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We present and discuss our recent study of an eikonal two channel model, in which we reproduce the soft
total, integrated elastic and diffractive cross sections, and the corresponding forward differential slopes in the
ISR-Tevatron energy range. Our study is extended to provide predictions at the LHC and Cosmic Rays energies.
These are utilized to assess the role of unitarity at ultra high energies, as well as predict the implied survival
probability of exclusive diffractive central production of a light Higgs. Our approach is critically examined so
as to estimate the margins of error of the calculated survival probability for diffractive Higgs production.
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I. INTRODUCTION

The search for unambiguous s-channel unitarity signatures
in ultra high energies soft hadronic scattering, is two folded:
On the one hand, this is a fundamental issue on which we have
only limited information from the ISR-Tevatron experiments.
The only direct indication we have on the importance of uni-
tarity considerations, derives from the observation that soft
diffraction cross sections, essentially SD (single diffraction),
have a much milder energy dependence than the seemingly
similar, elastic cross sections. Enforcing unitarity constraints
is a model dependent procedure. Thus, reliable modeling is
essential for the execution of our study, leading to predictions
of interest for LHC and AUGER experiments.
On the other hand, unitarity considerations in soft scattering
are instrumental for the assessment of inelastic hard diffrac-
tion rates, specifically, diffractive Higgs production at the
LHC. Preliminary information on the importance and method
of this calculation has been acquired in the study of hard
diffractive di-jets at the Tevatron[1], leading to first genera-
tion estimates of the corresponding survival probabilities.

This presentation is based on our recent paper[2], which uti-
lizes the GLM model[1, 3–7] where we numerically solve the
s-channel unitarity equation in an eikonal model. Our updated
results, in the ISR-Tevatron range, were obtained from an im-
proved two channel model calculations. The specific goals of
our study, based on the above, were:
1) To reproduce the total, integrated elastic and diffractive
cross sections and corresponding forward differential slopes
in the ISR-Tevatron energy range, and to obtain predictions
for these observables at LHC and Cosmic Rays energies.
2) To calculate the survival probabilities of inelastic hard
diffractive processes[8, 9]. This requires precise knowledge
of the soft elastic and diffractive scattering amplitudes of the
initial hadronic projectiles. As we noted, it is of particular
importance for the assessment of the discovery potential for
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LHC Higgs production in an exclusive central diffractive pro-
cess.
3) Some of the fundamental consequences of s-channel uni-
tarity in the high energy limit are not clear, as yet. We exam-
ine the approach of the scattering amplitudes to the black disc
bound.
4) We estimate the margin of error of our predicted survival
probabilities, based on a critical analysis of our model.

II. THE GLM MODEL

The main assumption of the two channel GLM model is that
hadrons are the correct degrees of freedom at high energies,
diagonalizing the scattering matrix. In this Good-Walker type
formalism, diffractively produced hadrons at a given vertex
are considered as a single hadronic state described by the wave
function ΨD, which is orthonormal to the wave function Ψh of
the incoming hadron, < Ψh|ΨD >= 0. We introduce two wave
functions Ψ1 and Ψ2 which diagonalize the 2x2 interaction
matrix T

Ai′,k′
i,k =< Ψi Ψk|T|Ψi′ Ψk′ >= Ai,k δi,i′ δk,k′ . (II.1)

In this representation the observed states are written

Ψh = αΨ1 +βΨ2 , (II.2)

ΨD =−βΨ1 +αΨ2 , (II.3)

where, α2 +β2 = 1.
Using Eq. (II.1) we can rewrite the unitarity equations

ImAi,k (s,b) = |Ai,k (s,b) |2 +Gin
i,k(s,b), (II.4)

where Gin
i,k is the summed probability for all non diffractive in-

elastic processes induced by the initial (i,k) states. The simple
solution to Eq. (II.4) has the form obtained in a single channel
formalism[3],

Ai,k(s,b) = i
(

1− exp
(
−Ωi,k(s,b)

2

))
, (II.5)
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Gin
i,k(s,b) = 1− exp(−Ωi,k(s,b)) . (II.6)

From Eq. (II.6) we deduce the probability that the initial pro-
jectiles (i,k) reach the final state interaction unchanged, re-
gardless of the initial state re-scatterings, is given by PS

i,k =
exp(−Ωi,k(s,b)).

In general, we have to consider four possible (i,k) re-
scattering options. For initial p-p (or p̄-p) the two quasi-
elastic amplitudes are equal A1,2 = A2,1, and we have three
re-scattering amplitudes. The corresponding elastic, SD and
DD amplitudes are

ael(s,b) = i{α4A1,1 +2α2β2A1,2 +β4A2,2}, (II.7)

asd(s,b) = iαβ{−α2A1,1 +(α2−β2)A1,2 +β2A2,2}, (II.8)

add = iα2β2{A1,1−2A1,2 +A2,2}. (II.9)

Adjusted parameters are introduced to obtain explicit expres-
sions for the opacities Ωi,k(s,b).

In the following we shall consider Regge and non Regge
options for the dynamics of interest. We use a simple general
form for the input opacities,

Ωi,k (s,b) = νi,k (s)Γ(s,b) . (II.10)

νi,k (s) = σ0
i,k

(
s
s0

)∆
. (II.11)

The input b-profiles Γi,k (s,b) are assumed to be Gaussians in
b, corresponding to exponential differential cross sections in
t-space,

Γi,k (s,b) =
1

πR2
i,k (s)

exp

(
− b2

R2
i,k (s)

)
, (II.12)

R2
i,k (s) = R2

0;i,k +4Cln(s/s0). (II.13)

R2
0;1,2 = 1

2 R2
0;1,1 and R2

0;2,2 = 0. Our parametrization is com-
patible with, but not exclusive to, a Regge type input.

III. FITS AND PREDICTIONS

We have studied three models, with different parameteriza-
tions of Ωi,k, which were adjusted to the ISR-Tevatron exper-
imental data base, specified above. Note that the fit has, in
addition to the contribution in the form of Eq. (II.10), also a
secondary Regge sector (see Ref.[3, 4]). This is necessary, as
the data base contains a relatively small number of experimen-
tal high energy measured values, which are independent of the
Regge contribution. We do not quote the values of the Regge
parameters, as the goal of this paper is to obtain predictions
in the LHC and Cosmic Rays energy range. At W=1800GeV
the Regge sector contribution is less than 1%. However, it is
essential at the ISR energies.

Model A Model B(1) Model B(2)
∆ 0.126 0.150 0.150
β 0.464 0.526 0.776
R2

0;1,1 16.34 GeV−2 20.80 GeV−2 20.83 GeV−2

C 0.200 GeV−2 0.184 GeV−2 0.173 GeV−2

σ0
1,1 12.99 GeV−2 4.84 GeV−2 9.22 GeV−2

σ0
2,2 N/A 4006.9 GeV−2 3503.5 GeV−2

σ0
1,2 145.6GeV−2 139.3 GeV−2 6.5 GeV−2

TABLE I: Fitted parameters for Models A, B(1) and B(2).

Model A is a simplified two amplitude version of the two
channel model, in which we assume that σdd is small enough
to be neglected. As such, this model breaks Regge factoriza-
tion. The model was presented and discussed in Ref.[4]. The
parameters of Model A were obtained from a fit to a 55 ex-
perimental data points base and are listed in Table 1 with a
corresponding χ2/(d.o. f ) of 1.50. Note that in Model A the
(1,1) amplitude corresponds to Ω1,1, while the (1,2) amplitude
corresponds to ∆Ω = Ω1,1−Ω1,2. See Ref.[4].

Model B denotes our three amplitude model where the 5
published DD cross section points[10] are contained in the fit-
ted data base. The three opacities are taken to be Gaussians
in b. If we assume the soft Pomeron to be a simple J pole, its
coupling factorization implies σ0

1,2 =
√

σ0
1,1×σ0

2,2. We de-
note this Model B(1). The fit obtained is not satisfactory, with
a χ2/(d.o. f .)=2.30.

We have, also, studied Model B(2) in which coupling fac-
torization is not assumed. Accordingly, σ0

1,1, σ0
1,2 and σ0

2,2 are
independent fitted parameters of the model. The model with a
χ2/(d.o. f .) = 1.25, provides a very good reproduction of our
data base. In Model B(2) the leading t channel exchange is
not a simple J pole. It is compatible with a model[11] we have
suggested a while ago in which the soft Pomeron dominated
photo and low Q2 DIS, is perceived as the saturated soft (low
Q2) limit of the hard Pomeron dominated (high Q2) hard DIS.
A major deficiency of Model B(2) is that it predicts dips in
dσel
dt at small t values, which are not observed experimentally.

This problem is common to all eikonal models which assume
Gaussian b-profiles. Consequently, Model B(2) is valid only
in the narrow forward t cone, where it reproduces approxi-
mately 85% of the overall data very well. We shall discuss
this problem in some detail in the Discussion Section.

Model B(2) cross section and slope predictions at ultra
high energies are summarized in Table 2. Note that Rel =
σel/σtot and RD = (σel + σdi f f )/σtot . At LHC (W=14 TeV )
our predicted cross sections are: σtot = 110.5mb, σel =
25.3mb, σsd = 11.6mb and σdd = 4.9mb. These predic-
tions are slightly higher than those obtained[4] in Model A.
The corresponding forward slopes are: Bel = 20.5GeV−2,
Bsd = 15.9GeV−2 and Bdd = 13.5GeV−2. We calculate, also,
ρ = 0.125. The calculations of Bsd , Bdd and ρ were executed
with the fitted parameters of the model. For the record we
have checked that we reproduce also the UA4, CDF and E710
Bsd and ρ data points.
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√
s σtot σel σsd σdd Bel Rel RD

σdi f f
σel

TeV mb mb mb mb GeV−2

1.8 78.0 16.3 9.6 3.8 16.8 0.21 0.38 0.83
14 110.5 25.3 11.6 4.9 20.5 0.23 0.38 0.65
30 124.8 29.7 12.2 5.3 22.0 0.24 0.38 0.59
60 139.0 34.3 12.7 5.7 23.4 0.25 0.38 0.54
120 154.0 39.6 13.2 6.1 24.9 0.26 0.38 0.49
250 172.0 45.9 13.6 6.6 26.5 0.27 0.38 0.44
500 190.0 52.7 14.0 7.0 28.1 0.28 0.39 0.40
1000 209.0 60.2 14.3 7.4 29.8 0.29 0.39 0.10
1011 1070.0 451.2 21.6 19.5 109.9 0.42 0.46 0.09
1.22 1019 1970.0 871.4 25.5 27.7 202.6 0.44 0.47 0.06
(Planck)

TABLE II: Cross sections and elastic slope in Model B(2).
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FIG. 1: Survival probability for exclusive central diffractive produc-
tion of the Higgs boson

IV. SURVIVAL PROBABILITIES

In the following we shall limit our discussion to the sur-
vival probability of Higgs production in an exclusive central
diffractive process, calculated in our model. For a general re-
view see Ref.[1].

In our model we assume an input Gaussian b-dependence
also for the hard diffractive amplitude of interest. Its input,
when convoluted with the soft (i,k) channel, is

ΩH
i,k = νH

i,k(s)Γ
H
i,k(b), (IV.14)

νH
i,k = σH0

i,k (
s
s
)∆H , (IV.15)

ΓH
i,k(b) =

1

πRH
i,k

2 e
− b2

RH
i,k

2
. (IV.16)

The structure of the survival probability expression is
shown in Fig. 1. The corresponding general formulae for the
calculation of the survival probability for diffractive Higgs bo-
son production have been discussed in Refs.[1, 5, 6]. Accord-
ingly,

〈| S |2〉=
N(s)
D(s)

, (IV.17)

N(s) =
∫

d2 b1 d2 b2{AH(s,b1)AH(s,b2)
(1−AS(s,(b1 +b2)))}2, (IV.18)

D(s) =
∫

d2 b1 d2 b2{AH(s,b1)AH(s,b2)}2. (IV.19)

As denotes the soft strong interaction amplitude given by
Eq. (II.5). Using Eq. (II.7)-Eq. (II.9), the integrands of
Eq. (IV.18) and Eq. (IV.19) are reduced by eliminating com-
mon s-dependent expressions.

N(s) =
∫

d2b1d2b2{(1−ael(s,b))App
H (b1)A

pp
H (b2)

−asd(s,b)
(

Apd
H (b1)A

pp
H (b2)+App

H (b1)A
pd
H (b2)

)

−add(s,b)Apd
H (b1)A

pd
H (b2)}2, (IV.20)

D =
∫

d2b1d2b2{App
H (b1)A

pp
H (b2)}2. (IV.21)

Following Refs.[1, 2] we introduce two hard b-profiles

App
H (b) =

Vp→p

2πBH
el

exp
(
− b2

2BH
el

)
, (IV.22)

Apd
H (b) =

Vp→d

2πBH
in

exp
(
− b2

2BH
in

)
. (IV.23)

The hard radii RH
i,k

2 and cross section coefficients Vp→p and
Vp→d are constants derived from HERA J/Ψ elastic and in-
elastic photo and DIS production[12, 13] (see, also, Ref.[6]).
BH

el = 3.6GeV−2, BH
in = 1GeV−2, Vp→p =

√
3 and Vp→d = 1.

have been taken from the experimental HERA data on J/Ψ
production in HERA[12, 13].

Using Eq. (IV.17)-Eq. (IV.21) we calculate the survival
probability S2

H for exclusive Higgs production in central
diffraction. S2

H has been calculated[1] in the two amplitude
Model A. The resulting S2

H = 0.027 is essentially the same
as the predictions of KMR[15]. Our present results, obtained
in the three amplitude B Models, indicate a reduction of the
output value of S2

H . Its LHC value in Model B(1) is 0.02, and
in Model B(2) it is 0.007. We note that, our Model B(1) result
is compatible with the result of Ref.[15]. We shall return to
this issue in the Discussion Section.

V. AMPLITUDE ANALYSIS

The basic amplitudes of the GLM two channel model are
A1,1, A1,2 and A2,2, whose b structure is specified in Eq. (II.5)).
These are the building blocks with which we construct ael ,
asd and add (Eq. (II.7)-Eq. (II.9)). The Ai,k amplitudes are
bounded by the black disc unitarity bound of unity. Check-
ing Table 1, it is evident that in both Model B(1) and B(2)
Ω2,2 is much larger than the other two fitted opacities. As
a consequence, the amplitude A2,2(s,b) reaches the unitarity
bound of unity at low energies. Similarly, the output am-
plitude A1,2(s,b) of Model A reaches unity at approximately
LHC energy. The observation that one, or even two, of our
Ai,k(s,b)=1 does not imply that the elastic scattering ampli-
tude has reached the unitarity bound at these (s,b) values.
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FIG. 2: b dependence of ael in Model B(2) at different energies

ael(s,b) reaches the black disc bound when, and only when,
A1,1(s,b)=A1,2(s,b)=A2,2(s,b)=1. In such a case we also ob-
tain, that asd(s,b)=add(s,b)=0. This result is independent of
the fitted value of β.

Model B(2) predictions of ael over a wide range of energies
are presented in Fig. 2. A fundamental feature of Models A,
B(1) and B(2) is that ael approaches the black disc bound at
b = 0 very slowly, reaching the bound at energies higher than
the GZK knee cutoff. If correct, this feature implies that ael
does not reach the black disc bound over the entire accessible
spectrum of Cosmic Rays energies, even though it gets mono-
tonically darker.

The explanation of this behavior, in our presentation, is
simple. Checking the values of β and σ0

i,k corresponding to
the 3 models (see Table 1), we note that Ω1,1 is smaller by
1-3 orders of magnitude relative to Ω2,2 (Ω1,2 in Model A).
The consequent ael can reach the black disc bound only when
Ω1,1 is large enough so that A1,1 approaches unity. Ω1,1 grows
slowly like W 0.3 (modulu lnW ). Hence, the slow approach
of ael toward the black disc bound. This result is incompati-
ble with the output of Ref.[15] in which ael reaches the black
disc bound approximately at the LHC. In our presentation it
implies that unlike our models, in the KMR model there is rel-
atively small variance in the weights of the 3 components of
the proton wave function.

A consequence of the input Ωi,k being large at small b, is
that PS

i,k(s,b) is very small at b = 0 and monotonically ap-
proaches its limiting value of 1, in the high b limit. As a result,
given a diffractive (non screened) input, its output (screened)
amplitude is peripheral in b. This is a general feature, com-
mon to all eikonal models regardless of their b-profiles details.
The same is, true, also, with regard to diffractive Good-Walker
channels, which are contained in Ωi,k. This implies a non triv-
ial t dependence of dσdi f f (M2

di f f )/dt in the diffractive chan-

nels. These qualitative features are induced by Model A, B(1)
and B(2), even though their detailed behavior are not identi-
cal. Given the deficiencies of our b-profiles, we refrain from
giving any specific predictions besides the general observation
stated above.

The general behavior indicated above becomes more ex-
treme at ultra high energies, when ael continues to expand
and gets darker. Consequently, the inelastic diffractive chan-
nels becomes more and more peripheral and relatively smaller
when compared with the elastic channel. At the extreme,
when ael(s,b) = 1, asd = add = 0. We demonstrate this fea-
ture and its consequence at the Planck mass in Fig. 2. As
the black core of ael expands, the difference between Models
A, B(1) and B(2), considered in this paper, diminishes, being
confined to the narrow b tail where ael(s,b) < 1. The above
observations may be of interest in the analysis of Cosmic Ray
experiments.

VI. DISCUSSION

It is interesting to compare our model and its output with
a different eikonal model recently proposed by KMR[14]
extending earlier versions[15]. The two models were con-
structed with very similar goals but are fundamentally differ-
ent in their conceptual theoretical input, data analysis and out-
put results.
1) The input of KMR is a conventional Regge model in which
high mass diffraction, initiated by Pomeron enhanced dia-
grams, is included. GLM is a phenomenological parametriza-
tion in which we assume diffraction to be strictly Good-
Walker type, with no high mass diffraction distinction. We
formulate our input in a general form consistent with Regge,
but not exclusively so. Our statistically preferred non factor-
izable Model B(2) is compatible with a partonic interpretation
which considers the soft ”Pomeron” to be a low Q2 high den-
sity limit of the hard Pomeron[11]. The GLM ”Pomeron” is
not a Regge simple J-pole, it does not include Pomeron en-
hanced diagrams, which are essential in the construction of
KMR.
2) Since multi-Pomeron vertices are included in KMR, they
had to fix α′ = 0. In order to maintain the experimentally
observed forward t-cone shrinkage, they constructed a high
absorption eikonal model in which the input is non conven-
tional ∆ = 0.55. With this input, KMR obtain an approxi-
mate DL behavior[16] in the ISR-Tevatron range. However,
at higher energies their effective ∆ becomes monotonically
smaller (its value in the Tevatron-LHC range is reduced to
0.04) which results in a very slow rise of σtot and σel . GLM
is a weak screening eikonal model. Its fitted input is ∆ = 0.15
and C = α′ = 0.17. With this input, GLM total cross sections
are compatible with DL over the wide ISR-GZK range.
3) The goal of both GLM and KMR is to adjust the model
parameters of their vacuum t exchange ”Pomeron” input, so
as to predict and calculate observables and factors of inter-
est at the LHC and Cosmic Rays. Both models adjust more
than 10 free parameters. Only CERN-UA4 and Tevatron en-
ergies are sufficiently high to justify neglecting the contribu-
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tion of the secondary Regge sector. This limited data base is
not sufficient to adjust the ”Pomeron” free parameters. GLM
chose, therefore, to construct a model containing also the sec-
ondary Regge sector and fit the extended data base spanning
the ISR-Tevatron energy range. KMR constrain their param-
eter adjustment to the small data base of the highest energies.
In our opinion the KMR procedure is not adequate. Indeed,
their reconstruction of dσel

dt at the 3 highest available energies
is remarkably similar to a fit they made a few years ago with
different parameters, notably a conventional ∆ input.
4) GLM and KMR determine their input opacities in com-
pletely different procedures which define their (different) data
bases. GLM approach is a model which takes into account
diffractive re-scatterings of the initial projectiles to reconstruct
properly the diffractive cross sections, which are, thus, in-
cluded in its fitted data base. KMR goal is to reconstruct
ael(s,b) for which the diffractive components are needed. To
this end they fit dσel

dt neglecting an explicit fit of the diffrac-
tive channels. Obviously, combining both GLM and KMR
data bases is advisable. Regretfully, we were unable to ob-
tain good simultaneous reproduction of such an extended data
base. The question, is thus, which model provides a better ap-
proximation for the input opacities.
5) The b-distributions of ael(s,b) in GLM are significantly
different from KMR. GLM obtains a relatively wide b dis-
tribution compared with a narrower one in KMR. ael(s,b = 0)
in KMR is consistently larger than in GLM, approaching the
black disc bound much faster than in GLM. Regardless of
these differences, the corresponding values of σtot and σel in
both models in the UA4-Tevatron range are compatible. Such
compatibility can exist only over a relatively narrow energy
band and it cannot persist over a wide energy range. Indeed,
the two models have different LHC and Cosmic Rays predic-
tions, which hopefully will be tested soon. Our inability to
reproduce dσel

dt outside the narrow forward t cone implies a
deficiency in our ael at large b. It is not clear if this defi-
ciency is reponsible for the small S2

H obtained in our Model
B(2). Note, that even though our factorizable Model B(1) has
the same feature of spurious dips outside the very forward at t
cone, its predicted S2

H is 0.02 which is compatible with KMR.
6) In our opinion, the data adjustment procedure adopted by
KMR are not adequate. Our approach is to quantify our fit
by minimizing its χ2. KMR rejects any statistical approach to
their data analysis. They tune many of their parameters by eye
and refrain from a quantified assessment of their output. The
difference between the procedures adopted by the two groups
is cardinal, as one is unable to make a systemic evaluation of
the KMR output.
7) The difference between the S2

H predictions of GLM and
KMR are intriguing and reflects the sensitivity of S2

H to
each model input. S2

H is calculated as a convolution of the
hard amplitude for Higgs production and the soft probability
PS

i,k(s,b). The hard amplitude features needed for this cal-
culation in our model are the hard slopes BH

el , BH
in and cross

section coefficients V 2
p→p V 2

p→d , determined from the HERA
measured[12, 13] in J/Ψ photo and DIS elastic and inelastic
production. Our sensitivity to these parameters is shown in
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FIG. 3: The dependence of S2 at the LHC on BH
el and BH

in, the slopes
for the hard cross sections.

Fig. 3. Note that when we change the value of BH
in, we keep

the ratio V 2
p→d/BH

in unchanged. Doing so we do not change the
cross section of the reaction γ+ p→ J/Ψ+X(M ≤ 1.6 GeV).
KMR calculation is simpler in as much as they consider just
the elastic hard slope. In our opinion there is a gap between
the sophistication of KMR soft model and the simplicity of
their hard approximation. Since S2

H is obtained from a convo-
lution of the two terms it is not clear what is the contribution
of KMR hard term to the margin of error in their calculation
of S2

H .
KMR estimate its margin of uncertainty to be a factor of

2.5. Since our uncertainty derives from similar, though not
identical, sources, our assessment is similar. As we saw, both
GLM and KMR models are partially deficient. We noted that
these are based on the different conceptual constructions and
data analysis procedures of the two models. A discrimina-
tion between the two models depends on experimental results
which are expected to become available within the next few
years. In the following we list a few:
1) GLM predictions for σtot and σel at the LHC are 20%
higher than the corresponding KMR values. This is a fun-
damental difference since the output energy dependence of
GLM, which is a weak screening model, is compatible with
an effective ∆ = 0.08 all through the Tevatron-GZK energy
range. In the KMR model the effective ∆ is reduced rapidly
due to the very strong screening which is inherent to this
model. Hence, the KMR cross sections grow very moderately
above the Tevatron energy.
2) The difference between the two models becomes more dis-
tinguished at Cosmic Rays energies. This may be checked by
the Auger experiments where we expect soon some cross sec-
tion results at energies spanning up to W = 100-150 TeV .
3) A basic feature particular to the KMR model is a contribu-
tion to diffraction which originates from the Pomeron induced
diagrams which are not contained in GLM. As a result, both
σsd and σdd predicted by KMR are larger than GLM. These
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differences are very significant for the DD channel where the
KMR prediction at LHC is almost a factor of 3 larger than
GLM. Note, that since diffraction in GLM is Good-Walker
type, our predicted elastic and diffractive cross sections sat-
isfy the Pumplin bound[17], σel(s,b) + σdi f f (s,b) ≤ 1

2 σtot .
This bound does not apply to KMR, in which a significant
part of its diffractive cross section originates from Pomeron
enhanced contributions.
4) An estimate of S2

H value can be obtained, at an early stage
of LHC operation, through a measurement of the rate of cen-
tral hard LRG di-jets production (a GJJG configuration) cou-

pled to a study of its expected rate in a non screened pQCD
calculation.
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