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The Kullback-Leibler distance (or relative entropy) is applied in the analysis of functional magnetic resonance
(fMRI) data series. Our study is designed for event-related (ER) experiments, where a brief stimulus is presented
and a long period of rest is followed. In particular, this relative entropy is used as a measure of the “distance”
between the probability distributions p1 and p2 of the signal levels related to stimulus and non-stimulus. In order
to avoid undesirable divergences of the Kullback-Leibler distance, a small positive parameter δ is introduced
in the definition of the probability functions in such a way that it does not bias the comparison between both
distributions. Numerical simulations are performed so as to determine the probability densities of the mean
Kullback-Leibler distance D (throughout the N epochs of the whole experiment). For small values of N (N < 30),
such probability densities f (D) are found to be fitted very well by Gamma distributions (χ2 < 0.0009). The
sensitivity and specificity of the method are evaluated by construction of the receiver operating characteristic
(ROC) curves for some values of signal-to-noise ratio (SNR). The functional maps corresponding to real data
series from an asymptomatic volunteer submitted to an ER motor stimulus is obtained by using the proposed
technique. The maps present activation in primary and secondary motor brain areas. Both simulated and real
data analyses indicate that the relative entropy can be useful for fMRI analysis in the information measure
scenario.
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I. INTRODUCTION

The functional magnetic resonance imaging (fMRI) is one
of the main techniques for mapping human brain activity in a
noninvasive way [1]. This technique allows to assess cogni-
tive functions with high spatial and temporal resolution imag-
ing. Neural activity due to stimulation causes an increase of
the blood flow and oxygenation in the local vasculature. The
blood oxygenation level dependent (BOLD) contrast of the
image is induced by changes in relative concentrations of oxy
and deoxy-hemoglobin [2–4]. The BOLD signal is the re-
sponse of the application of an experimental protocol (known
as paradigm) which is composed of periodic changes between
stimulus and non-stimulus of different brain areas. The result
of such an experiment is a time series corresponding to the sig-
nal for each voxel. In the processing of fMRI time series, sev-
eral methods that separate the physiologically induced signals
(corresponding to active voxels) from noise (non-active vox-
els) have been employed. Deterministic methods quantify the
similarity between the time series of each voxel with a hemo-
dynamic response function (HRF) model. On the other hand,
statistical methods can infer how significative is the difference
between the signals corresponding to periods of stimulation
and non-stimulation but do not need a priori knowledge of the
form of the HRF. In the late years, methods based on informa-
tion measures, such as the Shannon and Tsallis entropies and
the generalized mutual information, have been employed as
alternatives for the conventional analysis of fMRI data [5–9].

These informational methods also present the advantage of
not requiring a HRF model.

In this context, we now propose to use the Kullback-Leibler
distance (or relative entropy) as an information measure to
analyse fMRI data series. Our study is designed for event-
related (ER) paradigms, where stimulation is presented in a
short period of time and followed by a long period of rest.
Like other informational methods, the proposed technique
only considers the general structure of the signal and needs
no HRF model. Indeed the relative entropy is able to quantify
the difference between the probability distributions p1 and p2
of the states of the BOLD signal acquired during periods of
stimulation and rest, respectively. The sample average of the
Kullback-Leibler distance is elected as the statistic for test-
ing the null hypothesis that a voxel is non-active (noise). The
probability distributions of the test statistic are numerically
determined by Monte Carlo simulations and found to be fitted
very well by Gamma distributions. The sensitivity and speci-
ficity of the method are computed for different signal-to-noise
ratios (SNRs). Finally, the proposed technique is applied to
real data series (from an asymptomatic volunteer submitted to
an ER motor stimulus) in order to determine the correspond-
ing activation map. Our results from both simulated and real
data indicate that the technique can be in fact a very good op-
tion for fMRI analysis.
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II. RELATIVE ENTROPY

In information theory, the relative entropy is a measure of
the “distance” between the probability functions p1 and p2 of
two discrete random variables X1 and X2, respectively. This
information measure is also known as the Kullback-Leibler
distance (D) and defined as [10]

D =
L

∑
j=1

p1 j log2

(
p1 j

p2 j

)
, (1)

where pi j is the probability that Xi assumes the j-th value from
its set of L elements. The logarithm is taken to base 2 so as
the entropy is measured in bits.

Relative entropy is not symmetric and is always non-
negative. It is zero if and only if p1 = p2. It

should also be noted that lim
p1 j→0

p2 j 6=0

p1 j log2

(
p1 j

p2 j

)
= 0 whereas

lim
p2 j→0

p1 j 6=0

p1 j log2

(
p1 j

p2 j

)
= ∞ .

The relative entropy of the time course s(t) of a signal (from
real or even simulated data) is proposed to be calculated as
follows. Consider one single event-related trial (also named
epoch). During that epoch the time course s(t) of the (sim-
ulated) BOLD signal of an active voxel exhibits a peak and
then returns to a baseline level (Fig.1). As for the calculation
of Shannon entropy in a previous work [7], an entire epoch
(window W ) of the experiment is divided into two time inter-
vals: half windows W1 (related to the signal increase) and W2
(corresponding mainly to baseline values). The probability
distribution of signal levels (p1) corresponding to the BOLD
response in the first time period is clearly expected to differ
from that one (p2) corresponding to the baseline signal values
so that the relative entropy within this epoch is calculated as
a measure of the “distance” between p1 and p2. In this way
we consider the discrete sets S1 = {s(tk),k = 1,2, ...,n1} and
S2 = {s(tl), l = n1 +1,n1 +2, ...,n1 +n2} of signal amplitudes
measured at n1 instants (t1 < t2 < ... < tn1) within period W1
and n2 instants (tn1+1 < tn1+2 < ... < tn1+n2) within period W2,
respectively. In order to compute the probability functions p1
and p2, the accessible states of the system are then defined in
terms of subdivisions of the interval of variation of the sig-
nal amplitude [5]. Consider the whole set S = S1 ∪ S2 and
let s0 = min [S] and sL = max [S] be the inferior and superior
limits of S, respectively. An equipartition of S is defined by
the amplitude values s0,s1 = s0 + ∆s,s2 = s0 + 2∆s, ...,sL =
s0 + L∆s where L is the number of subdivisions (levels) and
∆s = (sL− s0)/L. It is assumed that each subdivision cor-
responds to a possible state of the system. Each integer j
from the label set ζ = {1,2, ...,L} refers to the the j-th dis-
joint interval I j which is defined as [s j−1,s j) (for j ≤ L− 1)
and [sL−1,sL] (for j = L).

As already noted, the relative entropy might diverge in the
limit p2 j → 0 (for p1 j 6= 0). From a practical point of view, this
undesirable divergence would be susceptible to occur if the
probability function p2 were allowed to assume null values. In

order to avoid such divergence, we introduce a small positive
parameter δ (0 < δ ≤ 1) in the definition of the probabilities
of the signal levels,

pi j =
ni j +δ
ni +Lδ

, (2)

where ni j =
∣∣Si∩ I j

∣∣ is the number of points within window
Wi (i = 1,2) and level I j ( j = 1,2, . . . ,L) and ni = |Si| is the
whole number of points in window Wi. In the above defini-
tion, the condition ∑L

j=1 pi j = 1 is clearly satisfied whereas if
δ→ 0+ then pi j → ni j

ni
so that one recovers the usual meaning

that pi j is the probability of occupation of level I j (within Wi),
i.e., the relative frequency of points on I j. Furthermore, eq.
2 might be interpreted as the relative frequency of points on
level I j (within Wi) given that a fractionary point (of weight
δ) is equally placed on each level I j of both windows W1 and
W2. In this sense, the introduction of parameter δ does not
bias the comparison between distributions p1 and p2 since it
still remains balanced.

FIG. 1: Time course of the BOLD signal in a single activated voxel.
The plot illustrates the set of points within the time interval related
to signal increase (W1) and the set of points within the second time
interval (W2) corresponding mainly to baseline values. The intervals
I1, I2, ..., IL define the accessible levels (states) of the signal.

III. SIMULATED DATA ANALYSIS

The simulated time series s(t) is composed of a hemody-
namic response function h(t) and a gaussian noise η, i.e.,
s(t) = h(t) + η. The exact hemodynamic response function
that follows neuronal activity in an ER-fMRI paradigm de-
pends on many variables [11] but in general the BOLD re-
sponse reaches a maximum soon after a brief stimulation (4
to 5s) and then decays to the baseline level (at about 20s af-
ter stimulus). Pre-undershoot and a post-undershoot signals
are sometimes observed [12]. In our simulations, we use a
fisiologically reasonable model for the HRF which was pro-
posed by Friston [13] and consists of the difference between
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two gamma functions,

h(t) =
( t

d

)a
exp

(
d− t

b

)
− c

( t
d′

)a′
exp

(
d′− t

b′

)
, (3)

where d = ab is the time corresponding to the peak and d′ =
a′b′ is the time for the undershoot, with a = 6, a′ = 12, b =
b′ = 0.9 and c = 0.35.

Noise η is sampled from a gaussian distribution with mean
zero and a given variance σ2

n. Otherwise the variance σ2
s of the

signal h(t) is evaluated once along time and is the same for
all simulations. Time courses s(t) are simulated for different
values of SNR (signal-to-noise ratio) which is usually defined
as

SNR = 10log
[

σ2
s

σ2
n

]
(4)

and measured in decibels (dB).
Following the same parameters used in the real ER-fMRI

experiment (see section IV), each simulated time course s(t)
consists of N = 24 epochs. For each epoch, n1 = n2 = 7 signal
amplitudes are simulated within windows W1 and W2. Some
time series s(t) simulated for different signal-to-noise ratios
(-4dB, 0dB, 4dB and 8dB) are plotted in Fig. 2.

FIG. 2: Plot of some time courses s(t) = h(t)+ η simulated for dif-
ferent SNR’s.

To determine the probability functions p1 and p2, we have
chosen the parameters L = 2 and δ = 0.1 for evaluation of eq.
2. As we shall see, that choice for δ leads to optimum results.
The Kullback-Leibler distance D must be computed within
each epoch. The mean Kullback-Leibler distance D is the
sample average of the N distances computed along the whole
time course. We perform Nexp = 106 simulations of the whole
time series. Results from simulations show that the Kullback-
Leibler distance D exhibits a discrete probability distribution
with periodic peaks. On the other hand, the probability den-
sity of the mean distance, f (D), is observed to approach a

continuous distribution for large values of N. According to
the central limit theorem, f (D) tends to a Gaussian distribu-
tion as N → ∞. However, for small values of N (N < 30), we
have found that the probability densities f (D) can be fitted
very well by Gamma distributions,

f (D)≈ D(α−1)

βαΓ(α)
exp

(
−D

β

)
, (5)

where α and β are parameters of the distribution related to
its mean µ = αβ and variance σ2 = αβ2. Fig. 3 presents the
probability densities f (D) corresponding to simulations for
pure noise (SNR → −∞) and some finite values of SNR (-
8dB, -4dB, 0dB and 4dB); the continuous curves correspond
to the Gamma fittings (χ2 < 0.0009) and overlap the simulated
points very well.

FIG. 3: Probability densities f (D) for simulations of pure noise and
some finite values of SNR with parameters N = 24, n1 = n2 = 7,
L = 2 and δ = 0.1. The continuous curves corresponding to Gamma
fittings (χ2 < 0.0009) overlap the simulated points.

The mean Kullback-Leibler distance D is elected as the sta-
tistic for testing the null hypothesis H0 that the time course
s(t) in a particular voxel is pure noise (non-active voxel)
against the alternative hypothesis H1 that s(t) is composed of
both BOLD signal and noise with a given signal-to-noise ratio
(active voxel).

A signal detection scheme can be usually appraised by the
construction of the receiver operating characteristic (ROC)
curves [14, 15]. In the present analysis, the outcome of the
signal detection scheme is the mean distance D. Such out-
come is classified as signal (+) if the observed D belongs to a
given critical region (above some threshold Dc); otherwise it
is classified as noise (−). If f (D|−) and f (D|+) are the prob-
ability densities obtained from simulations of pure noise and
signal (with a given SNR), respectively, then the sensitivity is
defined as the probability of a true positive,

P(+|+) =
∫ ∞

Dc

f (D|+) dD , (6)

whereas the specificity is defined as the probability of a true
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negative,

P(−|−) =
∫ Dc

−∞
f (D|−) dD (7)

(the probability functions are null for D < 0). Fig. 4 illustrates
the areas under the probability distributions f (D|−) (for noise
only) and f (D|+) (for signal with SNR=-4dB) which corre-
spond to specificity and sensitivity, respectively. In hypothesis
testing, a type I error consists of rejecting the null hypothesis
H0 when it is true. The significance level αPT per test is the
probability of a type I error, i.e., αPT = P(+|−) = 1−P(−|−)
is the probability of a false positive (or 1-specificity).

FIG. 4: Areas corresponding to specificity and sensitivity under
probability densities f (D|−) (for simulated noise only) and f (D|+)
(for simulated signal with SNR=-4dB).

The ROC curve is the plot of sensitivity (probability of a
true positive) versus 1-specificity (probability of a false pos-
itive), resulting from the variation of the threshold Dc. The
ROC curves for several SNR’s are shown in Fig.5.

FIG. 5: ROC curves for different values of SNR.

The performance of the method is evaluated by its ability
to detect active brain areas with high sensitivity and speci-
ficity. Thus the higher is the concentration of points in the left

superior corner of the ROC curve graph, the better is the per-
formance. The area below the ROC curve is a way to quantify
this performance. The discriminate power of the test increases
as the ROC area varies from 0.5 (lowest value) to 1 (optimum
performance). Our simulations show that the ROC area (and
so the discriminate power) grows as SNR is increases accord-
ing to Fig. 6. Finally, we may investigate the dependence of
the power of the test with the choice of parameter δ. Fig. 7
shows that the ROC area varies smoothly with δ for various
SNR’S and that δ = 0.1 seems to be the best choice for all
studied cases.

FIG. 6: Area under ROC curve for different values of SNR.

FIG. 7: Area under ROC curve for different values of δ.

IV. REAL DATA ANALYSIS

An asymptomatic volunteer has been submitted to an event
related motor stimulus. The fMRI data were acquired in a
1.5 T scanner (Siemens, Magneton Vision) with quadrature
transmit/receive head RF coil and circular polarization com-
mercially available. The study protocol consisted of 24 re-
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peated epochs with two states: left- and right-handed finger-
tapping with duration of 3-5 seconds and 17-21 seconds of
rest. Three axial slices (Fig.8) with 4 mm of width (located
on portions of the primary motor cortex) showed 14 temporal
points throughout each epoch, three during the activity states
and eleven during the period of rest, totalizing 336 images
each slice. All images were acquired with echo-planar image
(EPI) protocol with repetition time (TR) of 1680 ms, time to
echo of 118 ms, flip angle of 90. Each slice was acquired
with field of view (FOV) of 210 mm with a matrix 128 x 128
resulting a resolution of 1,64 x 1,64. Preprocessing was car-
ried out using the Brain VoyagerTM QX (Brain Innovation
Inc., The Netherlands) software. The data analysis included
several steps as motion correction, time series image realign-
ment by the first slice as reference, spatial smoothing with a
FWHM of 4 mm and temporal filtering with a high pass filter
of 3 cycle/s.

FIG. 8: Axial Slice.

For each voxel of the image, the mean Kullback-Leibler
distance (D) of the corresponding real data series has been
computed (with parameters L = 2 and δ = 0.1). One should
remember that this processing requires no model for the HRF.
The result of such analysis are the activation maps (overlaid
onto corresponding anatomical images) for three axial slices,
as shown in Fig. 9. The maps present activation in primary
and secondary motor areas due to a motor stimulus. In order to
avoid a lot of spurious activated voxels (false positives) in the
functional maps, one should consider the Šidàk−Bon f erroni
correction [16],

αPF = 1− (1−αPT )C , (8)

where αPF is the significance level per family of tests, defined
as the probability of making at least one type I error for the
whole family of tests (i.e., for all voxels); αPT is the usual
significance level (per test) and C is the number of tests (vox-
els). For a signicance level αPF = 0.05 per family of tests, the
threshold for voxel activation is Dc = 0.9337 so that voxels
with D < Dc are decided to be non-active.

V. CONCLUSION

In summary, we have proposed the use of the Kullback-
Leibler distance (or relative entropy) as an alternative method

to analyse fMRI data series. The probability distributions of
the mean Kullback-Leibler distance (throughout the N epochs
of the event related experiment) were determined by numeri-
cal simulations. The sensitivity and specificity of the method

FIG. 9: Functional maps of three axial slices obtained by employ-
ment of Kullback-Leibler information measure. For a signicance
level per family αPF = 0.05, the threshold for voxel activation is
Dc = 0.9337 so that voxels with D < Dc are cut off (non-active).

were evaluated by construction of ROC curves for different
SNR’s. The functional map corresponding to real data se-
ries from an asymptomatic volunteer submitted to an ER mo-
tor stimulus was obtained by using the proposed technique.
Our results from both simulated and real data indicate that the
technique can be a very good option for fMRI analysis. As
a further study, the use of the generalized Kullback-Leibler
distance in fMRI analysis might be considered.
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