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Analysis of the Relativistic Brownian Motion in Momentum Space
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Received on 4 May, 2006

We investigate the relativistic Brownian motion in the context of Fokker-Planck equation. Due to the mul-
tiplicative noise term of the corresponding relativistic Langevin equation many Fokker-Planck equations can
be generated. Here, we only consider the Ito, Stratonovich and Hänggi-Klimontovich approaches. We analyze
the behaviors of the second moment of momentum in terms of temperature. We show that the second moment
increases with the temperature T for all three approaches. Also, we present differential equations for more
complicated averages of the momentum. In a specific case, in the Ito approach, we can obtain an analytical
solution of the temporal evolution of an average of the momentum. We present approximate solutions for the
probability density for all three cases.
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I. INTRODUCTION

Nonrelativistic diffusion processes have been the subject of
intense investigations in the last century. For instance, the
well-known Brownian motion can be described by the usual
nonrelativistic diffusion equation [1, 2]. However, recently,
several approaches have been used to model different kinds of
anomalous diffusion processes [3, 4]. In particular, the exten-
sion of the Brownian motion to the relativistic regime has been
tackled by using several approaches [5–10]. In the case of us-
ing the Langevin approach two types of Langevin equations
have been used [7–10]. One of them [7] the authors have pos-
tulated a constant diffusion coefficient and the corresponding
Langevin equation generates only one Fokker-Planck equa-
tion. Whereas, the other one [9] the authors have used the rel-
ativistic equation motions and as a consequence the relativis-
tic Langevin equation has a multiplicative noise term. In this
last case, the one to one correspondence between the Fokker-
Planck equation and the Langevin equation can not be assured
due to the different order of prescription in stochastic calcu-
lus. In fact, this Langevin equation can generate many differ-
ent Fokker-Planck equations. In the paper [9] the authors have
considered three different prescriptions which we follow them
in our work. We analyze the behaviors of the second moment
of momentum in terms of the temperature, for the stationary
solutions. For the nonstationary solutions, the second moment
is difficult to be obtained analytically. In this case, we investi-
gate some more complicated averages of the momentum. We
also present approximate solutions for the probability densi-
ties. These approximate solutions are used to investigate the
second moments.

II. FOKKER-PLANCK EQUATIONS OF THE
RELATIVISTIC BROWNIAN MOTION

In this section we recall the Fokker-Planck equations and
their stationary solutions obtained from the relativistic Brown-
ian motion [9, 10], in the laboratory frame, which are given by

∂ρ(p, t)
∂t

=
∂ ji

S/I/HK(p, t)

∂pi , (1)

where t is the time, pi are the relativistic momenta,
ji
S/I/HK(p, t) are the probability currents and the indices

are the abbreviations of Stratonovich, Ito and Hänggi-
Klimontovich, respectively. For one-dimensional case the
probability currents are given by

jS =−
[

νpρ(p, t)+D
√

γ(p)
∂

∂p

(√
γ(p)ρ(p, t)

)]
, (2)

jI =−
[

νpρ(p, t)+D
∂

∂p
(γ(p)ρ(p, t))

]
(3)

and

jHK =−
[

νpρ(p, t)+Dγ(p)
∂

∂p
(ρ(p, t))

]
, (4)

where γ(p) = (1 + p2/(mc)2)1/2. For three-dimensional case
the probability currents are given by

ji
S =−

[
νpiρ(p, t)+D(L−1)i

k
∂

∂p j

(
((L−1)T )k

jρ(p, t)
)]

,

(5)

ji
I =−

[
νpiρ(p, t)+D

∂
∂p j

(
(A−1)i

jρ(p, t)
)]

(6)

and

ji
HK =−

[
νpiρ(p, t)+D(A−1)i

j
∂

∂p j
(ρ(p, t))

]
, (7)
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where A and L are the matrices associated with the momen-
tum components [10].

The stationary solutions of Eq.(1) are obtained by setting
∂ρ
∂t = 0 and ji

S/I/HK = 0. For one-dimensional case we have

ρS(p) =
C1S exp

(
−β

√
1+ p2

m2c2

)

(
1+ p2

m2c2

)1/4 , (8)

ρI(p) =
C1I exp

(
−β

√
1+ p2

m2c2

)

(
1+ p2

m2c2

)1/2 (9)

and

ρHK(p) = C1HK exp

(
−β

√
1+

p2

m2c2

)
, (10)

where C1S, C1I and C1HK are the normalization factors, β =
νm2c2/D = mc2/(kT ), k is the Boltzmann constant and T is
the temperature. In the three-dimensional case the stationary
solutions are given by

ρS(p) =
C3S exp

(
−β

√
1+ p2

m2c2

)

(
1+ p2

m2c2

) 3
4

, (11)

ρI(p) =
C3I exp

(
−β

√
1+ p2

m2c2

)

(
1+ p2

m2c2

) 3
2

(12)

and

ρHK(p) = C3HK exp

(
−β

√
1+

p2

m2c2

)
, (13)

where C3S, C3I and C3HK are the normalization factors.

III. NORMALIZATION AND SECOND MOMENT FOR
STATIONARY SOLUTIONS

The above stationary solutions can be normalized analyt-
ically. The normalization of the stationary solutions permit
us to analyze the behaviors of the second moments in terms
of the temperature. For one-dimensional case we obtain the
following normalized solutions:

ρS(p) =

√
2πexp

(
−β

√
1+ p2

m2c2

)

2mc
√

βK 3
4
(β

2 )K 1
4
(β

2 )
(

1+ p2

m2c2

)1/4 , (14)

ρI(p) =
exp

(
−β

√
1+ p2

m2c2

)

2mcK0(β)
(

1+ p2

m2c2

)1/2 (15)

and

ρHK(p) =
exp

(
−β

√
1+ p2

m2c2

)

2mcK1(β)
, (16)

where Kν(z) denotes the modified Hankel function. The cor-
responding second moments are given by

〈
p2

m2c2

〉

S
=− 1

2
√

βK 3
4
(β

2 )K 1
4
(β

2 )

∂
∂β

{√
β
[

K 5
4
(

β
2
)K 3

4
(

β
2
)−K 1

4
(

β
2
)K− 1

4
(

β
2
)
]}

, (17)

〈
p2

m2c2

〉

I
=

K1(β)
βK0(β)

(18)

and

〈
p2

m2c2

〉

HK
=

K2(β)
βK1(β)

. (19)

In Fig. 1 we show the second moment
〈

p2

m2c2

〉
, in one di-

mension, in function of β. We see that all three cases de-

crease with β. This means that they increase with the temper-
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ature, just as in the classical case. Moreover, in the Hänggi-
Klimontovich approach the second moment has the highest
value among them, whereas in the classical case has the low-
est value. For large values of β all three cases converge to the
classical one.
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FIG. 1: Plots of the second moments
〈

p2

m2c2

〉
HK,S,I,M

in function of

β, for one-dimensional stationary processes. The symbols HK, S,
I, M correspond to the Hänggi-Klimontovich, Stratonovich, Ito and
Maxwell distributions.

In the case of three-dimensional processes we can also ob-
tain the analytical normalization factors which are given by

C−1
3S = (mc)3

√
2πβ

[
K 5

4
(

β
2
)K 3

4
(

β
2
)−K 1

4
(

β
2
)K− 1

4
(

β
2
)
]

,

(20)

C−1
3I = 2π(mc)3

{
βπ−22F3

[
−1

2
,−1

2
;

1
2
,

1
2
,1;

β2

4

]
+

+ ln
(

4
β2

)
1F2

[
−1

2
;

1
2
,1;

β2

4

]
−

∞

∑
n=0

21−2nβ2nψ(1+n)

(−1+2n)(Γ [1+n])2

}

(21)
and

C−1
3HK =

4π(mc)3K2(β)
β

, (22)

where ψ(z) is the Psi function, pFq
[
a1,....,ap; b1, ...,bq; z

]
is the generalized hypergeometric function and Γ [z] is the
Gamma function.

The corresponding second moments of the momentum are
given by

〈
p2

m2c2

〉

S
= C3S

∂2

∂β2

(
1

C3S

)
−1 , (23)

〈
p2

m2c2

〉

I
=

4π(mc)3C3IK1(β)
β

−1 , (24)

and

〈
p2

m2c2

〉

HK
=

1
2

[
K4(β)
K2(β)

−1
]

. (25)

We note that the relations (22) and (25) have been obtained in
[7].

In Fig. 2 we show the second moment
〈

p2

m2c2

〉
, in three di-

mensions, in function of β. All three cases also decrease with
β, just as in one-dimensional cases. For large value of β the
three cases converge to the classical one. We note that in the
Ito approach the second moment has close values to those of
the classical case, except for small β.
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FIG. 2: Plots of the second moments
〈

p2

m2c2

〉
HK,S,I,M

in function of

β, for three-dimensional stationary processes. The symbols HK, S,
I, M correspond to the Hänggi-Klimontovich, Stratonovich, Ito and
Maxwell distributions.

IV. AVERAGES OF THE MOMENTUM FOR
ONE-DIMENSIONAL CASE

The n-moments are important physical quantities for the
analysis of the stochastic processes. However, they are dif-
ficult to be obtained for the relativistic Brownian motion. In
the above section we have only obtained the second moments
for the stationary solutions. In order to obtain some average
for the whole processes, we have found more complicated av-
erages of the momentum by using the differential equation
(1). For the average 〈γa〉, where a is a real number, we can
combine to obtain, by choosing different values of a, the dif-
ferential equations for the averages of momentum. For the
Stratonovich approach we have
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d
〈

γ
3
2

〉
S

dt
=−3ν

2

[〈
γ

3
2

〉
S
−

〈
γ−

1
2

〉
S
− 1

β

〈
γ

1
2

〉
S

]
(26)

and

d
〈

γ
5
2

〉
S

dt
=

5ν
2

[〈
γ

1
2

〉
S
−

〈
γ

5
2

〉
S
+

1
β

〈
γ

3
2

〉
S
+

1
β

〈
γ−

1
2

〉
S

]
.

(27)
For β = 1 we can obtain the following differential equation:

d
〈

γ
5
2

〉
S

dt
− 5

3

d
〈

γ
3
2

〉
S

dt
+

5ν
2

〈
γ

5
2

〉
S
−5ν

〈
γ

3
2

〉
S
= 0 . (28)

In the case of the Ito approach we have the following dif-
ferential equations:

d
〈
γ2−1

〉
I

dt
=−2ν

〈
γ2−1

〉
I +

2ν
β
〈γ〉I (29)

and

d
〈
γ3

〉
I

dt
= 3ν

[
−〈

γ3〉
I + 〈γ〉I +

2
β

〈
γ2−1

〉
I +

1
β

]
. (30)

They can be combined to form the expression

d
〈
γ3

〉
I

dt
+3ν

〈
γ3〉

I =
3β
2

[
d
〈
γ2−1

〉
I

dt
+2ν

(
1+

2
β2

)〈
γ2−1

〉
I +

2ν
β2

]
. (31)

We note that for β = 2 we can obtain the analytical solution
which is given by

∣∣∣∣
〈
γ3〉

I −3
〈
γ2−1

〉
I −

1
2

∣∣∣∣ = Aexp(−3νt) , (32)

where A is an integration constant. We see that the above
average gives a simple exponential decay in time. Even the
solution (32) is just valid for β = 2, it can be applied to
a wide range of diffusion coefficient D due to the relation
β = νm2c2/D. However, it (β = 2) determines the value of
temperature which is given by T = mc2/(2k).

For the Hanggi-Klimontovich approach we consider the
following averages:

d〈γ〉HK
dt

= ν
[
−

〈
γ2−1

γ

〉

HK
+

1
β

]
(33)

and

d
〈
γ2−1

〉
HK

dt
=

2ν
β

[〈
γ2−1

γ

〉

HK
+ 〈γ〉HK −β

〈
γ2−1

〉
HK

]
.

(34)
These equations can be combined to form the expression

d
〈
γ2−1

〉
HK

dt
+2ν

〈
γ2−1

〉
HK +

2
β

[
d〈γ〉HK

dt
−ν〈γ〉HK

]
=

2ν
β2 .

(35)
Unfortunately, only in the Ito approach one can solve the dif-
ferential equation for the averages. We can check the solution

(32) by using the stationary solution (15). Numerical calcula-
tion yields

〈
γ3〉

I −3
〈
γ2−1

〉
I = 0.5 (36)

which is in excellent agreement with the analytical result (32).
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FIG. 3: Plots of the variations of ∂ρS
∂(νt) and ∂ jS

∂(p/mc) in function of
the nondimensional variable p

mc by using the approximate solution

Eq.(37). The solid lines correspond to the variations of ∂ρS
∂(νt) , whereas

the dotted lines correspond to the variations of ∂ jS
∂(p/mc) . The lower

figure corresponds to νt = 0.5 and the upper figure corresponds to
νt = 3.
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FIG. 4: Plots of the variations of ∂ρI
∂(νt) and ∂ jI

∂(p/mc) in function of

the nondimensional variable p
mc by using the approximate solution

Eq.(38). The solid lines correspond to the variations of ∂ρI
∂(νt) , whereas

the dotted lines correspond to the variations of ∂ jI
∂(p/mc) . The lower

figure corresponds to νt = 0.5 and the upper figure corresponds to
νt = 3.
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FIG. 5: Plots of the variations of ∂ρHK
∂(νt) and ∂ jHK

∂(p/mc) in function

of the nondimensional variable p
mc by using the approximate solu-

tion Eq.(39). The solid lines correspond to the variations of ∂ρHK
∂(νt) ,

whereas the dotted lines correspond to the variations of ∂ jHK
∂(p/mc) . The

lower figure corresponds to νt = 0.5 and the upper figure corresponds
to νt = 3.

V. ONE-DIMENSIONAL APPROXIMATE SOLUTIONS

We note that Eqs. (1), (2), (3) and (4) are difficult to be
solved analytically. In this case, approximate solutions can be
useful to the analysis of the behaviors of probability densities.
Also, they can be used to check the numerical results. In order
to obtain our approximate solutions we have guided by the as-
ymptotic solutions for |p| ¿ 1 and |p| À 1. The approximate
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FIG. 6: Plots of the second moments
〈

p2

m2c2

〉
HK,S,I

in function of

the nondimensional time νt by using the approximate solutions (37),
(38) and (39), for β = 5.

solutions are given by

ρS(p, t) =

AS exp


−β

(√
1+ p2

m2c2 −1
)

1−exp

(
−ν

(
2+ p2

m2c2

1+ p2
m2c2

)
t

)




√
1− exp

(
−ν

(
2+ p2

m2c2

1+ p2
m2c2

)
t
)(

1+ p2
m2c2

)1/4
,

(37)

ρI(p, t) =

AI exp


−β

(√
1+ p2

m2c2 −1
)

1−exp

(
−ν

(
2+ p2

m2c2

1+ p2
m2c2

)
t

)




√
1− exp

(
−ν

(
2+ p2

m2c2

1+ p2
m2c2

)
t
)(

1+ p2
m2c2

)1/2
(38)

and
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ρHK(p, t) =

AHK exp


−β

(√
1+ p2

m2c2 −1
)

1−exp

(
−ν

(
2+ p2

m2c2

1+ p2
m2c2

)
t

)




√
1− exp

(
−ν

(
2+ p2

m2c2

1+ p2
m2c2

)
t
) , (39)

where AS, AI and AHK are the normalization factors.
In Figs. 3, 4 and 5 we show the variations of

∂ρI/S/HK
∂(νt)

and
∂ jI/S/HK
∂(p/mc) obtained from the Stratonovich, Ito and Hänggi-

Klimontovich approaches, respectively. We note that the be-
haviors of these quantities are similar for these three ap-
proaches. Also, these quantities are close together, specially
for small νt. This means that our approximate solutions are
in good approximations to the exact solutions. Moreover, we

have analyzed numerically that the variations of
∂ρI/S/HK

∂(νt) and
∂ jI/S/HK
∂(p/mc) can maintain close together for not large t, β greater
than 3 and ν less than 1. For large νt the variation between
these two quantities is very small for p

mc < 2, and, in general,
they maintain very close together for p

mc > 2.
From these approximate solutions we can calculate the

second moments. In Fig. 6 we show the second moment〈
p2

m2c2

〉
for the Ito, Stratonovich and Hänggi-Klimontovich

approaches, for β = 5. All three cases have similar behav-
iors to that of the classical Brownian motion. We have also
checked for β = 20, and all three cases approximate closely to

the result of classical theory. As has been numerically demon-
strated in [9], the probability densities in velocity space ap-
proach a common Gaussian shape for large β.

VI. CONCLUSION

We have analyzed the relativistic Brownian motion in the
context of Fokker-Planck equations. We have put forward
some analytical results in terms of the averages of momentum.
We have shown an interesting analytical result in the Ito ap-
proach, i.e., the average

〈
γ3

〉
I−3

〈
γ2−1

〉
I has a simple expo-

nential decay in time. Further, approximate solutions for the
probability densities have also been given for one-dimensional
cases. We have used our approximate solutions to study the
temporal behaviors of the second moments

〈
p2

m2c2

〉
S/I/HK

, and

the results of these three approaches converge to the classi-
cal result for large β. On the other hand, it has been empha-
sized in [9] that the three prescriptions discussed in this work,
only the stationary solution of the Hänggi-Klimontovich ap-
proach is consistent with the relativistic Maxwell distribution.
However, this last result is not the only one obtained by using
the Langevin equation. In fact, the relativistic Maxwell dis-
tribution can also be obtained by using a different Langevin
equation as that used by Debbasch [7, 8]. Therefore, in order
to choose which of the above approaches is the correct one,
we need to know detailed information about the microscopic
structure of the system. Finally, we hope that these analy-
ses may contribute to a broad investigation of the relativistic
Brownian motion.
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