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The Spin-1/2 Ising Model with Skew Magnetic Field at High Temperatures
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3Departamento de Fı́sica Teórica, Instituto de Fı́sica,
Universidade do Estado do Rio de Janeiro,

R. São Francisco Xavier no 524,
CEP- 20559-900, Rio de Janeiro-RJ, Brazil

4Instituto de Fı́sica, Universidade Federal Fluminense,
Av. Gal. Milton Tavares de Souza s/no,

CEP 24210-346, Niterói-RJ, Brazil
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We calculate the thermodynamics of the one-dimensional spin-1/2 Ising model in the presence of a constant
skew magnetic field. We obtain the high-temperature expansion of its Helmholtz free energy (HFE), for the
ferromagnetic and antiferromagnetic cases, up to order β7. This expansion permits us to obtain the behaviour
of the model for |J|β <∼ 1, when it cannot be described by its classical version. Among the calculated ther-
modynamical functions of the model, we have the diagonal elements of the magnetic susceptibility tensor for
the transverse and logitudinal Ising models, obtained by taking the limits hz → 0 and hy → 0, respectively, of
the β-expansion of the HFE. The y-component of the magnetization and the χyy component of the magnetic
susceptibility tensor are almost the same for the antiferro- and ferromagnetic models, at least for |J|β <∼ 1; and,
χyy is practically independent of the direction of the external magnetic. We also show that, in this region of
temperature, the thermodynamics of the Ising model with skew magnetic field and that of an XXZ model with
longitudinal magnetic field are not similar.

Keywords: Quantized spin models; Spin chain models; Lattice theory and Statistics of Ising model; High temperature
expansion

I. INTRODUCTION

The spin-1/2 Ising model with nearest-neighbor interac-
tions is certainly one of the simplest one-dimensional class
of models. In spite of its simplicity, it has some agreeable
features. For either a purely longitudinal or purely transversal
external magnetic field, it becomes exactly solvable. The ex-
act thermodynamics of the longitudinal case was calculated in
1925 by Ising in his original paper[1]. In 1941 Kramers and
Wannier[2] reobtained the exact thermodynamics of the Ising
model in the presence of a longitudinal magnetic field by us-
ing the transfer matrix approach extended to the planar model.
Pfeuty[3] derived in 1970 the exact thermodynamics of the
transversal Ising model, calculating its free energy; he showed
the equivalence of this model to a system of noninteracting
fermions, by a set of suitable transformations. One interest-
ing aspect of the transversal model is its conformal invariance
for a finite interval of temperature (including T = 0 K), in
which it has a quantum critical point (QCP)[4]. We should
mention that the exact HFEs of the Ising model with longitu-
dinal (hy = 0) or transversal (hz = 0) constant magnetic fields
are not enough to determine all the elements of the magnetic
susceptibility tensor; a more complete picture requires infor-
mation on intermediary orientations of the magnetic field with
respect to the easy-axis.

However the one-dimensional Ising model in the presence
of a magnetic field with both longitudinal and transversal
components (a skew magnetic field) is not exactly soluble:
the presence of both components of the magnetic field sim-
ply destroys its integrability. As an unhappy consequence, the
powerful “Bethe ansatz”[5] cannot yield the exact thermody-
namics of the model. The ferromagnetic version of the model,
at T = 0 K, was studied by Fogedby[6] in the seventies. More
recently, Ovchinnikov et al. studied the phase diagram, at
zero temperature, of the Ising model in the presence of a skew
magnetic field[7] and showed the existence of a critical line
that separates the antiferromagnetic and paramagnetic states.
The classical limit of this model also presents a critical line
between these two states.

Among the new materials intensively researched in the last
decade, the so-called single-chain magnets (SCM) exhibit
strong uniaxial anisotropy at nanometric scale, thus represent-
ing the possibility of high-temperature metastable magnetic
properties that would qualify those materials as prototypes for
molecular memory devices. In particular, the heterometal-
lic MnIII and NiII chain is an example of a SCM with one-
dimensional behaviour up to very low temperatures[8]; there
is a region of temperature for which its local intra-trimer ex-
citations are inactive, and the effective ferromagnetic chain
behaviour that arises can be described by the one-dimensional



124 E. V. Corrêa Silva et al.

spin-1/2 Ising model. It is certainly interesting to have ana-
lytic expansions of the thermodynamical functions of the Ising
model to fit the data for arbitrary orientation of the external
magnetic field. This kind of knowledge permits looking for
new features of the material at finite temperatures.

The aim of the present communication is to study the ther-
modynamics of both the ferromagnetic and antiferromagnetic
cases of the one-dimensional spin-1/2 Ising model in the pres-
ence of a skew magnetic field in the region of temperature of
|J|β <∼ 1, where β = 1/kT , k is the Boltzmann constant, T
is the absolute temperature in Kelvin and J is the coupling
strength between first-neighbour z-components of spin (see
the Hamiltonian (1)).

In section II we present the Hamiltonian of the one-
dimensional spin-1/2 Ising model in the presence of a mixed
magnetic field. In section III we study the thermodynamics
of this model by applying the method of Ref. [9] directly to
the Hamiltonian (1). The thermodynamical functions of the
model depend on the sign of J/|J|, on the norm of the mag-
netic field, on its angle θ with respect to the easy-axis, and on
the temperature. One of our aims is to explicitly verify if for
|J|β <∼ 1 there is any trace of the at T = 0 K phase transition of
the antiferromagnetic model. In subsection III A such even-
tual trace is sought by fixing the norm of the magnetic field
and varying the angle θ. Its norm is such that for T = 0 K
and θ ∈ [0,θC], the system is in the antiferromagnetic state,
and for θ larger than the critical angle θC (still at T = 0 K)
the system crosses the critical line of the phase diagram, pre-
sented in Ref. [7]. In this subsection we consider the behav-
iour of various thermodynamical quantities as functions of θ
for a constant temperature. In subsection III B, we study the
dependence of the thermodynamical functions on the temper-
ature and the norm of the magnetic field and present a new du-
ality between the transversal Ising model and the XY model.
We also verify if the similarity of the Ising model with skew
magnetic field and the XXZ model with longitudinal mag-
netic field survives in the region of high temperatures. In sec-
tion IV we present our conclusions. Appendix A contains the
high temperature expansion of the HFE for the spin-1/2 Ising
model in the presence of a mixed constant external magnetic
field, up to order β7.

II. THE SPIN-1/2 ISING MODEL WITH SKEW
MAGNETIC FIELD

The Hamiltonian of the one-dimensional spin-1/2 Ising
model in the presence of an external constant magnetic field
with arbitrary orientation is

H =
N

∑
i=1

(
JSz

i S
z
i+1−hySy

i −hzSz
i
)
, (1)

where Sy
i = σy/2 and Sz

i = σz/2, where σy and σz are the Pauli
matrices. The coupling constant J can be either positive (anti-
ferromagnetic model) or negative (ferromagnetic model). The
chain has N spatial sites and it satisfies periodic spatial bound-
ary conditions. Due to the symmetry of the Hamiltonian along

the z-direction (the easy-axis of the chain), the most general
constant external magnetic field that we must consider can be
written as h = hy ĵ +hzk̂, where the components hy and hz are
positive constants.

The method of Ref. [9] has been applied directly to the
Hamiltonian (1) to yield the high temperature expansion of
its HFE, in the thermodynamical limit (N → ∞), up to order
β7. This expansion is presented in appendix (A).

From the expansion (A.1) we verify that: i) the HFE (A.1)
is an even function of the y and z components of the external
magnetic field; ii) the HFE is sensitive to the sign of J (thus
distinguishing between the ferromagnetic and antiferromag-
netic cases) only for non-zero values of hz. Even for hz = 0
there are thermodynamical functions that can distinguish one
model from the other (e.g., the first-neighbour z-component
spin correlation function and the zz-component of the mag-
netic susceptibility tensor).

Substituting hy = 0 or hz = 0 in the expansion (A.1) recov-
ers the thermodynamics of the corresponding limiting cases of
the Hamiltonian (1), given in Refs. [2] and [3], respectively.

III. THERMODYNAMICAL FUNCTIONS AT HIGH
TEMPERATURES

One can obtain the exact HFE of the one-dimensional spin-
1/2 Ising model for two specific configurations of the external
magnetic field; namely, the longitudinal[2] and transverse [3]
ones. But that information, by itself, is not enough to infer
the thermodynamic behavior for intermediary configurations
of the magnetic field.

Our aim is to compare these thermodynamical functions for
the ferro- and antiferromagnetic models, keeping the norm of
the external magnetic field fixed, but letting its spatial orien-
tation vary; i.e., by considering a magnetic field of the form

h = h sin(θ) ĵ +h cos(θ)k̂, (2)

where h = |h| is the constant norm and θ∈ [0,π/2] is the angle
between h and the z-axis.

A. Crossing the critical line at T = 0 K

The spin-1/2 Hamiltonian (1) has been studied at
T = 0 K for the ferromagnetic[6] (J/|J| = −1) and the
antiferromagnetic[7] (J/|J| = 1) cases. The ground-state
phase diagram [7] of the antiferromagnetic model in the pres-
ence of a skew magnetic field has a critical line that separates
the antiferromagnetic and paramagnetic states.

It is a well-known (exact) result that the spin-1/2 Ising
model has no phase transition at finite temperature, for a
purely longitudinal or transversal magnetic field. It is cer-
tainly interesting to verify explicitly the behaviour of the Ising
model in a skew magnetic field at finite temperature, when the
critical line at T = 0 K is crossed. We do so in this subsection
by choosing |J|β = 0.7 (which is not such a high tempera-
ture) and h/|J| = 0.53, since for the T = 0 K antiferromag-
netic (J/|J| = 1) case the critical line in the phase diagram is
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FIG. 1: (a) The specific heat per site; (b) the internal energy per
site. The curves are plotted as functions of θ, the angle between the
external magnetic field vector and the easy-axis. The norm of the
magnetic field, in units of |J|, is kept constant as 0.53. The angle θ
varies in the interval [0,π/2] and |J|β = 0.7.

indeed crossed, for θ ∈ [0,π/2]. Each plot that follows com-
pares the behaviour of ferromagnetic and antiferromagnetic
cases under rotation of the magnetic field.

In the following figures we use the convention that the dot-
ted (or dashed) and solid lines correspond to the ferromagnetic
and to the antiferromagnetic model, respectively.

We begin the discussion of the thermodynamical func-
tions of this model by the specific heat per site C1/2(β) ≡
−β2 ∂2(βW1/2)

∂β2 , plotted in Fig.(1a) as a function of θ. At θ = 0
(longitudinal magnetic field) and θ = π/2 (transverse mag-
netic field) we have

dC1/2
dθ = 0. The second derivative of this

thermodynamical function is different at those two values of θ
for the two models, but for each of them there is a single value
θ̄, that depends weakly on the value of β and on the model,

where
d2C1/2

dθ2 |θ=θ̄ = 0. The curve of the specific heat per site
is a monotonically decreasing function of θ for the antifer-
romagnetic model, whereas it is a monotonically increasing
function for the ferromagnetic model in the same interval of θ
for |J|β <∼ 1. For each curve, the concavity changes only once;
the value of θ̄ is slightly different for the two models.

The internal energy per site ε1/2(β)≡ ∂(βW1/2)
∂β is plotted in

Fig. (1b). At θ = 0 and π/2 we have
dε1/2

dθ = 0 for both mod-
els. The concavity of each curve changes at a single value of
θ̄ which depends weakly on the value of |J|β, and is slightly
different for the two models. For |J|β <∼ 1, the internal energy
of the antiferromagnetic model is a monotonically decreas-
ing function of θ whereas for the ferromagnetic model it is
monotonically increasing.

The ferromagnetic and antiferromagnetic cases for the two
thermodynamical functions in Fig. (1) coincide at θ = π/2
(transversal magnetic field) since the HFE of the Hamil-
tonian (1) with a transverse magnetic field (hz = 0) is insensi-
tive to the sign of J.

Fig. (2a) shows the first-neighbour z-component spin cor-
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FIG. 2: (a) The first-neighbour z-component of spin correlation func-
tion. (b) The entropy for the ferromagnetic (J/|J|=−1) and antifer-
romagnetic (J/|J|= 1) models under the same conditions as those of
Fig. (1). Both thermodynamical functions are plotted as functions of
θ ∈ [0,π/2].

relation function 〈Sz
i S

z
i+1〉(β) ≡ ∂W1/2

∂J for J/|J| = 1 (antifer-
romagnetic case) and J/|J| = −1 (ferromagnetic case). For
both curves we have d〈Sz

i S
z
i+1〉/dθ = 0 at θ = 0 and π/2. As

it should be, this correlation function decreases for the two
models as θ increases. The concavity of the curves changes
for a single value of θ̄, that depends weakly on |J|β and on
the model. Only for θ = π/2, we have that 〈Sz

i S
z
i+1〉|J/|J|=1 =

−〈Sz
i S

z
i+1〉|J/|J|=−1, at least in the region |J|β <∼ 1 and for

h/|J| <∼ 0.7.

The entropy per site S1/2(β) ≡ β2 ∂W1/2
∂β for the ferromag-

netic and antiferromagnetic models is plotted in Fig. (2b). The
first derivative of the function S1/2 with respect to θ is zero at
θ = 0 and π/2. This thermodynamical function at θ = π/2 is
also the same for J/|J| = ±1, because, at this orientation of
the magnetic field, the HFE is an even function of J. Again,
the concavity of the curves, for both models, changes for a
single value θ̄ that depends weakly on |J|β and on the model.

The y and z components of the magnetization per site,

M (1/2)
y (β)≡− ∂W1/2

∂hy
and M (1/2)

z (β)≡− ∂W1/2
∂hz

are presented

in Figs. (3). Fig. (3a) shows that M (1/2)
y (θ) is almost the same

for both models, at least for |J|β <∼ 1 and h/|J| <∼ 0.7. The
percentual difference between them is smaller than 3% for
θ ∈ [0,π/2] and the largest difference occurs around θ = 0.
This difference decreases as the value of |J|β decreases. For
θ∼ 0, we have M (1/2)

y (θ)≈ aθ, and the coefficient a depends
on β. At θ = π/2 we have dM (1/2)

y (θ)/dθ = 0, for J/|J|=±1.
On the other hand, M (1/2)

z differs for the two cases (see
Fig. (3b)), except at θ = π/2. Around θ = π/2, M (1/2)

z is a
linear function of θ: M (1/2)

z ≈ b(π/2−θ). The coefficient b
depends on the value of β and on the model. We also have
dM (1/2)

z (θ)/dθ = 0 at θ = 0.
The last thermodynamical function to be discussed is the

magnetic susceptibility tensor χ(1/2)
i j (β) ≡ − ∂2W1/2

∂hi∂h j
, where
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FIG. 3: The M 1/2
y and M 1/2

z components of the magnetization per
site, in (a) and (b), respectively, as functions of the angle θ between
the vector magnetic field and the z-axis. Here, |J|β = 0.7 and h/|J|=
0.53.
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FIG. 4: (a) The element χ1/2
yy of the magnetic susceptibility tensor

versus θ, for the antiferromagnetic and ferromagnetic models, under
the same conditions as the previous figures. (b) The corresponding
percentual difference of χ1/2

yy , comparing the ferro- and antiferromag-
netic models.

i, j∈{y,z}. Fig. (4a) shows the component χ(1/2)
yy as a function

of θ; even at |J|β = 0.7, this function for the ferromagnetic
model (dashed line) is almost constant for θ ∈ [0,π/2]. The
percentual difference of the two curves is shown in Fig. (4b);
the two models have a similar value of χ(1/2)

yy for any direc-
tion of the external magnetic field. At |J|β = 0.7, the largest
percentual difference of this element of the magnetic suscepti-
bility tensor is 3% for the two models for h/|J| <∼ 0.7. At θ = 0
we have χ(1/2)

yy 6= 0, for J/|J|=±1. This last result cannot be
derived from the HFE of the model known in the literature[2].
The non-zero contributions to χ(1/2)

yy (0) come from terms in
the expansion (A.1) of the type J2ph2

y , where p = 0,1,2 and

3. For J/|J|=±1, we also have dχ(1/2)
yy /dθ = 0 at θ = 0 and

π/2, and at θ = π/2 the component χ(1/2)
yy is the same for the
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FIG. 5: (a) χ1/2
zz versus θ for the antiferromagnetic (J/|J| = 1) and

ferromagnetic (J/|J| = −1) models, with |J|β = 0.7 and h/|J| =
0.53. (b) χ1/2

yz , under the same conditions.

ferro- and antiferromagnetic models.

Fig. (5a) shows the zz-component of the magnetic suscep-
tibility tensor of the two models. The interesting point about
this graph is that at θ = π/2 the value of the χ(1/2)

zz is non-
zero and is different for J/|J| = ±1. We point out that, in
both ferro- and antiferromagnetic cases, the expansion (A.1)
shows that the rotation of the magnetic field up to the θ = π/2
configuration (i.e., a purely transverse magnetic field) yields a
non-vanishing χ(1/2)

zz . This result cannot be derived from the
exact HFE of Ref. [3]. For the ferro- and antiferromagnetic
models in the presence of a mixed magnetic field we have
dχ(1/2)

zz (θ)/dθ = 0 at θ = 0 and π/2. The function χ(1/2)
zz (θ) for

the antiferromagnetic model is almost constant for θ∈ [0,π/2]
for |J|β <∼ 1 and h/|J| <∼ 0.6, in which our β-expansion is
sound. The non-null contributions to χ(1/2)

zz (θ) that give dif-
ferent contributions for the ferro- and antiferromagnetic mod-
els come from the terms in the β-expansion (A.1) of the type
Jph2

z , where p = 0,1, · · · ,6.

Fig. (5b) shows χ(1/2)
yz (θ) for the two models; although it is

not zero, from Figs. (5) we verify that the non-diagonal ele-
ments of the magnetic susceptibility tensor are much smaller
than the diagonal elements, for both models. We also have
χ(1/2)

yz (0) = χ(1/2)
yz (π/2) = 0 for the ferro- and antiferromag-

netic models. We are able to calculate all the elements of the
tensor χ(1/2)

i j (β) only if we have the Ising model (1) in the
presence of a skew magnetic field.

In Figs. (1)-(5) we maintain |J|β = 0.7 and h/|J| = 0.53,
although the features described previously in the curves of the
ferromagnetic and the antiferromagnetic models, such as the
monotonically increasing/decreasing behaviour of the func-
tions for θ ∈ [0,π/2] and vanishing first derivatives at θ = 0
and/or π/2, are preserved, at least for |J|β <∼ 1 and h/|J| <∼ 0.7,
for which our expansion (A.1) is bona fide.
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B. Other aspects of the thermodynamics in the region |J|β <∼ 1

It is certainly interesting to check the behavior of the ther-
modynamics of the model described by the Hamiltonian (1)
as a function of the temperature, (or of its inverse), and its
dependence on the external magnetic field.

Figs. (6a) and Fig.(6b) show the specific heat per site as a
function of |J|β and h/|J|, respectively, at θ = 0,π/4 and π/2.
From those figures, some aspects of the specific heat can be
inferred that Fig.(1a) would not allow.

Fig.(6a) shows that the specific heat per site for |J|β <∼ 0.2
and for all values of θ ∈ [0,π/2] is independent of the model.
This is easily understandable if we observe the β-expansion of
this thermodynamical function, derived from the HFE (A.1).
From this series we obtain that the spin-1/2 Ising model in the
presence of a skew magnetic field presents a tail of the Schot-
tky peak[10] (CSch ∝ β2), for all values of θ. The coefficient of
the β2-term is independent of the sign of J. In Fig.(6a) we take
h/|J| = 0.3. The black curves in this figure present the spe-
cific heat of the ferro- and antiferromagnetic models at θ = 0;
the red curves correspond these functions at θ = π/4 and the
green curve corresponds to the specific heat at θ = π/2, which
is the same for both models.

Fig.(6b) shows the specific heat per site as a function of
h/|J|, at |J|β = 0.7, for θ = 0,π/4 and π/2. At h = 0, the
specific heat is non-null and its value is independent of the
sign of J. The black and red curves describe the specific heat
per site at θ = 0 and θ = π/4, respectively, for the ferro- and
antiferromagnetic models, and the green curve corresponds to
this function at θ = π/2, which is the same for both models.
We point out that, in contrast to the expansion in |J|β, the ex-
pansion in terms of the norm h/|J| of the magnetic field is not
exact, i.e., each coefficient in this expansion has corrections
from higher orders in β. Up to order β7, we obtain that the
specific heat for a vanishing magnetic field is

C1/2(β)|h=0 =− 17
2949120

β8 J8 +
1

6144
β6 J6− 1

256
β4 J4 +

1
16

β2 J2. (3)

The static magnetic susceptibility tensor at h = 0 has only non-
null diagonal elements. None of those elements can be derived
from the exact HFE of the longitudinal[1] or the transversal[3]
Ising models. Fig.(7) shows the yy-component of the static
magnetic susceptibility tensor (χ(1/2)

yy ) (black curve), which is

the same for both models, and the zz-component (χ(1/2)
zz ) of

the ferro- (blue dashed line) and the antiferromagnetic (blue
continuous line) model. In the region |J|β <∼ 0.3, the elements
χ(1/2)

yy and χ(1/2)
zz of both models are very close. For h = 0, our

β-expansion of the elements of this tensor are reliable up to
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FIG. 8: The components χ(1/2)
yy (blue curves) and χ(1/2)

zz (red curves)
for the purely longitudinal and transversal magnetic field configura-
tions, for h/|J| = 0.3. In (a) we have the longitudinal external mag-
netic field, parallel to the easy-axis (θ = 0); and in (b) the transversal
magnetic field, perpendicular to the easy-axis (θ = π/2).

|J|β∼ 2.
The component χ(1/2)

yy for the purely longitudinal (θ = 0)
model is non-null. It cannot be derived from the HFE of the
exact model[1]. Fig.(8a) shows χ(1/2)

yy and χ(1/2)
zz for h/|J| =

0.3 and θ = 0 (purely longitudinal external field). The blue
curves represent χ(1/2)

yy of the ferro- and the antiferromagnetic
cases. The element χ(1/2)

yy of both models have very close val-
ues, up to |J|β∼ 1. There is a peak of the ferromagnetic χ(1/2)

zz
at |J|β = 1.6342.

The component χ(1/2)
zz of the purely transversal (θ = π/2)

case is also non-null. Fig.(8b) shows the diagonal components
χ(1/2)

yy and χ(1/2)
zz for h/|J|= 0.3 and θ = π/2. The blue curve

corresponds to χ(1/2)
yy , which is the same for both models; the

red curves describe χ(1/2)
zz for the ferro- and antiferromagnetic

models.
For the purely longitudinal/transversal configurations of the

magnetic field, the elements χ(1/2)
yy and χ(1/2)

zz are of the same
order of magnitude.

The one-dimensional spin-1/2 XY model,

HXY =
N

∑
i=1

(
JxSx

i Sx
i+1 + JySy

i Sy
i+1

)
, (4)

(where N, the number of sites, is even) is equivalent to two
spin-1/2 Ising models with transversal magnetic field (Hamil-
tonian (1) with hz = 0). This equivalence was demonstrated
[11] and used in the late 70’s and early 80’s to infer quantum
properties from one model based on the other [12, 13]. The
lattice spacing of the two Ising models is twice as large as that
of the XY model.

One interesting fact also to be verified is the equivalence of
the spin-1/2 XY model, whose Hamiltonian is

HXY =
N

∑
i=1

(
JSx

i Sx
i+1±2hySy

i Sy
i+1

)
, (5)

to the spin-1/2 Ising model in the presence of a transversal
magnetic field (Hamiltonian (1) with hz = 0) at finite temper-
ature. In Ref. [14] we present the HFE of the spin-S XY Z
model for an external magnetic field and with a single-ion
anisotropy term, up to order β5. This new equivalence can
be verified directly by comparing the HFE (A.1) for the spin-
1/2 Ising model with transversal magnetic field (hz = 0) to the
high temperature expansion presented in Ref. [14] for the XY
chain (Jz = 0). These HFE are calculated taking the thermo-
dynamical limit of the models; the number of sites does not
need to be even, as imposed in Ref. [11]. This new equiva-
lence could also be shown by the equality of the dispersion
relations of the two models[5, 6].

Upon finishing the study of the thermodynamics of Hamil-
tonian (1), we would like to comment on the statement in
Ref. [6] where it is claimed that at T = 0 K the spin-1/2 Ising
model with a skew external magnetic field (1) is “dynamically
quite similar” to the special case of the XY Z magnetic chain,
that is

H′ =
N

∑
i=1

(
Jx(Sx

i Sx
i+1−Sy

i Sy
i+1)+ JSz

i S
z
i+1−hzSz

i
)
. (6)

Ref. [6] suggests the existence of some relation (although un-
specified therein) between the magnetic field component hy of
the Hamiltonian (1) and the exchange parameter Jx of Eq. (6),
at T = 0 K. In order to verify whether this would still hold for
finite temperatures, we compared the thermodynamical func-
tions calculated here to their results. From the β-expansion
of the HFE for the XY Z chain model [14], we verify that it
depends only on even powers of Jx and Jy; consequently, the
Hamiltonian (6) also describes an XXZ chain in the presence
of an external magnetic field along the z-direction. In Ref.
[15] we present the high temperature expansion of the spin-S
XXZ model, with a single-ion anisotropy term and in the pres-
ence of a longitudinal magnetic field (hy = 0 and hz 6= 0), up
to order β6.

We assume a linear relation between Jx and hy, independent
of the value of β; that is, hy = aJx. In Figs. (9) we have J = 1,
Jx = 1.5 and hz = 0.5. Fig. (9a) shows the percentual differ-
ence between the HFE of the Ising model (1) and that of the
spin-1/2 XXZ model (6). This curve corresponds to the mini-
mum difference between the curves representing the HFEs of
those models, and it is obtained by choosing a = 0.7562 for
β ∈ [0,0.9]. The maximum percentual difference between the
two HFEs is 0.18% for the interval of β shown in this fig-
ure. In Fig. (9b) we plot the percentual difference between
the two models for the following thermodynamical functions
per site: the specific heat, the mean energy, the entropy, the
first-neighbour z-component of the spin correlation function
and the z-component of the magnetization, for the same set
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FIG. 9: (a) The percentual difference of the HFE for the spin-1/2
models: the Ising model with a skew magnetic field and the XXZ
chain in the presence of a magnetic field in the z-direction. (b)
The percentual difference of the specific heat, the first-neighbour Sz
correlation, the entropy, the internal energy and the magnetization.
Here, we let J = 1, Jx = 1.5, hz = 0.5 and a = 0.7562.

of constants as Fig. (9a). From these curves, we verify that
the entropy of the two models is similar, since the maximum
percentual difference in this interval of β is 1.51%. On the
other hand, the remaining functions are very distinct; for in-
stance, the first-neighbor Sz correlation and the specific heat
reach percentual differences of 53.3% and 19.35%, respec-
tively, at β = 0.9. From Fig. (9b) we can state that the thermo-
dynamics of Hamiltonians (1) and (6) are not similar, at least
in the region of |J|β <∼ 1.

IV. CONCLUSIONS

We derive the thermodynamics of the one-dimensional
spin-1/2 Ising model (ferromagnetic and antiferromagnetic
cases) in the presence of an arbitrary external constant mag-
netic field, in the high temperature region (|J|β <∼ 1). The
β-expansion of the HFE of the model is calculated up to or-
der β7. From expansion (A.1) we recover the known limiting
cases of the model with hy = 0 (longitudinal magnetic field)[2]
or hz = 0 (transversal magnetic field)[3].

In the present communication, the magnetic field vector is
supposed to have a constant norm and is rotated with respect
to the easy-axis (z-direction) by an angle θ, which varies in
the interval [0,π/2]. The phase diagram of the spin-1/2 anti-
ferromagnetic Ising model with skew magnetic field exhibits a
critical line, in the space of magnetic field components (hy,hz)
at zero temperature[7]. In the first part of the paper the norm
of the magnetic field has been chosen to be h/|J| = 0.53,
such that there exists a critical angle θc for which the zero-
temperature critical line of the phase diagram is crossed, as
θ varies. The following thermodynamical functions per site
are plotted as functions of θ, for the antiferromagnetic and the
ferromagnetic models at |J|β = 0.7: the specific heat; the in-

ternal energy; the first-neighbour Sz correlation function; the
entropy; the y and z components of the magnetization; and
the elements of the magnetic susceptibility tensor. All these
are smooth functions of θ in the interval [0,π/2]. Although
the curves are plotted for |J|β = 0.7 and h/|J| = 0.53, the
features presented and discussed in the text are preserved, at
least, up to |J|β ∼ 1 and h/|J| ∼ 0.7. In general, the curves
are monotonically increasing or decreasing functions of θ.

The y-component of the magnetization and the magnetic
susceptibility component χ(1/2)

yy of antiferro- and ferromag-
netic models are very close. The component χ(1/2)

zz for the fer-
romagnetic case is almost independent of the θ angle. Those
results are valid, at least, for |J|β <∼ 1 and h/|J| <∼ 0.7.

Our results for the elements χ(1/2)
yy and χ(1/2)

zz of the mag-
netic susceptibility tensor for the limiting cases hy = 0 and
hz = 0, respectively, could not be derived from the known HFE
in the literature[2, 3]. These elements are non-zero.

We verify that the spin-1/2 Ising model in a skew mag-
netic field presents a tail of the Schottky peak[10] that is θ-
dependent, but otherwise independent of other features of the
model. We also plot the specific heat per site versus the norm
of the magnetic field. This function does not vanish at h = 0,
and gets corrections from terms of higher orders in β from
high temperature expansion of the HFE of the model.

By explicit calculation, we verify the equivalence of the
spin-1/2 Ising model in the presence of a transversal magnetic
field and the XY chain, a different duality of the one known in
the literature[3, 11, 13].

Finally, we verified that the thermodynamics of the spin-
1/2 Ising model with a skew magnetic field is not similar
to the thermodynamics of the spin-1/2 XXZ chain, at least
in this region of temperature, contrary to what is claimed by
Fogedby[6] to hold for T = 0 K.
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APPENDIX A: THE β-EXPANSION OF THE HFE FOR THE
SPIN-1/2 ISING MODEL WITH SKEW MAGNETIC FIELD

Hamiltonian (1) describes the interaction between first
neighbours along the chain, subject to a periodic spatial con-
dition. These two features allow us to apply the method
of Ref. [9] directly to this Hamiltonian to calculate the β-
expansion of its HFE.

The HFE of the spin-1/2 Ising model in the presence of a
mixed external constant magnetic field, up to order β7, is
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W1/2(β;hy,hz) = (
17
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35840

J2 hy
2 hz

4 +
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hz

6 hy
2− 1

1792
J2 hz
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+
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8 +
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6 +
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4 +
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+
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β2 J hz

2

16
+(−hz

2

8
− J2

32
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2

8
)β− ln(2)

β
. (A.1)

The function W1/2(β;hy,hz) is sensitive to the sign of J
only if hz 6= 0. The expansion (A.1) is equally valid for
positive (antiferromagnetic case) and negative (ferromagnetic
case) values of J.

Certainly, the proper parameter in which one could rewrite
(A.1) is |J|β; therefore, the components of the external mag-
netic field are measured in units of |J|.
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