrons dis-
covered in particles accelerators. In this theory the particles
are seen as different oscillations modes of the strings and it
was able to describe some spectral characteristics of hadrons.
Although this success, the original string theory is not able to
explain many physical phenomenon mediated by strong inter-
actions and nowadays the most successful theory to describe
particle physics is the Quantum Cromodynamics (QCD). On
the other hand, despite string theory has reemerged in the last
three decades as a promising candidate for a quantum theory
of all known interactions, its validity to describe nature has
generated heated discussions since the theory is untestable due
to the experimental impossibility to reach the tremendous en-
ergies found at the Plank scale. So, what is the actual rele-
vance of string theory for real world physics? Either string
theory is the correct theory to describe the world or not, re-
markable resulties showed that string theory can be seen as
a different formalism to quantum field theory. In QCD, it is
not possible to obtain a satisfactory quantitative description in
the small energy regime, when the coupling constant is very
strong. In this regime, numerical calculation on the lattice is
the best tool for study physical models. On the other hand,
it was observed by ’t Hooft [1] that the theory is simplified
when the number N of colors is very high. ’t Hooft derived
a relationship between the topological structure of a Feynman
graph and its N dependence. When 1/N is interpreted as a
coupling constant, an expansion in 1/N is similar to an ex-
pansion in a generic interacting string theory, resulting in a
relation between strings and planar diagrams. If the N = 3 can
be regarded as a large N, it explain why the string models of
60’s years was able to give the right relation for some spectral
characteristics of hadrons. More recently a remarkable result
arouses new interest in the duality between string theory and
quantum field theory. Maldacena conjectured that IIB string
theory on the curved background AdS5×S5 (anti-de Sitter and
sphere spaces) should be equivalent to N = 4 Super Yang-
Mills (SYM) [3–5]. This conjecture, AdS/CFT, relates opera-

tors, states, correlation functions and dynamics of both theo-
ries. One of the most important results of this conjecture pre-
dicts that the spectrum of scaling dimension operator of gauge
invariant operators, in the conformal field theory, should coin-
cide with the spectrum of energies E of string states. Further-
more, this correspondence relates the weak coupling constant
regime, in the gauge theory, with the strong coupling constant
ones, in the string theory.

The Maldacena’ s conjecture need yet to be fully proved
and since the discovery of the relation between the planar di-
latation operator of the N = 4 SYM with an integrable so(6)
quantum spin chains [2], integrability has played a prominent
role in the exploration of the Maldacena’s correspondence.
The study of the planar dilatation operator’s integrability is
very important because it not only enable us to test the Malda-
cena’s correspondence as it is an generator of nontrivial inte-
grable models. Exactly solvable models are of interest in high
energy physics, condensed matter physics, statistical mechan-
ics and mathematics since the pioneering work of Hans Bethe
[6] (see, e.g., [7–10] for reviews). According to this ansatz the
amplitudes of the eigenfunction are expressed by a nonlinear
combination of properly defined plane waves. On the other
hand, in the last two decades several different ansatz were in-
troduced in the literature under the general name of matrix
product ansatz (MPA). The first formulation was done for the
description of the ground-state eigenfunction of some special
non-integrable quantum chains, the so called valence-bond
solid models [11–14]. The MPA becomes also a successful
tool for the exact calculation of the stationary probability dis-
tribution of some stochastic one dimensional systems [15–17].
An extension of this last MPA, called dynamical MPA was in-
troduced in [18, 19] and extended in [20]. This last ansatz
gives the time-dependent probability distribution for some ex-
act integrable systems. The MPA we are going to use in this
paper was introduced in [21–24]. This ansatz was applied
with success in the evaluation of the spectra of several inte-
grable quantum Hamiltonians [21–23], transfer matrices [25–
27] and the time-evolution operator of stochastic systems [24].
According to this ansatz, the amplitudes of the eigenfunctions
are given in terms of a product of matrices where the matrices
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obey appropriated algebraic relations. In the case of the Bethe
ansatz the spectral parameters and the amplitudes of the plane
waves are fixed, apart from a normalization constant, by the
eigenvalue equation of the Hamiltonian or transfer matrix. On
the other hand, in the MPA the eigenvalue equation fixes the
commutation relations of the matrices defining the ansatz. In
such case the spectrum of the Hamiltonian or transfer matrix,
and the corresponding eigenfunctions, can be computed in a
purely algebraic way.

In the present paper we obtain through a MPA the exact
solution of the most general inhomogeneous spin chain with
nearest neighbor interaction and with U(1)2 and U(1)3 sym-
metries. This model is related to the one loop dilatation opera-
tor in deformed Lunin-Maldacena backgrounds [28] and con-
formal field theories with deformations [29]. The solutions
presented here generalizes the results obtained for homoge-

neous spins chains with U(1)N symmetries in the sectors of
N = 2 and N = 3 [30, 31]. In this model the coupling inter-
action between neighbor sites are not a constant as it is in the
homogeneous model studied in [30, 31].

2. THE INHOMOGENEOUS SPIN CHAINS

We consider here the most general inhomogeneous 3-state
spin chain with nearest neighbor interaction, periodic bound-
ary condition and U(1)3 symmetry. The U(1)3 symmetry im-
ply that the Hamiltonian describing the time evolution of this
spin chain conserves the number of states of each type. By de-
noting the basis of states at a given site as |α〉 (α = 1,2,3), the
Hamiltonian in a periodic lattice with L sites takes the form

H =
L

∑
j=1

(
3

∑
α6=β=1

Γα β
β α( j, j +1)Eβ α

j Eα β
j+1 +

3

∑
α,β=1

Γα β
α β( j, j +1)Eα α

j Eβ β
j+1

)
, (1)

where Eα β are 3×3 Wyel matrices with elements
(
Eα β)

i, j =
δα,iδβ, j (α,β = 1,2,3). While the first term in the right hand
side of (1) acts over neighbor sites exchanging its configura-
tion |α〉 j⊗|β〉 j+1 → |β〉 j⊗|α〉 j+1 with rate Γα β

β α( j, j+1), the

second one is a diagonal operator with weight Γα β
α β( j, j + 1).

The Hamiltonian (1) in a particular case (Γα β
γ δ ( j, j +1) = Γα β

γ δ
constant) contain the homogeneous integrable spin-1 chain,
related to the one loop dilatation operator in deformed Lunin-
Maldacena backgrounds, studied by Frolov e Tseytlin [31]
and generalized in [30]. The eigenfunctions for (1) can be
construct as

|ΨL〉=
∗
∑

α1,...,αL

Ψα1...αL |α1, ...,αL〉 (α j = 1,2,3), (2)

where the symbol (∗) in the sum denotes the restriction to the
sets {α1, ...,αL} with the same number nα of spins in config-
uration α and Ψα1...αL is a constant.

3. THE MPA

In order to formulate a MPA for the Hamiltonian (1), we
make a one-to-one correspondence between configurations of
spins and products of abstract matrices. This matrix product
is construct by making a correspondence between a site j in

the chain with spin configuration α = 1,2,3 and a matrix A(α)
j .

Our MPA asserts that the components of the amplitude of the
eigenfunction Ψα1...αL in (2) are obtained by associating them
to a products of these matrices A(α)

j . Actually A(α)
j are abstract

operators with an associative product. A well defined eigen-
function is obtained, apart from a normalization factor, if all
the amplitudes are related uniquely. Equivalently, in the sub-
set of words (products of matrices) in the algebra containing
nα (n1 + n2 + n3 = L) matrices A(α)

j there exists only a single
independent word. The relation between any two words gives
the ratio between the corresponding amplitudes of the compo-
nents of the eigenfunction |ΨL〉. To formulated the ansatz we
can choose any uniform operation on the matrix products that
gives a non-zero scalar to make a map between the amplitudes
Ψα1...αL in (2) and a matrix product [? ]:

Ψα1...αL ⇐⇒ A(α1)
1 A(α2)

2 · · ·A(αL)
L (α j = 1,2,3). (3)

It is obvious that the 3 states |α...α〉 (α = 1,2,3) are all
eigenstates of the Hamiltonian (1). In the following we shall
choose |1...1〉 as our reference state. The Hamiltonian (1)
when applied to the components of the eigenfunction (2)
where we do not have spins configurations |α〉 (α = 2,3) at
nearest neighbor sites and at boundary positions give us the
constraints, for the amplitudes Ψα1...αL (3),
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εnAx1−1A(α1)
x1 Ax2−x1−1 · · ·A(α j−1)

x j−1 Ax j−x j−1−1A
(α j)
x j Ax j+1−x j−1A

(α j+1)
x j+1 · · ·A(αn)

xn AL−xn

=
n

∑
j=1

[
Γα j 1

1 α j
( j, j +1)Ax1−1A(α1)

x1 Ax2−x1−1 · · ·A(α j−1)
x j−1 Ax j−x j−1−2A

(α j)
x j−1Ax j+1−x j A

(α j+1)
x j+1 · · ·A(αn)

xn AL−xn

+ Γ1 α j+1
α j+1 1 ( j, j +1)Ax1−1A(α1)

x1 Ax2−x1−1 · · ·A(α j−1)
x j−1 Ax j−x j−1A

(α j)
x j+1Ax j+1−x j−2A

(α j+1)
x j+1 · · ·A(αn)

xn AL−xn
]

+
L

∑
l=1

[
Γαl 1

αl 1(l, l +1)+Γ1 αl+1
1 αl+1

(l, l +1)
]

Ax1−1A(α1)
x1 Ax2−x1−1 · · ·A(αn)

xn AL−xn (α j = 1,2,3), (4)

where εn is the energy of the eigenfunction (2), A ≡ A(1)
x , n = n2 + n3, and x1, ...,xn are the position in the spin chain where

we have a state configuration |α 6= 1〉. A convenient solution of this last equation is obtained by identifying the matrices A(α)
x

(α = 2,3) as composed by spectral-parameter-dependent matrices. The distinguibility of states configurations allows two types
of solutions. The standard solution is obtained if each of the matrices A(α)

x (α = 2,3) is composed of n = n2 + n3 spectral
parameter dependent matrices [22, 24, 30]. A second class of solutions is obtained if matrices A(α)

x (α = 2,3) with different α
value are composed of by distinct sets of spectral parameters matrices [22, 30]. Here we will consider only the standard solution
but our model can be easily extended to the second class problem. In the present case, the matrices A(α)

x (α = 2,3) can be written
in terms of the matrix A and n = n2 +n3 spectral parameter dependent matrices A(α)

x,k j
[? ]:

A(α)
x =

n

∑
j=1

A(α)
x,k j

A, (α = 2,3), (5)

where the matrices A(α)
x,k j

satisfy the following commutation relations with the matrix A:

A(α)
x,k j

A = gα(x,x+1)eik j AA(α)
x+1,k j

, (α = 2, ...,N), ( j = 1, ...,n), (6)

the parameters k j ( j = 1, ...,n) are in general complex numbers unknown a priori, and gα(x,x +1) is a constant. The energy εn
is obtained by inserting (5) in (4), by using (6) and imposing that εn is a symmetric function on the spectral parameters [? ]

εn =
n

∑
j=1

(
Γ2 1

1 2eik j +Γ1 2
2 1e−ik j

)
+

3

∑
α=2

nα
(
Γ1 α

1 α +Γα 1
α 1

)
+(L−2n)Γ1 1

1 1, (7)

where we need to impose

gα(x,x+1) =
Γ2 1

1 2

Γα 1
1 α(x,x+1)

=
Γ1 α

α 1(x,x+1)
Γ1 2

2 1
(α = 2,3) (8)

and

Γ1 1
1 1(x,x+1) = Γ1 1

1 1, Γ1 α
1 α(x,x+1) = Γ1 α

1 α, Γα 1
α 1(x,x+1) = Γα 1

α 1 (α = 2,3), (9)

where Γ2 1
1 2, Γ1 2

2 1, Γ1 1
1 1, Γ1 α

1 α and Γα 1
α 1 are constants.

The relations coming from the eigenvalue equation for configurations where we have two spins configurations |α〉 (α =
2, ...,N) at nearest neighbor sites and are not located at boundary positions given us

n

∑
j,l=2

[
Γ1 2

2 1 +Γ2 1
1 2ei(k j+kl) +(Γα 1

α 1 +Γ1 α
1 α−Γ1 1

1 1−Γα α
α α(x,x+1))eik j

]
A(α)

y,k j
A(α)

y,kl
= 0,

n

∑
j,l=2

[
Γ1 2

2 1 +Γ2 1
1 2ei(k j+kl) +(Γα 1

α 1 +Γ1 β
1 β−Γ1 1

1 1−Γα β
α β(x,x+1))eik j

]
A(α)

y,k j
A(β)

y,kl
= (10)

n

∑
j,l=2

Γα 1
1 α(x,x+1)

Γβ 1
1 β(x,x+1)

Γβ α
α β(x,x+1)eikl A(β)

y,k j
A(α)

y,kl
(α 6= β),
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where we have used (3), (5)-(9) and y = 1, ...,L. The relations (10) should be satisfied for all x,y = 1, ...L. This is possible if we
have constants Γα α

α α, Γα β
α β, Γβ α

α β and if

Γα α
α α(x,x+1) = Γα α

α α, Γα β
α β(x,x+1) = Γα β

α β, Γβ α
α β(x,x+1) =

Γβ 1
1 β(x,x+1)

Γα 1
1 α(x,x+1)

Γβ α
α β. (11)

Finally, the relations (10) fix the algebraic relations among the matrices A(α)
x,k j

(α = 2,3):

A(α)
x,k j

A(β)
x,kl

=
3

∑
α′,β′=2

Sα β
β′ α′(k j,kl)A

(α′)
x,kl

A(β′)
x,k j

, A(α)
x,k j

A(β)
x,k j

= 0 (l 6= j = 1, ...,n). (12)

Relations (6) and (12) define completely the algebra whose structural constants are the S-matrix of the spin- 3
2 model [21, 22, 30].

Since the several components of the wavefunction should be uniquely related, the above algebra should be associative. This
associativity implies that the above S-matrix should satisfy the Yang-Baxter relations [7, 32], which is indeed the case [30]. The
components of the wavefunction corresponding to the configurations where we have three or four particles in next-neigbouring
sites would give in principle new relations involving three or four matrices A(α)

x,k j
. These new relations are however consequences

of the above relations (6) and (12). It is important to mention that in the sector n2 = 0 or n3 = 0 (symmetry U(1)2) the
Hamiltonian (1) reduces to a inhomogeneous version of the well known asymmetric XXZ model [33].

In order to complete our solutions through the MPA (3) we should fix the spectral parameters, or momenta, k1, . . . ,kn. Theses
parameter are fixed from the configurations where we have a spin configuration α = 2,3 at boundary positions (x1 = 1 or xn = L).
By using the algebraic relations (5), (6) and (12) we obtain the relation

A(α1)
1,k1

· · ·A(αn)
n,kn

AL = eik jL
N

∑
α′1,...,α′n=2

〈α1, . . . ,αn|T (n)|α′1, . . . ,α′n〉A(α′1)
1,k1

· · ·α(α′n)
n,kn

AL, (13)

where we have used the identity (see [30])

∑
α′′j ,α′′j+1

S
α j α′′j+1
α′j α′′j

(k j,k j) =−1, (14)

and

〈α1, . . . ,αn|T (n)|α′1, . . . ,α′n〉= ∑
α′′1 ,...,α′′n

{
S

α1 α′′2
α′1 α′′1

(k1,k j) · · ·S
α j α′′j+1
α′j α′′j

(k j,k j) · · ·Sαn α′′1
α′n α′′n

(kn,k j)φ(α′′1)
}

(15)

where φ(α′′1) = ∏L
x=1 gα′′1 (x,x + 1), is a (2)n × (2)n-

dimensional transfer matrix of an inhomogeneous vertex
model (inhomogeneities {kl}) with Boltzmann weights given
by the S-matrix elements defined in (12). The model is de-
fined on a cylinder of perimeter n with a seam along its axis
producing the twisted boundary condition

S
αn α′′n+1
α′n α′′n

(kn,k j) = S
αn α′′1
α′n α′′n

(kn,k j)φ(α′′1). (16)

Finally relation (13) with (16) give us the constraints for the
spectral parameters:

e−ik jL = Λ(n)(k j,{kl}) ( j = 1, . . . ,n), (17)

where Λ(n)(k j,{kl}) are the eigenvalues of the transfer matrix
(15). The condition (17) leads to the problem of evaluation the
eigenvalues of the inhomogeneous transfer matrix (15). This
can be done through the algebraic Bethe ansatz [34] or the
coordinate Bethe ansatz (see [35] and [36] for example).

4. DISCUSSION AND CONCLUSIONS

We solve through a MPA the most general inhomogeneous
3-state spin chain with U(1)3 symmetry and nearest neigh-
bor interaction. We found that the coupling constants in (1)
should satisfy the constraints (8), (9) and (11) in order to make
the Hamiltonian (1) integrable. It is important to mention that
different from the homogeneous spin chain, where the eigen-
states (2) are also eigenstates of the translation operator due to
the periodic boundary condition, in the inhomogeneous model
the eigenstates do not have a defined momentum. It happens
due to the inhomogeneities that broke the translational invari-
ance of the system. The study of this new model can be of
interest in the context of both AdS/CFT and condensed mat-
ter physics since it is related to the one loop dilatation opera-
tor in deformed Lunin-Maldacena backgrounds [28], confor-
mal field theories with deformations [29] and inhomogeneous
spin chains. Another quite interesting problem for the future
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concerns the formulation of the MPA for the case where we
have open boundary conditions, as well as for quantum chains
with no global conservation law such as the XYZ model, the
8-vertex model or the case where the quantum chains are de-
fined on open lattices with non-diagonal boundary fields.
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