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Stability in a Class of Quartessence Models
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Quartessence cosmological models with exponential and logarithmic equation of state are investigated using
dynamical systems methods. We focus our analysis on the stability of these models.
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Progress in observational cosmology in the past few years
suggests that the universe is dominated by two unknown com-
ponents, namely, dark matter and dark energy. These two
components have properties that are quite different from all
the ordinary matter we know do exist in the physical world.
Dark matter is a pressureless component, very important for
structure formation, while dark energy, a negative pressure
component, is responsible for the cosmic acceleration. From
the point of view of simplicity, it would be interesting to de-
scribe both components with a single equation of state (EOS).
This idea is the main motivation for quartessence models that
try to unify dark matter and dark energy in a single component
[1]. The most studied quartessence model is the Chaplygin
gas model [2], [3]. Nevertheless other EOS for quartessence
exist as, for instance, those suggested in the work by Reis et
al. [4].

In this work, we employ the methods of qualitative theory
of dynamical system [5], [6] to study quartessence models
with exponential and logarithmic EOS. Recently, M. Szyd-
lowski and W. Czaja [7] investigated the structural stability
of FRW cosmology with generalized Chaplygin gas. Here,
we extend their analysis to other quartessence cosmologies.

This paper is organized as follows. In Section II, we briefly
describe the dynamical systems techniques we use to analyze
quartessence cosmological models. In Section III we analyze
the critical points of the considered quartessence models. In
Section IV we investigate the stability of the system using the
Lyapunov’s method. Finally, in Section V we discuss the re-
sults.

I. STUDY OF QUARTESSENCE MODELS WITH
DYNAMICAL SYSTEMS

The main goal of quartessence cosmological models is to
describe with a single equation of state, dark matter and dark
energy. The prototype quartessence model is the generalized
Chaplygin Gas (GCG) [3]. It is easy to show that for very
high redshift these models behave like pressureless dark
matter, while in the opposite limit the models asymptotically
tend to a cosmological constant. Different aspects of the
GCG models have been analyzed in the literature [2], [8], [9].
Recently, Reis et al. [4] suggested two other equations of state
with the same asymptotic limits, namely Exponential and
Logarithmic Quartessence [10]. It is clear that, in principle,
many other equations of state can be used, but for the sake of

simplicity, and because they capture the main properties of
this class of models, here we limit our analysis to these two
cases. The considered models have the following EOS:

Exponential Quartessence:

P =−M4e
−ρα
M4 , (1)

Logarithmic Quartessence:

P =− M4
[
ln( ρ

M4 )
]α , (2)

where ρ is the density energy, P the pressure, M has dimension
of mass and α is a dimensionless parameter.

We denote by H the Hubble parameter and the quanti-
ties (H,ρ) are chosen as the phase space variables. We
consider a homogeneous and isotropic Friedmann-Robertson-
Walker(FRW) metric and we define our two-dimensional dy-
namical system with the following equations:

Ḣ =−H2− 1
6
(ρ+3P), (3)

ρ̇ =−3H(ρ+P), (4)

where the dot denotes time derivative. We split in two parts,
our discussion of the character of the critical points:
A) static case (H=0)
and
B) non-static case (H 6= 0).

We consider non-degenerate critical points where the be-
havior of the system in the neighborhood of the critical point is
qualitatively equivalent to the behavior of its linear part. The
linearization matrix of the system at the critical point (Ho,ρo)
is:

A =

(
−2H − 1

6
d

dρ (ρ+3p)
−3(ρ+ p) −3H d

dρ (ρ+ p)

)

(H0,ρo)

As usual, the characteristic equation is det(A− λI) = 0,
where I is the identity matrix. The trace and the determinant
for static critical points are [7],

TrA = 0 (5)

detA = −1
2
(ρ+P)

d
dρ

(ρ+3P) |(H0,ρo) . (6)
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For non-static critical points we obtain:

TrA = −H(2+3
d

dρ
(ρ+P)) |(H0,ρo) (7)

detA = 6H2 d
dρ

(ρ+P) |(H0,ρo) (8)

Here |(H0,ρo) denotes the value of the equation at the critical
point.

Since we are working with a two-dimensional dynamical
system, the stability of the solution can be analyzed based on
the sign of the trace and the discriminant [12]:
1. If detA < 0, then the eigenvalues are real, have opposite
signs and the critical point is a saddle point.
2. If detA > 0 and the discriminant: D = (TrA)2− 4detA >
0, then the eigenvalues are real, have the same sign and the
critical point is a node. If TrA > 0 the critical point is an
unstable point(node). If TrA < 0 the critical point is stable.
3. If detA > 0 and the discriminant: D = (TrA)2−4detA < 0,
then the eigenvalues are complex conjugates and the critical
point is a focus. If TrA > 0 the critical point is an unstable
focus. If TrA < 0 it is a stable focus. In the case in which the
eigenvalues are purely imaginary, the critical point is a stable
neutral center.

FIG. 1: The vector field portrait corresponding to the exponential
quartessence case. For the figure we used α = M4 = 1

II. TWO QUARTESSENCE MODELS

The two cosmological models that we are interested in have
the property that their equation of state w = p

ρ is convex, i.e.
d2 p
dρ2 < 0. In this case, the maximum value of the sound speed

(c2
s = d p

dρ ) is reached at the minimum value of the density.
Some of the properties of these models have been discussed in
[10]. In this section we consider the stability with the methods
of qualitative analysis described in Section II.

A. Exponential Quartessence

For quartessence models, at early times, when ρ is large,
we need w ≈ 0, therefore, from Eq. (1), the parameter α can
not be negative. The minimal energy density of this model
is given by ρmin = M4(W (α)

α ), where W (x) is the Lambert
function defined to be the multi-valued inverse of the function
W →WeW [10, 11]. Thus, when ρ = ρmin , the equation of
state parameter assumes the value w =−1 (cosmological con-
stant). The standard ΛCDM is recovered when we substitute
α = 0 in Eq. (1).

In the considered model the singular static point is given
by:

Ho = 0, ρo = M4 W (3α)
α

(9)

After substituting Eqs. (1) and (9) into (6), we obtain:

detA =
−1
2

(
M4

α
W (3α)−M4e−W (3α))(1+3αe−W (3α)) (10)

As the TrA=0, then, if detA > 0, then the eigenvalues of
the critical points have complex values, that correspond to the
stable neutrally center type. Otherwise, as discussed above, if
the determinant is negative the critical point represent a saddle
point.

Let us now analyze the non-static critical points: H 6= 0.
Equaling equations (3) and (4) to zero, we determine the non-
static critical points :

ρo =
M4

α
W (α), H2

o =−1
6
(

M4

α
W (α)−3M4e−W (α)), (11)

Using Eqs. (7) and (8), we also obtain:

detA = 6H2
o (1+αe−W (α)) (12)

and

TrA =−Ho(2+3(1−αe−W (α))) (13)

It follows from Eq. (12) that the determinant is always pos-
itive. In the case of an expanding universe, (H > 0), the trace
is negative. Therefore, the non-static critical point (11) be-
haves as an asymptotically stable node if the discriminant is
positive (D > 0) or as an asymptotically stable focus if D < 0.
In a contracting Universe, such that the Hubble parameter is
negative, the critical points are unstable. In Fig. 1 we show
the vector field portrait of the dynamical system formed by
equations (3) and (4) for the exponential quartessence EOS. A
striking features of Fig.1 is that the static critical point is asso-
ciated with a saddle point (from equation (10) the detA is neg-
ative for αε[0,1]) and represents an Einstein static universe,
whereas the non-static critical points are associated with a de
Sitter(deS) universe. In the Figure 1 the trajectory of the flat
model (k=0) is given by the parabola . The two deS nodes
are attractors (one stable and the other one unstable) and the
phase portrait is symmetric when H changes its sign.
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FIG. 2: The vector field portrait corresponding to the logarithmic
quartessence case. For the figure we used α = 0.5,M4 = 1.

FIG. 3: The vector field portrait corresponding to the FRW model
with cosmological constant.

FIG. 4: The vector field portrait corresponding to the FRW model
with Chaplygin gas. For the figure we used α = M4 = 1.

B. Logarithmic Quartessence

The logarithmic quartessence model EOS is given by equa-
tion (2). In the following we consider only the non-static case.
The minimum energy density is given by ρmin = M4eαW (α−1)

and the adiabatic sound speed is c2
smax = 1/W (α−1). Note that

again ΛCDM is recovered if we substitute α = 0 in equation
(2) [10]. Equalizing to zero Eqs. (3) and (4) and by using
the equation of state (2) we obtain the following critical point
(non-static case):

ρo = M4eαW (α−1), H2
o =−M4 1

6
[eαW (α−1)−3(αW (α−1)α]

(14)
The value of the trace and the determinant are:

detA = 6H2
0{1+

αM4

(αW (α−1)α+1 e−αW (α−1)} (15)

TrA =−H0{2+3(1+
αM4

αW (α−1)1+α e−αW (α−1)} (16)

Similarly , as we did in the exponential case, we deduce
from equation (15) that the determinant is always positive and,
from the Eq. (16) the trace is negative for an expanding uni-
verse (H > 0). Therefore, the critical points (14) behave like
an asymptotically stable node if D > 0 or as an asymptotically
stable focus if D < 0. In Figure 2 we show the phase portrait
in the logarithmic quartessence case.

In Figures 3 and 4 we show the phase portrait of the FRW
models with a cosmological constant (positive) and Chaply-
gin gas respectively, let us note the equivalence of the phase
portraits in the physical domains (ρ ≥ 0) of the four cosmo-
logical models (Figs. 1, 2, 3 and 4) i.e. the structure of the
phase space does not depend of the form of EOS. The behav-
ior for the phase portraits are due to the fact that the stability of
the critical point depends on the energy condition as discussed
in [7].

III. LYAPUNOV FUNCTION AND QUARTESSENCE

There are different approaches to investigate the stability
of dynamical systems. In the following we shall consider the
Lyapunov function method.

The existence of a Lyapunov function, F , guarantees the
stability of the dynamical system around x0. Furthermore, if
the inequality dF

dt ≤ 0 holds in a neighborhood Ux0 , then x0 is
asymptotically stable. For a mathematical discussion of this
method see e.g. refs. [13–15].

For the two-dimensional dynamical system (3) and (4) we
propose the following Lyapunov’s function:

F(ρ,H) = ρ+
H2

2
> 0 (17)

The above function is positive definite if ρ > 0. From equa-
tions (3)-(4) we have critical points if H = 0 and w = − 1

3 or
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H2 = ρ
3 with w = −1, and they represent asymptotic sates of

the universe.
We also assume an expanding Universe and, in order to as-

sure the asymptotic stability of the system of equations, we
require that F first total derivative be negative. Therefore, we
can write:

dF
dt

=
dρ
dt

+H
dH
dt

≤ 0 (18)

In an expanding universe (H > 0) with w ≥ −1 the energy
density obeys the condition dρ

dt ≤ 0. Using Eq. (3) the quantity
dH
dt can be cast in the following form

dH
dt

=−[
ρ
3
− k

a2 +
(ρ+3P)

6
] (19)

On the other hand, if we now use the definitions of the
density parameters: Ωk = −k/a2H2, ΩQ = ρ/3H2 and since
Ωk +ΩQ = 1, it is easy to show that:

dH
dt

=−ρ
3
[
3
2
(1+w)+

(1−ΩQ)
ΩQ

] (20)

From Eqs. (20) and (4) we have,

dF
dt

=−(
7
2
(1+w)Hρ+Hρ

(1−ΩQ)
ΩQ

) (21)

ΩQ ≥− 2
7w+5

(22)

The last equation is the condition for stability of the dynam-
ical system (3)-(4) with quartessence EOS in the case w≥−1.
The important point here is the existence of the Lyapunov
function satisfying condition (22). In summary, the function
F has a minimum (when ΩQ = −2

7ω+5 ) on the critical point
and there is a neighborhood (the attraction basin) with H > 0
where F has non-positive time derivative. Hence, this asymp-
totic states of the universe are asymptotically stable.

IV. CONCLUSIONS

In the present paper we consider the stability of two
quartessence models, one with an exponential EOS and the
other with a logarithmic one. The dynamics is studied in the
phase plane (H,ρ) at a finite domain, applying methods of
the qualitative theory of dynamical systems. We considered
hyperbolic critical points. For both, the exponential and log-
arithmic cases, if the Hubble function is positive the models
are stable in the neighborhood of the critical points. There-
fore, it is interesting that the requirement of stability for these
quartessence models yields an Universe which accelerates, in
accordance with observational evidences at present [17].

To study the asymptotic behavior of the above mentioned
quartessence cosmological models we have applied the Lya-
punov method. We have shown that exists a Liapunov func-
tion (F) given by Eq.(17). This function can be thought as a
generalized energy function for the system, and it leads us to
the stability condition given by Eq.(22).

In summary, in this work we showed that quartessence
models with exponential and logarithmic EOS are stable in
their physical domains. Therefore, since the real world is
also dynamically stable [13], these quartessence models, from
the theoretical point of view, in principle, might describe the
late-time acceleration of the Universe. Finally we remark
that, for adiabatic perturbations, the matter power spectrum
for these quartessence models present instabilities and oscil-
lations [18]. However, as shown in [10], this kind of problem
can be solved by considering a special type of non-adiabatic
perturbation.We believe that these quartessence models de-
serve to be further investigated.
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