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Photoproduction of Excited Baryons in the 1/Nc Expansion of QCD
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We present results for the photoproduction helicity amplitudes of excited baryons obtained in the context of
the 1/Nc expansion of QCD. The results show that, in order to get a satisfactory description of the observed
photoproduction amplitudes, the sub-leading corrections in 1/Nc are important. We also find that, while one-
body effective operators are dominant, there is some evidence for the need of two-body effects which, in general,
are not included in quark model calculations.
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1. INTRODUCTION

Baryon photo-couplings have been the subject of many
studies over the last forty years, and are key elements in the
understanding of baryon structure and dynamics. In this talk I
will present the results of the photoproduction helicity ampli-
tudes for excited baryons in the context of the 1/Nc expansion
of QCD [1]. Such an expansion has been shown to provide
a useful and systematic framework for the analysis of vari-
ous baryon properties. This is mostly due to the existence of
a contracted spin-flavor symmetry in the large Nc limit[2, 3].
Although SU(2N f ) is not an exact symmetry in the excited
baryon sector[4], its N0

c breaking is small as several analy-
ses of the baryon spectrum have shown[5–7]. In this context
the photoproduction helicity amplitudes for the negative par-
ity excited baryons have been first analyzed in [8]. Here we
report on an extension of such analysis which includes a sys-
tematic building of a complete basis of current operators to
sub-leading order in the 1/Nc expansion, for both negative and
positive parity resonances[9, 10].

2. FORMALISM

The helicity amplitudes of interest are defined in the stan-
dard form[11]

Aδ =−
√

2πα
ω

η(B∗)〈B∗,δ |~ε+1 · ~J(ωẑ) | N,δ−1〉, (1)

where δ = 1/2 or 3/2 is the helicity defined along the ẑ-axis,
which coincides with the photon momentum,~ε+1 is the pho-
ton’s polarization vector for helicity +1, α is the fine-structure
constant, and N and B∗ denote respectively the initial nu-
cleon and the excited baryon. A sign factor η(B∗) from the
strong amplitude for πN → B∗ is included. The electromag-
netic current ~J is represented as a linear combination of ef-
fective current operators which have the most general form
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(
k[L′]

γ B [LI]
)[1I]

where the upper scripts display the angular mo-
mentum and isospin, and throughout the neutral component,
i.e. I3 = 0, is taken. k[L′]

γ is an irreducible tensor built with the
photon momentum, chosen here to be a spherical harmonic,

and B [LI] =
(

ξ(`)G [`′I]
)[LI]

are operators where ξ(`) is the O(3)
tensor associated with the excited baryon state normalized by
its reduced matrix element (RME) 〈0 || ξ(`) || `〉 =

√
2`+1.

G [`′I] is a spin-flavor tensor operator with I = 0 or 1, which
can be expressed in terms of products of the generators of
SU(4) acting either on the excited quark, λ = s, t,g, or the
Nc−1 quark core, Λc = Sc,Tc,Gc. We assume here that quark
charges are Nc independent. Bases of effective operators B [LI]

can be obtained along similar steps to those followed, for in-
stance, in the study of strong transitions[12, 13]. Since there
is a one to one correspondence between L and the multipole
to which an operator contributes to, we denote them accord-
ingly, e.g., ELS

n is the nth EL isoscalar operator. The bases of
operators are given in Table I for the negative parity multiplet
[20′, 1−], in Table II for the Roper multiplet [20, 0+] and in
Table III for the [20, 2+]-plet. Note that for the photoproduc-
tion of positive parity resonances we need only to consider
the total SU(4) generators Λ = λ + Λc, and in the case of the
[20, 0+]-plet we can simply replace ξ(`=0) = 1. The numerical
factors in front of each operator conveniently normalize the
largest RME (see Eq.(2) below) to be equal to 1 (1/3) for oper-
ators O(1) (O(1/Nc)) when Nc = 3. The E- and M-multipole
components of a given helicity amplitude of isospin I can be
expressed in terms of the RME of the operators B [LI] as fol-
lows

AX [LI]

δ (I3,J∗I∗) =
(−1)J∗+I∗+I+1 wX (L) η(B∗)√

(2J∗+1)(2I∗+1)

×
√

3αNc

4ω
〈L,1;

1
2
,δ−1 | J∗,δ〉〈I,0;

1
2
, I3 | I∗, I3〉

× ∑
n

g[LI]
n,X (ω) 〈J∗I∗ ‖ B [LI]

n ‖ 1
2
〉 (2)

where X = M (E) and wX (L) = 1 (
√

(L+1)/(2L+1)) with
(−1)Lπex = negative (positive). Here, πex is the parity of the
excited multiplet. In Eq.(2) I3 denotes the isospin projection
of the initial nucleon. The factor

√
Nc results from taking
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TABLE I: Basis operators and fit parameters g[LI]
n,X of [20′, 1−]

baryons. Errors are indicated in parenthesis. Results for the choice
ξ =−1 are shown.

Operator LO NLO1 NLO2

E1S
1 =

(
ξ[1,0]s

)[1,0]
−0.4(0.2) −0.3(0.2) −0.3(0.2)

E1S
2 = 1

Nc

(
ξ[1,0] (s Sc)[0,0]

)[1,0]
0.5(0.6)

E1S
3 = 1

Nc

(
ξ[1,0] (s Sc)[1,0]

)[1,0]
1.0(0.9)

E1S
4 = 1

Nc

(
ξ[1,0] (s Sc)[2,0]

)[1,0]
0.5(0.6)

E1V
1 =

(
ξ[1,0]t

)[1,1]
2.3(0.3) 3.0(0.2) 3.5(0.1)

E1V
2 =

(
ξ[1,0]g

)[1,1] −0.7(0.4) 0.4(0.3)

E1V
3 = 1

Nc

(
ξ[1,0] (s Gc)[2,1]

)[1,1]
0.4(0.5) −0.2(0.4)

E1V
4 = 1

Nc

(
ξ[1,0] (s Tc)[1,1]

)[1,1] −1.9(1.4)

E1V
5 = 1

Nc

(
ξ[1,0] (s Gc)[0,1]

)[1,1]

+ 1
4
√

3
E1V

1 −0.2(0.9)

E1V
6 = 1

Nc

(
ξ[1,0] (s Gc)[1,1]

)[1,1]

+ 1
2
√

2
E1V

2 4.2(0.9) 3.9(0.8)

M2S
1 =

(
ξ[1,0]s

)[2,0]
0.8(0.2) 1.5(0.3) 1.3(0.2)

M2S
2 = 1

Nc

(
ξ[1,0] (s Sc)[1,0]

)[2,0] −1.2(1.3)

M2S
3 = 1

Nc

(
ξ[1,0] (s Sc)[2,0]

)[2,0]
−1.2(1.7)

M2V
1 =

(
ξ[1,0]g

)[2,1]
3.0(0.6) 3.8(0.6) 3.9(0.4)

M2V
2 = 1

Nc

(
ξ[1,0] (s Gc)[2,1]

)[2,1] −3.1(1.0) −2.3(1.1) −2.7(0.6)

M2V
3 = 1

Nc

(
ξ[1,0] (s Tc)[1,1]

)[2,1]
−0.1(1.1)

M2V
4 = 1

Nc

(
ξ[1,0] (s Gc)[1,1]

)[2,1]

+ 1
2
√

2
M2V

1 −1.5(2.4)

E3S
1 = 1

Nc

(
ξ[1,0] (s Sc)[2,0]

)[3,0]
0.3(0.8)

E3V
1 = 1

Nc

(
ξ[1,0] (s Gc)[2,1]

)[3,1]
0.7(0.9) 0.3(0.5)

χ2
do f 2.42 − 0.94

dof 11 0 13

transition matrix elements between excited and ground state
baryons[14]. The RME in Eq.(2) can be evaluated using sim-
ilar techniques to those in [5]. The coefficients g[LI]

n,X (ω) are
determined by fitting to the empirical helicity amplitudes[11].
Their ω-dependencies are taken here to be the natural ones for
the multipole transitions. The sign η(B∗) can be fixed from
the studies in [12, 13]. Those analyses determine the signs
up to an overall sign for each pion partial wave. In the case
of the Roper multiplet this does not bring in any ambiguity.
Since the partial waves involved in the case of the [20′, 1−]-
plet are S and D waves, we have one extra relative sign, which

we will call ξ. In the case of the [20, 2+] the contributions
come from the P and F waves and we will denote the extra
sign ξ′ = sign(P/F).

TABLE II: Basis operators and fit parameters g[LI]
n,X for [20, 0+]

baryons. Errors are indicated in parenthesis.

Operator LO NLO1 NLO2
M1S

1 = 1
Nc

S[1,0] 1.0(0.4) 0.8(0.4)

M1V
1 = 1

Nc
G[1,1] 2.5(0.6) 2.2(0.3) 2.3(0.3)

M1V
2 = 1

N2
c
[S,G][1,1] 5.0(2.3)

E2V
1 = 1

N2
c
{S,G}[2,1] −2.7(3.5)

χ2
do f 2.0 2.6 -

dof 3 2 0

3. RESULTS AND THEIR ANALYSIS

In this section we present and analyze the different fits to
the helicity amplitudes. The coefficients to be fitted g[L, I]

n,X (ω)
are expressed by including the barrier penetration factor:
g[L, I]

n,X ×(ω/Γ)L′ , where L′ = L−1 for EL operators, L′ = L for
ML operators. Throughout we will choose the scale Γ = mρ.
For each multiplet we have performed several leading order
(LO) and next-to-leading order (NLO) fits.

3.1. Negative parity resonances

We start by the results for the [20′,1−]-plet. For Nc = 3, the
states contained in such multiplet are as follows: two N states
with J∗ = 1/2, two with J∗ = 3/2 and one with J∗ = 5/2,
and one ∆ with J∗ = 1/2 and one with J∗ = 3/2. There are
two mixing angles, θ1 for the pair of excited N states with
J∗ = 1/2, and θ3 for the N pair with J∗ = 3/2. The mixing
angles are defined in the standard fashion [5], and have been
determined in different ways. In the 1/Nc expansion in partic-
ular, they can be obtained from an analysis of the masses [5],
and more precisely from analyzing strong transitions [12]. We
use the latter in this work. Such analysis gives two consistent
but different results for the mixing angle θ3. The values (in ra-
dians) θ3 = 2.82 and θ3 = 2.38 cannot be distinguished from
the strong fits. One finds that some of the η signs are different
for these two values. We take into account this with an extra
sign factor κ, which is equal to +1 (−1) for θ3 = 2.82 (2.38).
A first analysis concerns the choices left by the values of the
mixing angle θ3, and the signs ξ and κ. Using all the LO
operators, the choices are made by considering the χ2 for all
possibilities. The sign ξ = −1 is strongly favored. This is
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TABLE III: Basis operators and fit parameters g[LI]
n,X of [20, 2+]

baryons. Errors are indicated in parenthesis. Results for the choice
ξ′ =−1 are shown.

Operator LO NLO1 NLO2

M1S
1 = 1

Nc

(
ξ(2)S

)[1,0] −0.9(1.7)

M1V
1 = 1

Nc

(
ξ(2)G

)[1,1]
−0.7(0.5) 0.3(1.0)

M1V
2 = 1

N2
c

(
ξ(2) [S,G][1,1]

)[1,1]
2.3(2.5)

M1V
3 = 1

N2
c

(
ξ(2) {S,G}[2,1]

)[1,1] −1.9(1.0)

E2S
1 = 1

Nc

(
ξ(2)B

)[2,0]
0.3(0.2) 1.2(0.4) 1.3(0.2)

E2S
2 = 1

Nc

(
ξ(2)S

)[2,0]
1.0(1.3)

E2V
1 = 1

Nc

(
ξ(2)T

)[2,1]
5.9(1.9) 7.1(1.4)

E2V
2 = 1

Nc

(
ξ(2)G

)[2,1]
0.0(0.6) 1.6(0.9) 1.0(0.6)

E2V
3 = 1

N2
c

(
ξ(2) [S,G][1,1]

)[2,1]
8.8(3.4) 7.2(2.7)

E2V
4 = 1

N2
c

(
ξ(2) {S,G}[2,1]

)[2,1]
0.9(2.0)

M3S
1 = 1

Nc

(
ξ(2)S

)[3,0]
3.6(1.0) 3.5(1.0)

M3V
1 = 1

Nc

(
ξ(2)G

)[3,1]
5.7(0.9) 6.2(0.6) 6.0(0.4)

M3V
2 = 1

N2
c

(
ξ(2) [S,G][1,1]

)[3,1]
1.0(2.4)

M3V
3 = 1

N2
c

(
ξ(2) {S,G}[2,1]

)[3,1] −0.3(2.1)

E4V
1 = 1

N2
c

(
ξ(2) {S,G}[2,1]

)[4,1] −0.2(2.5)

χ2
do f 2.1 1.0

dof 11 0 9

in agreement with an old determination based on the single-
quark-transition model [15, 16]. The second choice that is fa-
vored, although less markedly than the one for ξ, is θ3 = 2.82.
Finally, for κ there is no indication of a preference from the
fits; for the sake a definiteness we will take κ = +1 in our
fits. This latter sign basically depends on strong amplitudes
which are small and have large relative errors, which imply
that its determination is subject to a degree of uncertainty.
The helicity amplitudes show here their importance by allow-
ing to determine the relative sign ξ between the strong S and
D wave amplitudes, and by selecting between the two possi-
ble values of θ3 consistent with the strong transitions. Note
that θ3 = 2.82 corresponds to “small”mixing, while 2.32 cor-
responds to “large”mixing. A simultaneous fit of strong tran-
sitions and photoproduction amplitudes is the best way of ex-
tracting the mixing angles. This will be carried out in a future
project.

The helicity amplitudes resulting from the fits we have car-
ried out are displayed in Fig. 1; the corresponding fit coeffi-
cients are given in Table I. In the fits we expand the operator
matrix elements in powers of 1/Nc to the order corresponding
to the fit. In the LO fits, we have set the errors in the input

helicity amplitudes to be equal to 0.3 of the value of the helic-
ity amplitude or the experimental value if this is larger. The
point of this is to test whether or not the LO analysis is con-
sistent in the sense that it gives a χ2 per degree of freedom
(χ2

dof) close to unity. For the NLO fits, we use of course the
empirical errors. We now proceed to discuss the results.
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FIG. 1: (Color online) Decay amplitudes of [20′,1−]-plet baryons
as obtained in the large Nc expansion compared with the empirical
results taken from Ref.[11]. For comparison typical results from the
quark model (QM) calculation of Ref.[18] are also indicated.

The LO fit shows a χ2
dof of 2.42. This indicates that there

are NLO effects to be taken into account for a satisfactory fit.
The main deficiencies are in the fitting of the N(1520) and the
∆(1620) amplitudes as one can readily ascertain from their in-
dividual contributions to the total χ2. If one keeps only the LO
operators with the largest coefficients (say coefficients bigger
than 2), the χ2

dof does not change much from the one obtained
with all LO operators. Notice that one 2-body LO operator
seems to be significant, namely M2V

2 . We have checked that
a fit taking κ =−1 leads to similar results except that the co-
efficient of M2V

2 results to be only 40% of the case κ = +1.
If indeed 2-body operators should give small effects, then this
would be a way to discriminate about the sign κ. In fact, a LO
fit using only 1-body operators gives respectively χ2

dof = 2.48
and 2.12 for κ = +1 and −1.

One can perform a LO fit motivated by the single-quark-
transition model [15, 16], which is also commonly used in
quark model calculations. In that model, the photon only cou-
ples to the excited quark with a fixed ratio for the isoscalar ver-
sus the isovector coupling as given by the bare quark charges.
Here this is achieved by locking 1-body operators as follows:
( 1

6 E1S
1 + E1V

2 ), ( 1
6 M2S

1 + M2V
1 ), and E1V

2 . Note that the
isoscalar counterpart of the last operator does not appear in
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the operator basis because it is spin-flavor singlet. The fit has
χ2

dof ∼ 2.5 at LO, which is similar to the result with unlocked
operators, thus indicating that at LO one cannot draw a clear
conclusion.

As it is well known, in the single-quark-transition model
the so-called Moorhouse selection rule [17] holds. That rule
states that the amplitudes for photoexcitation of protons to 4N∗
states vanish. In the present analysis, the rule is violated by
the unlocking of the 1-body operators, and by 2-body opera-
tors. At the level of physical states, the rule tends to suppress
the amplitudes pγ→N(1650), N(1700), and N(1675). In the
first two cases, the mixing angles θ1 and θ3 work against that
suppression as they give to these states a component 2N∗. In
the case of N(1675), the rule turns out to be mostly violated
by 2-body effects, at least for κ = +1.

The NLO order fit NLO1, involves all operators in the ba-
sis. It gives values for the coefficients of the LO operators
which are, within the expected deviations from 1/Nc counting,
consistent with the values obtained in the LO fits. Moreover,
none of the coefficients of the NLO operators has a magni-
tude larger than that of the largest LO coefficients. This is
a strong indication of the consistency of the 1/Nc expansion.
We find that this consistency is more clearly manifested here
than in the case of the positive parity baryons analyzed below.
From the magnitude of the coefficients, it is obvious that only
a few NLO operators are needed for a consistent fit. In fact, as
shown by the fit NLO2 in Table I, a consistent fit is obtained
with only five LO and one NLO operators. Of these dominant
operators four are one-body and LO, and two are two-body
with one of them LO and the other NLO. Note also that none
of the 2-body E3 operators is required. It is remarkable that
out of eleven NLO operators only one is essential for obtain-
ing consistent fits. At this point it is important to mention that
many of the empirical amplitudes have errors that are larger
than what is needed for an accurate NLO analysis. It is for
this reason that one cannot draw a more precise NLO picture
which could unveil the role of other operators. To test for de-
viations from the single-quark-transition model at NLO, we
have performed a NLO fit including all operators with locked
the 1-body operators. The result is a χ2

dof ∼ 2.5, which gives a
good indication that there are deviations from that model.

At this stage we can compare our analysis with that of Carl-
son and Carone [8]. We have checked that their set of oper-
ators, eleven in total, corresponds to a subset of our opera-
tor basis, which can be obtained by locking several pairs of
operators using the isoscalar to isovector ratio of the electric
charge operator as we explained earlier. In this case, 1- as
well as 2-body operators are locked. A fit with that set of
locked operators gives a χ2

dof ∼ 3.2. This result clearly indi-
cates the necessity for the more general basis we use in this
work. However, one should emphasize that the main features
of most helicity amplitudes are obtained in the analysis of Ref.
[8]. Another point where we differ from Ref. [8] is in the mix-
ing angles: in our analysis we take the mixing angles from the
strong decays, while in Ref. [8] some of the fits include fitting
the mixing angles. Their mixing angles are somewhat differ-
ent from ours, leaving an open issue which should be sorted
out. We plan to carry out simultaneous fits of strong decays

and helicity amplitudes, from where we expect to extract more
reliable values for the mixing angles.

3.2. Positive parity resonances

We first discuss the helicity amplitudes of the Roper mul-
tiplet. The results of the fits are displayed in Table II and the
corresponding amplitudes in Fig.2. At leading order (LO),
only the isotriplet operator M1V

1 contributes, and the fit gives
χ2

dof = 2. The main problem is the small magnitude of the
δ = 3/2 amplitude, especially because a 2-body operator is
necessary to fit it. As seen from fit NLO, the operator M1V

2
is the one that brings agreement while the operators M1S

1 and
E2V

1 turn out to be less important as shown by the relative er-
ror of their coefficients. A definite conclusion requires, how-
ever, an improvement in the empirical values of the ∆(1600)
amplitudes.
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FIG. 2: (Color online) Decay amplitudes of [20,0+]-plet baryons
as obtained in the large Nc expansion compared with the empirical
results taken from Ref.[11]. For comparison typical results from the
quark model (QM) calculation of Ref.[18] are also indicated.

In the [20, 2+] multiplet, the helicity amplitudes associated
with the N(1680) and ∆(1950) are well known, with the oth-
ers less well established. The results of our fits for the choice
ξ′ = −1 are displayed in Table III and corresponding ampli-
tudes in Fig.3. The main contribution to the χ2 at LO is due
to the large δ = 3/2 amplitude of the proton N(1680), which
is badly underestimated. It should be noted that the choice
ξ′ = +1 leads to a qualitatively similar LO fit. The NLO
analysis is somewhat limited by the large errors of the inputs,
which exceed in general the 10% error that would allow for an
accurate NLO analysis. The NLO1 fit shows that for ξ′ =−1
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the coefficients g[LI]
n,X needed to reproduce the empirical ampli-

tudes are all of natural magnitude, indicating a good conver-
gence of the 1/Nc expansion.
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FIG. 3: (Color online) Decay amplitudes of [20,2+]-plet baryons
as obtained in the large Nc expansion compared with the empirical
results taken from Ref.[11]. For comparison typical results from the
quark model (QM) calculation of Ref.[18] are also indicated.

It also implies that a reduced number of operators give the
significant contributions as shown by the relative errors of the
coefficients. This is confirmed by the NLO2 fit where we have
included the minimum number of operators that allow for a
χ2

dof ' 1. This is not the case for ξ′ = +1 choice. It is im-
portant to note that a fit that keeps only 1B operators among
the significant operators leads to a χ2

dof ∼ 2, which is showing
that the dominant effects result from the coupling of the pho-
ton to a single quark. Returning to the large δ = 3/2 amplitude

of the N(1680), at NLO it receives several contributions. All
of them have the same sign and none is dominating, which
makes the understanding of the large magnitude of this ampli-
tude difficult.

4. SUMMARY AND CONCLUSIONS

In this contribution I have reported on the 1/Nc expan-
sion analysis of baryon photoproduction helicity amplitudes
of both negative and parity excited baryons. The most impor-
tant outcome of the analysis is that the expected hierarchies
implied by the 1/Nc power counting are respected. Another
important aspect is that, in general, only a reduced number of
operators in the basis turn out to be relevant. Several of those
operators can be easily identified with those in quark mod-
els, but there are also 2-body operators usually not included
in quark models which are necessary for an accurate descrip-
tion of the empirical helicity amplitudes. In the case of the
[20′, 1−] the present analysis allows one to select between the
two possible values of the mixing angle θ3 which are consis-
tent with strong decays, as well as the relative sign ξ between
the S and D-wave strong amplitudes. A comprehensive anal-
ysis that includes strong and helicity amplitudes will further
refine the results of this work, and is expected to be presented
elsewhere. Our analysis also shows the dominance of M1 tran-
sitions in the amplitudes of the [20, 0+] excited baryons and
of the M3 and E2 transitions in the [20, 2+] ones.
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