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A kinetic formulation developed to analyze wave propagation in dusty plasmas, which takes into account
the variation of the charge of the dust particles due to inelastic collisions with electrons and ions, is utilized
to study the propagation and damping of electrostatic waves with wave number exactly parallel to the external
magnetic field and Maxwellian distributions for the electrons and ions in the equilibrium. It is shown that, due
to the presence of the dust, the damping of Langmuir waves in the region of large wavelengths is increased as
compared to conventional Landau damping. Langmuir waves in the occurrence of collisional charging of dust
particles also feature weak damping for small wavelengths, which vanishes if the effect of collisional charging
of the dust particles is neglected in the dispersion relation. It is also shown that the damping of ion-acoustic
waves is modified by the presence of the dust, and that some damping effect due to the dust particles remains
even if the effect of collisional charging of dust particles is neglected in the dispersion relation.
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I. INTRODUCTION

Waves and instabilities in dusty plasmas have attracted a
great deal of interest in the last few years, since the presence of
the dust particles may significantly modify the normal modes
of oscillation of the plasma, as well as originate new modes
of ultra-low frequency associated to the dynamics of the dust
particles.

As a consequence of this interest, there is a respectable
amount of theoretical work on waves and instabilities in dusty
plasmas, particularly on electrostatic waves, which may be
traced back to the pioneer work by Bliokh and Yarashenko [1]
about waves in Saturn’s rings. Most of these published works
utilized fluid theory to describe the dusty plasmas, and only
a few of them take into account the collisional charging of
the dust particles [2, 3], although the importance of this effect
to the propagation and damping of the waves is already well
known [4, 5].

Some of the studies on electrostatic waves have predicted
the instability of longitudinal oscillations due to the dust
charge variations [6, 7], introducing ad hoc hypothesis re-
lated to the charging dynamics of the dust particles. However,
a self-consistent formulation for the charge dynamics, using
fluid theory, has been proposed by Bhatt and Pandey [8], and
applied by Bhatt to the case of Langmuir waves [2]. These
works have shown that the longitudinal oscillations are indeed
subject to damping instead of growth, when the charging dy-
namics of the dust charge is appropriately taken into account,
in a self-consistent manner. Self-consistent approaches to the
dynamic of the dust charge variations can also be found in the
works by D’Angelo [3] and by Vladimirov et al. [9].

Although very important studies have been conducted us-

ing an hydrodynamical approach, it must be recognized that
the fluid formulation has an important limitation: it can not
describe purely kinetic effects such as the Landau damping.
This consideration, per se, offers motivation for kinetic stud-
ies on dusty plasmas. Moreover, it has been shown that the
dust charging process must be included in a kinetic approach,
for proper derivation of the wave damping [10]. The reason is
basically that the charging process is one of the most conspic-
uous and important dissipative processes to occur in a dusty
plasma. As argued in Ref. [11], it is not possible to sepa-
rate the conventional Landau damping and the damping due
to the interaction of ions and electrons with the dust particles,
at least for ion-acoustic waves.

The kinetic approach has been used in some investigations,
as in the study of instabilities of ion-acoustic waves produced
by current in a collisionless dusty plasma, completely ionized,
appearing in the paper by Rosenberg [12]. This work has es-
tablished a critical drift velocity of electrons, relative to the
ions, for the occurrence of the instability. However, effects of
the variation of the electric charge of the dust particles have
not been taken into account.

Experimental studies on electrostatic waves have also been
systematically conducted along the last few years. Some
of these were directed to the investigation of low-frequency
waves (ω < Ωi), such as the so-called ion-acoustic waves
[13], while others aimed to the investigation of ultra low-
frequency waves (ω < |Ωd |), characterizing the mode known
as the dust-acoustic wave [14].

As an example of experiment on ion-acoustic waves, it can
be mentioned that conducted by Barkan et al. [15], which has
shown that the phase velocity of the ion-acoustic waves in-
creases with the density of negatively charged dust grains, ul-
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timately leading to the decrease of Landau damping for these
waves. Another experiment by the same group of researchers
has investigated the excitation of ion-acoustic waves by cur-
rents in a dusty plasma [16].

A kinetic description has been adopted by ourselves in a
recent publication, utilized to analyze the propagation of elec-
tromagnetic waves in dusty plasmas, taking into account the
variation of the dust charges due to inelastic collisions with
electrons and ions [17].

In the formulation utilized in Ref. [17], the components of
the dielectric tensor depend on the frequency of inelastic col-
lisions of plasma electrons and ions with the dust particles.
This collision frequency is momentum dependent, and, in or-
der to more easily evaluate momentum integrals and solve the
dispersion relation, we have utilized the simplifying assump-
tion that the momentum dependent value of the inelastic col-
lision frequency is replaced by a frequency averaged over the
electron or ion distribution function, respectively. The for-
mulation has been up to now applied to the particular case of
low-frequency waves propagating along the ambient magnetic
field, incorporating many details which have appeared in pre-
vious publications [17–19].

In the present paper, we resume the use of the same ba-
sic kinetic formulation, applied to the study of electrostatic
waves propagating along the ambient magnetic field. Using
this approach, we obtain the dispersion relation and the damp-
ing rates for electrostatic waves. By suitable choice of the fre-
quency interval, we study the cases of Langmuir waves and
of ion-acoustic waves, in the presence of dust, keeping effects
due to the charging of the dust particles due to inelastic col-
lisions with electrons and ions. The damping rates obtained
for these waves consequently include the conventional Lan-
dau damping and the damping associated to the incorporation
of electrons and ions by the dust particles.

The structure of the paper is the following. In Section II we
briefly outline the model used to describe the dusty plasma.
In Section III we present essential features of the dielectric
tensor to be used in the discussion of wave propagation ex-
actly parallel to the external magnetic field, derived assum-
ing Maxwellian distributions for the electrons and ions in the
equilibrium, and the ensuing dispersion relation for electro-
static waves. In Sections IV and V the numerical results ob-
tained from the dispersion relation modified by the dust for the
cases of Langmuir and ion-acoustic waves are presented and
discussed. The conclusions are presented in Section VI. Ap-
pendixes A and B are included, respectively providing addi-
tional details of the formulation used in the present paper and
comparing this formulation with other well-known approach
found in the literature.

II. THE DUSTY PLASMA MODEL

In our general kinetic formulation we consider a plasma in a
homogeneous external magnetic field B0 = B0 ez. In this mag-
netized plasma we take into account the presence of spherical
dust grains with constant radius a and variable charge qd ; this
charge originates from inelastic collisions between the dust

particles and particles of species β (electrons and ions), with
charge qβ and mass mβ. For simplicity, we will consider sim-
ply charged ions.

The charging model for the dust particles must in principle
take into account the presence of an external magnetic field.
This field should influence the characteristics of the charg-
ing of dust particles, because the path described by electrons
and ions is modified: in this case we have cyclotron motion of
electrons and ions around the magnetic field lines. However, it
has been shown by Chang and Spariosu [20], through numer-
ical calculation, that for a¿ ρG, where ρG = (π/2)1/2rLe and
rLe is the electron Larmor radius, the effect of the magnetic
field on the charging of the dust particles can be neglected.
For the values of parameters used in the present work the re-
lation a¿ ρG is always satisfied.

We will consider that the dust grain charging process occurs
by the capture of plasma electrons and ions during inelastic
collisions between these particles and the dust particles. Since
the electron thermal speed is much larger than the ion thermal
speed, the dust charge will be preferentially negative. As a
cross-section for the charging process of the dust particles, we
use expressions derived from the OML theory (orbital motion
limited theory) [21, 22].

In the present work we focus our attention on weakly cou-
pled dusty magneto-plasmas, in which the electrostatic energy
of the dust particles is much smaller than their kinetic energy.
This condition is not very restrictive, since a large variety
of natural and laboratory dusty plasmas can be classified as
weakly coupled [23].

Dust particles are assumed to be immobile, and conse-
quently the validity of the proposed model will be restricted
to waves with frequency much higher than the characteristic
dust frequencies. In particular we will consider the regime in
which |Ωd | ¿ ωpd < ω, where ωpd and Ωd are the plasma
frequency and the cyclotron frequency of the dust particles,
respectively. This modeling excludes the modes that can arise
from the dust dynamics.

As we will see, in this range of frequencies the dust parti-
cles modify the dispersion relation, through modifications of
the quasi-neutrality condition and through effects due to the
charging of the dust particles by inelastic collisions with ions
and electrons. These effects due to the dust charging can pro-
vide an additional mechanism for the wave damping, beyond
the well-known Landau damping mechanism.

III. DISPERSION RELATION FOR ELECTROSTATIC
WAVES IN THE CASE OF MAXWELLIAN DISTRIBUTION

FUNCTIONS

The dielectric tensor for a magnetized dusty plasma, homo-
geneous, fully ionized, with identical immobile dust particles
and charge variable in time, can be written in the following
way

εi j = εC
i j + εN

i j , (1)

where the explicit expressions for εC
i j and εN

i j are given in Refs.
[17–19] and also in Appendix A of the present work.
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The components εC
i j have a term which is formally identi-

cal to the components of the dielectric tensor of a magnetized
homogeneous conventional plasma of electrons and ions, but
with the resonant denominator modified by the addition of a
purely imaginary factor which contains the inelastic collision
frequency of electrons and ions with the dust particles. There
is another term, appearing only in the components εC

i3, which
is added to the term obtained with the prescription above,
which is proportional to the same inelastic collision frequency
of electrons and ions with the equilibrium population of dust
particles. If fβ0 is a Maxwellian distribution the effects due to
the dust charging by collisions with electrons and ions appear
in the εC

i j components only in the resonant denominator, being
this result independent of the direction of k.

The term εN
i j is entirely new and only occurs in the presence

of dust particles with variable charge. Its form is strongly de-
pendent of the model used to describe the charging process
of the dust particles. It is a non additive part of the response
function, since it is composed as a product of integral fac-
tors which depend on the equilibrium distribution functions,
as shown by Eq. (A8) of Appendix A. This point is also
discussed in Appendix B, where the electrostatic case is con-
sidered with more details, including comparison with other
formulation found in the literature. In the case of propaga-
tion exactly parallel to the external magnetic field, the term
εN

i j appearing in Eq. (1) is non-vanishing only for i = j = 3,
regardless of the detailed form of the distribution function fβ0.

In the case of propagation parallel to the external magnetic
field and Maxwellian distributions for electrons and ions, the
13 and 23 components of the dielectric tensor vanish, and the
dispersion relation therefore follows from the determinant

det




εC
11−N2

‖ εC
12 0

−εC
12 εC

11−N2
‖ 0

0 0 εC
33 + εN

33


 = 0 . (2)

In this expression, N‖ = k‖c/ω is the refractive index in the
direction parallel to the external magnetic field. The disper-
sion relation for electrostatic waves is obtained by considering
the case of Ez 6= 0, which means

ε33 = εC
33 + εN

33 = 0 . (3)

As an initial approach to this dispersion relation, we neglect
the effect of the term εN

33, which is entirely due to the fluctu-
ation of the charge of the dust particles. Some effects due to
the charging of the dust particles, however, remain in the term
εC

33, and therefore an approximated dispersion relation can be
written as follows,

εC
33 = 1+∑

β
XβÎ0

β = 0 , (4)

where

Xβ =
ω2

pβ

ω2 , ω2
pβ =

4πnβ0q2
β

mβ
,

Î0
β =

ω
nβ0

Z
d3 p

p‖ ∂ fβ0/∂p‖
ω− k‖p‖/mβ + iν0

βd(p)
,

ν0
βd(p) =

πa2nd0

mβ

(
p2 +Cβ

)

p
H

(
p2 +Cβ

)
,

Cβ = −2qβmβqd0

a
.

The subscript β = e, i identifies electrons and ions respec-
tively, qd0 = εdeZd is the equilibrium charge of the dust parti-
cles (positive, εd = +1, or negative, εd = −1) and H denotes
the Heaviside function. The number of charges in each dust
particle, Zd , is calculated from the equation of balance of cur-
rents in the dust particles, in the equilibrium state, and from
the quasi-neutrality condition, which gives also ne0 if we fix
the ion and dust densities ni0 and nd0. It is noticed that this
dispersion relation does not feature any effect due to the mag-
netic field, being exactly the same as the dispersion relation
for electrostatic waves in unmagnetized dusty plasma, as in
the case of dustless plasmas.

The effect of the dust particles on the dispersion relation,
given by Eq. (4), occurs via the quasi-neutrality condition
(ni0 6= ne0), and also via the terms which contain the inelas-
tic collision frequency ν0

βd(p). Following the same procedure
used in Ref. [17], in order to simplify the evaluation of the
integral Î0

β we replace the functions ν0
βd(p) by their average

values in momentum space,

νβ ≡
1

nβ0

Z
d3 p ν0

βd(p) fβ0 . (5)

This approximation is adopted in order to arrive at a rela-
tively simple estimate of the effect of the charging of dust par-
ticles due to collisions with electrons and ions, effect which
is frequently neglected in analysis of the dispersion relation
for waves in dusty plasmas. If significant effects are obtained
due to this collisional charging there will be reason for further
research in order to improve the approximation. The approxi-
mation will provide at least qualitatively a fair idea about the
effect which is under investigation.

In the case of Maxwellian distributions, the average colli-
sion frequencies can be written as follows:

νi = 2
√

2πa2nd0vTi(1+χi) ,

νe = 2
√

2πa2nd0vTeeχe ,

where χi ≡ Zde2/(aTi), χe ≡ −(Ti/Te)χi, and vT β =
(Tβ/mβ)1/2.

Using these average collision frequencies and performing
the calculation of the Î0

β integral, the dispersion relation given
by equation (4) can be written in the form

1+2∑
β

Xβζβζ̂β

[
1+ ζ̂βZ(ζ̂β)

]
= 0 , (6)
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where Z is the plasma dispersion function [24], defined by

Z(ζ) =
1√
π

Z +∞

−∞
dt

e−t2

t−ζ
,

ζβ ≡
ω√

2k‖vT β
, ζ̂s

β ≡
ω+ iνβ√

2k‖vT β
.

At this point it is useful to prepare the dispersion relation
for the numerical solution, introducing the following dimen-
sionless quantities:

z =
ω

ωpe0
, q =

k‖cs

ωpe0
, ε =

nd0

ni0
,

uβ =
vT β

cs
, γ =

λ2ni0cs

ωpe0
, ã =

a
λ

, λ =
e2

Ti
,

τe =
Te

Ti
, , ν̃β =

νβ

ωpe0
, rβ =

ωpβ

ωpe0
, (7)

where cs is the ion-acoustic velocity,

cs =
√

Te

mi
,

and where ωpe0 is the electron plasma angular frequency eval-
uated considering the limiting situation nd0 = 0.

The relevant results can therefore be cast in terms of these
dimensionless quantities. For instance, the dimensionless col-
lision frequencies are given by:

ν̃i = 2
√

2πεγã2ui(1+χi) ,

ν̃e = 2
√

2πεγã2ueeχe , (8)

where now χi = Zd/ã and χe =−χi/τe.
The dispersion relation, in terms of these dimensionless

quantities, becomes

1+∑
β

r2
β

q2u2
β

(
1+ i

ν̃β

z

)[
1+ ζ̂βZ(ζ̂β)

]
= 0 , (9)

where

ζ̂β =
z+ iν̃β√

2quβ
.

Considering the case of |ζ̂β| >> 1, for β = e, i, we obtain
the dispersion relation for Langmuir waves, modified by the
presence of the dust,

1+∑
β

r2
β

q2u2
β

(
1+ i

ν̃β

z

)[
i
√

πζ̂βe−ζ̂2
β − 1

2ζ̂2
β

− 3

4ζ̂4
β

]
= 0 .

(10)

If the effect of incorporation of charged plasma particles by
the dust particles is neglected in the dispersion relation by the
assumption of ν̃β = 0, approximation frequently employed in
the literature, it is easy to show that for |zi| << |zr|, where zr
and zi are the real and imaginary parts of z, and for q2u2

e << 1,
the roots of the dispersion are given as follows,

zi '−
√

π
8

r4
e

q3u3
e

e−3/2 exp
(−r2

e/2q2u2
e
)

,

zr '±re

(
1+

3
2

q2u2
e

r2
e

)
. (11)

In the absence of dust, re = 1, these expressions reduce to
the familiar expressions for Langmuir waves, easily found in
textbooks [25].

Another interesting case to be considered is that of |ζ̂e|<<

1 and |ζ̂i| >> 1, leading to the dispersion relation for ion-
acoustic waves, expected to occur for τe >> 1,

1+
r2

e

q2u2
e

(
1+ i

ν̃e

z

)[
i
√

πζ̂ee−ζ̂2
e +1

−2ζ̂2
e

(
1− 2

3
ζ̂2

e +
4

15
ζ̂4

e

)]

+
r2

i

q2u2
i

(
1+ i

ν̃i

z

)[
i
√

πζ̂ie−ζ̂2
i − 1

2ζ̂2
i

− 3

4ζ̂4
i

]
= 0 . (12)

If the effect of absorption of plasma particles by the dust
particles is neglected in Eq. (12), and if it is assumed that
|zi|<< |zr|, the roots of the dispersion are given as follows,

zi '−
√

π
8
|zr|4
q3

[
τ3/2

e exp
(
− τeα

2(αr2
e +q2)

)
+α1/2r2

e

]
,

zr '±
(

αq2

αr2
e +q2

)1/2

, (13)

where α = me/mi. In the absence of dust, re = 1, these ex-
pressions reduce to the familiar expressions for ion-acoustic
waves [25].

The expression for zr in Eq. (13) is equivalent to Eq. (40)
of Ref. [11]. The imaginary part zi in Eq. (13) corresponds to
the first term of Eq. (41) of Ref. [11], if the term correspond-
ing to the ion damping in Eq. (13) is neglected. Eq. (41) in
Ref. [11] displays a second term, which incorporates effects
due to charging of dust particles due to collisions with plasma
particles, and which is originated from a contribution to the
dielectric tensor which contains a derivative of the charging
currents, Eq. (19) of Ref. [11]. This kind of term corre-
sponds in our case to the contribution due to εN

33, neglected in
the present investigation. However, the dispersion relation uti-
lized for the numerical analysis of ion-acoustic waves in the
present investigation, Eq. (12), takes into account other effects
due to the collisional charging of dust particles, appearing in
the εC

33 contribution, which have been neglected in Ref. [11].
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IV. NUMERICAL ANALYSIS OF LANGMUIR WAVES

We consider the following parameters, which are in the
range of parameters of interest for stellar winds: ion temper-
ature Ti = 1.0×104 K, ion density ni0 = 1.0×109 cm−3, ion
charge number Zi = 1.0, and ion mass mi = mp, the proton
mass. For the radius of the dust particles, we assume a = 1.0×
10−4 cm. For the classical distance of minimum approach,
measured in cm, we use the value λ = 1.44× 10−7/Ti(eV),
where Ti(eV) means the ion temperature expressed in units of
eV.

Initially, we examine the case of the high-frequency oscil-
lations with ω' ωpe, known as Langmuir waves, and numer-
ically search for the roots of Eq. (10), considering Te = Ti. In
Figs. 1(a) and 1(b) we show respectively the real and imagi-
nary parts of the normalized frequency (zr and zi), as a func-
tion of the normalized wave number q, for ε = 0. For com-
parison we also show the curves corresponding to the approx-
imated analytical solution given by Eqs. (11), which are very
close to the roots obtained numerically, for small values of q.
It is noticed that Landau damping is negligible for small q,
becoming meaningful only after q' 5.0×10−3.

The effect of the dust on the Langmuir waves is illustrated
in Figs. 2 and 3. Fig. 2 shows the value of zr as a function
of q and ε, considering ε changing from 0.0 up to 1.0×10−4.
It is seen that the quantity zr appears to be quite insensitive to
the presence of the dust. In Fig. 3 we see the corresponding
imaginary part. In the scale of the figure, the quantity zi also
appears to be insensitive to the presence of the dust. However,
an amplified view of the large wavelength region (small q),
where Landau damping is negligible, shows the occurrence of
damping due to the presence of the dust particles. Fig. 4(a)
shows the absolute value of zi for values of q between 3.2×
10−3 and 4.2× 10−3. It is seen that for ε = 0.0 values of
|zi| due to Landau damping of order 10−6 starts to appear for
q ' 0.004. In the region of smaller q (larger wavelengths),
the damping rate is zero for ε = 0.0, but it is seen to increase
with the increase of the dust density. Fig. 4(a) shows that the
damping due to the dust particles increases linearly with the
dust density, reaching the maximum of |zi| ' 6.0× 10−6 for
the maximum value of ε considered in the calculation.

In Fig. 4(b) we show the value of |zi| obtained from Eq.
(10), if the damping effect due to the collisional charging of
the dust particles is neglected, that is, if we assume ν̃e = ν̃i =
0. The range depicted in Fig. 4(b) is the same range shown in
Fig. 4(a). The damping at large wavelengths (q < 0.4) shown
by Fig. 4(a) does not appear in Fig. 4(b), indicating that it is
entirely due to the effect of the collisional charging of the dust
particles.

Another view of this effect of the absorption of charged
plasma particles by dust particles is seen in Figs. 5(a) and
5(b), which show the values of zi as a function of the normal-
ized wave number q, for five values of ε. Fig. 5(a) shows the
values of zi obtained from numerical solution of the full Eq.
(10), including the effect of the collisional charging which ap-
pears in ν̃e and ν̃i. Considering the curve obtained for ε = 0.0,
it is seen that Landau damping becomes meaningful only at
q ' 0.004. For increasing values of ε, Fig. 5(a) displays
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FIG. 1: Real and imaginary parts of the normalized frequency corre-
sponding to Langmuir waves, obtained from Eq. (10) for ε = 0. The
thin lines gives the results obtained from the approximated analytical
solution given by Eq. (11). (a) zr as a function of q; (b) zi as a func-
tion of q. Ti = 1.0× 104 K, ni0 = ne0 = 1.0× 109 cm−3, Zi = 1.0,
mi = mp, and Te = Ti.
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FIG. 2: Real part of the normalized frequency (zr) for the Langmuir
waves, as a function of q and ε. Radius of dust particles, a = 1.0×
10−4 cm. Other parameters as in Fig. 1.
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FIG. 5: zi for the Langmuir waves as a function of q, for five values
of ε (ε = 0.0,2.5× 10−5,5.0× 10−5,7.5× 10−5, and 1.0× 10−4).
(a) From the numerical solution of Eq. (10); (b) From the numerical
solution obtained with ν̃i = ν̃e = 0 in Eq. (10). The parameters are
the same as in Fig. 2.

clearly the appearance of a damping rate practically indepen-
dent of q, for q < 0.004. On the other hand, if the effect
of collisional charging is neglected in Eq. (10), by taking
ν̃e = ν̃i = 0.0, the curves depicted in Fig. 5(b) are obtained.
It is seen that the Landau damping at q ≥ 0.004 is modified
by the presence of the dust, reflecting the change of the elec-
tron population. However, the damping for large-wavelength
waves (small values of q) is completely absent in Fig. 5(b),
corroborating the previous conclusion that it is entirely due to
the effect of incorporation of charged plasma particles by the
dust particles, via inelastic collisions.

V. NUMERICAL ANALYSIS OF ION-ACOUSTIC WAVES

We now examine the case of the low-frequency oscillations,
with ω << ωpe, known as ion-acoustic waves, and numeri-
cally search for the roots of Eq. (12), considering Te = 20 Ti,
and other parameters as in Section IV. This value of elec-
tron temperature is considered as a representative example,
since ion-acoustic waves are expected to occur for Te >> Ti,
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FIG. 6: Real and imaginary parts of the normalized frequency cor-
responding to ion-acoustic waves, obtained from Eq. (12) for ε = 0.
The thin lines gives the results obtained from the approximated ana-
lytical solution given by Eq. (13). (a) zr as a function of q; (b) zi as a
function of q. The parameters are the same as in Fig. 2.

at least in dustless plasmas. In Figs. 6(a) and 6(b) we show re-
spectively the real and imaginary parts of the normalized fre-
quency (zr and zi), as a function of the normalized wave num-
ber q, for ε = 0. For comparison we also show the curves cor-
responding to the approximated analytical solution given by
Eqs. (13). It is seen that the outcome of the analytical solution
is very close to the root obtained numerically, for small values
of q. Landau damping of weak intensity (|zi|< 1.0×10−3|zr|)
occurs even for very small q, namely for large wavelength
waves.

The effect of the dust on the ion-acoustic waves is shown
in Figs. 7 and 8. Fig. 7 shows the value of zr for ion-acoustic
waves as a function of q and ε, considering ε changing from
0.0 up to 1.0× 10−4. It is seen that the quantity zr appears
to be quite insensitive to the presence of the dust, similarly to
the behavior found for zr in the case of Langmuir waves. In
Fig. 8 we see the corresponding imaginary part. The depen-
dence of this quantity on the dust density appears to be quite
complex. Fig. 8 shows that the magnitude of the damping
rate is increased as effect of the presence of the dust, for large
wavelength waves (q≤ 0.015, with the most significant effect
occurring for q ' 0.005). On the other hand, for q closer to
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FIG. 7: Real part of the normalized frequency (zr) for the ion-
acoustic waves, as a function of q and ε. The parameters are the
same as in Fig. 2.
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acoustic waves, as a function of q and ε. The parameters are the same
as in Fig. 2.

0.02, where significant Landau damping occurs for ε = 0.0,
the presence of the dust contributes to decrease the magnitude
of the damping.

In Fig. 9 we compare the values of zi obtained from the dis-
persion relation given by Eq. (12) with those obtained from
the dispersion relation obtained when the effects of collisional
charging of dust particles are neglected by the assumption of
ν̃e = ν̃i = 0. Fig. 9 shows that an important effect of the pres-
ence of the dust on the damping of ion-acoustic waves is due
to the modification of the charge-neutrality condition, contrar-
ily to what we have obtained in the case of Langmuir waves. It
is seen that for ion-acoustic waves, if the effect of collisional
charging is neglected, the damping rate is quantitatively mod-
ified, but the overall qualitative effect of the presence of the
dust remains basically unchanged.

The different behavior of the dependence of the damp-
ing rate with the dust density, for Langmuir and ion-acoustic
waves, may be explained as follows. The Landau damping oc-
curs due to the effect of the imaginary part of the Z function,
which contains the terms proportional to exp(−ζ̂2

β). These
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FIG. 11: (a) Zd as a function of ε, for Te = Ti. (b) Zd as a function of
ε, for Te = 20 Ti. Other parameters as in Fig. 2.

terms depend on the density of particles of the respective
species, ions and electrons. In the case of Langmuir waves,
we have |ζ̂e| >> 1 and |ζ̂i| >> 1, causing negligible Lan-
dau damping for small q. The Landau damping only starts
to become meaningful for the larger values of q considered in
Fig. 4, and is entirely due to the electron population, which
is changed with the presence of the dust. These considera-
tions explain the behavior depicted in Figs. 4(b) and 5(b),
namely the occurrence of damping only for the upper range
of the values of q depicted in the figures, with the damping
rate depending on the dust density. On the other hand, if the
collisional absorption of electrons and ions by dust particles
is taken into account via the contributions of ν̃e and ν̃i in Eq.
(10), there is an additional source for the imaginary part of the
dispersion relation, which is non-vanishing even for small q.
The outcome are the curves exhibited in Figs. 4(a) and 5(a),
which show non-vanishing values of zi for very small q, in the
presence of dust.

On the other hand, the dispersion relation for ion-acoustic
waves is obtained under the condition |ζ̂i|>> 1 and |ζ̂e|<< 1.
The term originated from the imaginary part of the Z function
is present also for the small values of q, originating Landau
damping even if the contribution of the collisional charging of
dust particles is neglected. The value of damping is of course
dependent on the electron density, and therefore on the dust
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FIG. 12: (a) ne0 as a function of ε, for Te = Ti. (b) ne0 as a function
of ε, for Te = 20 Ti. Other parameters as in Fig. 2.

density. When the effect of collisional charging is taken into
account, the magnitude of the damping is modified, but the
overall qualitative features remain. These features can be ob-
served in Fig. 9. Further verification of this explanation can
be found in Fig. 10, which shows zi obtained from Eq. (12)
when the effect of collisional charging is neglected, and when
the term proportional to exp(−ζ̂2

e) is made artificially to van-
ish. That is, in addition to neglecting the effect of the ab-
sorption of charged particles by the dust, the effect of electron
Landau damping is neglected. As expected from the previous
reasoning, the outcome is a root in which the imaginary part zi
vanishes for small q. For the larger values of q occurs Landau
damping due to the ions, which is also reduced in magnitude
with the increase of the dust density. These features can be
understood by the analysis of the analytical expression for the
damping of ions-acoustic waves, Eq. (13). If the electron Lan-
dau damping is neglected, the approximate expression for the
damping of the ion-acoustic waves is reduced to

zi '−
√

π
8
|zr|4
q3

[
τ3/2

e exp
(
− τeα

2(αr2
e +q2)

)]
.

It is easily seen that for increasing dust density, which
means decreasing values of re, the value of |zi| is reduced,
as displayed by the numerical solution shown in Fig. 10.

An important additional information may be obtained by
considering the dependence of the electron density and of the
equilibrium dust charge, on the dust density. In Figs. 11 and
12 we show respectively the values of the dust charge Zd and
of the electron density ne0 as a function of ε, for two values of
the ratio Te/Ti. Fig. 11(a) shows the value of Zd for Te = Ti,
the ratio of temperature significant for Langmuir waves, and
Fig. 11(b) shows the value of Zd for Te = 20 Ti, representative
for the case of ion-acoustic waves. It is seen that in the case
of Te = Ti the value of Zd changes by less than 5 % when ε is
changed between 0.0 and 1.0×10−4, and changes by 60 % in
the case Te = 20 Ti. In Figs. 12(a) and 12(b) it is also seen that
the value of ne0 is decreased by approximately 15 % when ε
is changed between 0.0 and 1.0×10−4, in the case of Te = Ti,
and is reduced to approximately 15 % of the original value
in the case Te = 20 Ti. These results show that the electron
density and the dust charge are more and more sensitive to the
dust density for increasing values of the ratio Te/Ti, for fixed
ion density.

VI. CONCLUSIONS

In the present paper we have used a kinetic description to
analyze wave propagation in dusty plasmas, taking into ac-
count the incorporation of electrons and ions to the dust parti-
cles, due to inelastic collisions. We have considered the case
of wave propagation exactly parallel to the external magnetic
field, and Maxwellian distributions for electrons and ions in
the equilibrium situation, and we have derived a dispersion
relation for electrostatic waves in the dusty plasma, which is
exactly the same as the dispersion relation for electrostatic
waves in unmagnetized dusty plasmas. This dispersion re-
lation has been utilized for investigation of Langmuir waves,
with ω ' ωpe, considering Te = Ti, and also for investigation
of the low-frequency waves denominated ion-acoustic waves,
considering Te = 20 Ti.

The results obtained have shown the appearance of a small
damping effect for large wavelength Langmuir waves, due to
the collisional charging of the dust particles. We have seen
that this damping effect at large wavelengths vanishes if the
collisional absorption of charged plasma particles by dust par-
ticles is neglected. The reason is that, if the collisional charg-
ing is neglected, the influence of the dust particles occurs only
via the charge imbalance between electrons and ions. The
electron density is therefore modified by the presence of the
dust, affecting the Landau damping, which is anyway negligi-
ble for large wavelengths.

We have also analyzed the dependence of the damping rate
of ion-acoustic waves on the wavelength and on the dust den-
sity. Our results have shown the complex dependence of this
damping rate on the dust density, indicating that the damping
due to the electronic population may increase for relatively
high wavelengths, due to the presence of the dust, compara-
tively with the case without dust. The results have also shown
that the damping of ion-acoustic waves is dependent on the
dust population even if the effect of collisional incorporation
of electrons and ions by dust grains is not taken into account,
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a behavior differing from that of the damping of Langmuir
waves.

It is noticed that the present numerical investigation did not
show the appearance of instability due to the presence of the
dust, either for Langmuir waves or for ion-acoustic waves.
The dust particles contribute to wave absorption because they
suffer inelastic collisions from ions and electrons, in the dissi-
pative process of dust charging. This absence of instability in
the numerical analysis corroborates analytical results obtained
with a fluid formulation [2], contrasting with some earlier and
somewhat controversial results indicating instability of lon-
gitudinal oscillations due to the collisional charging of dust
particles [7, 8, 26].

Our results have been obtained with the use of an appar-
ently sound approximation, which uses the average value of
the inelastic collision frequencies of electrons and ions with
the dust particles, instead of the actual momentum dependent
expressions. We intend to investigate the effect of this approx-
imation, reporting our findings in a forthcoming publication.

Another further development to be introduced in the formu-
lation would be the incorporation to the numerical analysis of
a novel term to be added to the dielectric tensor, entirely due
to the effect of dust charge fluctuations. In the formulation uti-
lized in the present paper, and in other studies available in the
literature, the conventional dielectric tensor is utilized, modi-
fied by the presence of the dust. The need for the additional
term, already demonstrated by theoretical analysis, [11, 17–
19, 27], has hitherto been ignored in the numerical analysis.
Our results regarding the effect of this additional term are ex-
pected to appear in the near future.

APPENDIX A: THE COMPONENTS OF THE DIELECTRIC
TENSOR FOR A HOMOGENEOUS MAGNETIZED DUSTY

PLASMA

We assume that the distribution function of particles of
species β, in a dusty plasma, satisfies Vlasov’s equation ap-
pended with a term describing binary collisions with dust par-
ticles,

∂ fβ

∂t
+

p
mβ

·∇ fβ +qβ

[
E+

p
mβc

×B
]
·∇p fβ

=−
Z

σβ
p

mβ
( fd fβ− fd0 fβ0)dq, (A1)

where fd0 and fβ0 represent respectively the equilibrium dis-
tribution functions of dust particles and of particles of species
β, with the subscript β = e, i identifying electrons and ions,
respectively. The distribution function for the dust particles,
fd , satisfies the following equation,

∂ fd

∂t
+

∂
∂q

[I(r,q, t) fd ] = 0, (A2)

where

I(r,q, t) = ∑
β

Z
d3 p qβ σβ(p,q)

p
mβ

fβ(r,p, t),

is the current of electrons and ions which charge the dust par-
ticles [10]. The presence of the collisional term in these equa-
tions assures the possibility of variation of the electric charge
of the dust particles, due to the inelastic collisions with parti-
cles of species β.

Upon linearization, the perturbed distribution function sat-
isfies the following equation,

∂ fβ1

∂t
+

p
mβ

·∇ fβ1 +qβ

(
p

mβc
×B0

)
·∇p fβ1 +ν0

βd(p) fβ1

=−ν1
βd(r, p, t) fβ0−qβ

[
E1 +

p
mβc

×B1

]
·∇p fβ0, (A3)

where

ν0
βd(p) =

Z 0

−∞
σβ(p,q)

p
mβ

fd0(q)dq,

ν1
βd(r, p, t) =

Z 0

−∞
σβ(p,q)

p
mβ

fd1(r,q, t)dq,

and σβ is the charging cross-section, given by [28]

σβ = πa2
(

1− 2qdqβmβ

ap2

)
H

(
1− 2qdqβmβ

ap2

)
. (A4)

After use of Fourier-Laplace transform in the system of
equations describing the dusty plasmas, the perturbed distri-
bution function can be written as [18]:

f̂β(p) = f̂ C
β + f̂ N

β , (A5)

where

f̂C
β =−qβ

Z 0

−∞
dτei{k·R−[ω+iν0

βd(p)]τ}

×
(

Ê+
1

mβγβc
p′× B̂

)
·∇p′ fβ0(p⊥, p‖),

f̂ N
β =−

Z 0

−∞
dτei{k·R−[ω+iν0

βd(p)]τ}ν̂βd(p) fβ0.

One notices that f̂β
C

has the same formal structure as the
perturbed distribution obtained in the evaluation of the di-
electric tensor of a conventional homogeneous magnetized
plasma, with ω + iν0

βd(p) instead of ω in the argument of the
exponential function. This part of the perturbed distribution
therefore gives rise to a contribution to the components of
the dielectric tensor that corresponds to the usual form of the
components obtained for dustless magnetized homogeneous
plasma, except for the modifications due to the presence of the
inelastic collision frequency ν0

βd(p), which is related to the
equilibrium distribution function of dust particles, as shown
by Eq. (A3). On the other hand, f̂β

N
contains the inelastic

collision frequency ν̂βd in the numerator of the integral over
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the equilibrium distribution function, and vanishes in the case
of dustless plasma. The ν̂βd quantity is the Fourier-Laplace
transform of the ν1

βd collision frequency, related to collisions
with the fluctuating distribution of dust particles.

Using these two contributions to the perturbed distribution
function, the dielectric tensor for a magnetized dusty plasma,
homogeneous, fully ionized, with identical immobile dust par-
ticles and charge variable in time, could be written in the fol-
lowing way [18, 19]

εi j = εC
i j + εN

i j . (A6)

One notices that the separation in the two terms appearing in
Eq. (A6) should not be considered arbitrary, since it is mo-
tivated by the different nature of the two contributions to the
perturbed distribution function depicted by Eq. (A5).

The term εC
i j is formally identical, except for the i3 compo-

nents, to the dielectric tensor of a magnetized homogeneous
conventional plasma of electrons and ions, with the resonant
denominator modified by the addition of a purely imaginary
term which contains the inelastic collision frequency of dust
particles with electrons and ions. For the i3 components of the
dielectric tensor, in addition to the term obtained with the pre-
scription above, there is a term which is proportional to this
inelastic collision frequency. The expression for εC

i j is [18, 19]

εC
i j = δi j +∑

β

Xβ

nβ0

×
+∞

∑
n=−∞

Z
d3 p p⊥

ϕ0( fβ0)
Dnβ

(
p‖
p⊥

)δi3+δ j3

Rnβ
i j

−δi3δ j3 ∑
β

Xβ

nβ0

Z
d3 pL( fβ0)

p‖
p⊥

(A7)

+δ j3 ∑
β

Xβ

nβ0

+∞

∑
n=−∞

Z
d3 p

[
i
ν0

βd(p)

ω
L( fβ0)

Dnβ

(
p‖
p⊥

)δi3
]

Rnβ
i j ,

where

Dnβ = 1− k‖p‖
mβω

− nΩβ

ω
+ i

ν0
βd(p)

ω
,

Rnβ
11 =

n2

b2
β

J2
n (bβ), Rnβ

33 = J2
n (bβ) ,

Rnβ
12 =−Rnβ

21 = i
n
bβ

Jn(bβ)J
′
n(bβ) ,

Rnβ
13 = Rnβ

31 =
n
bβ

J2
n (bβ), Rnβ

22 = J′2n (bβ) ,

Rnβ
23 =−Rnβ

32 =−iJn(bβ)J
′
n(bβ) ,

ν0
βd(p) =

πa2nd0

mβ

(
p2 +Cβ

)

p
H

(
p2 +Cβ

)
,

ϕ0( fβ0) =
∂ fβ0

∂p⊥
− k‖

mβω
L( fβ0) ,

L( fβ0) = p‖
∂ fβ0

∂p⊥
− p⊥

∂ fβ0

∂p‖
,

Xβ =
ω2

pβ

ω2 , ω2
pβ =

4πnβ0q2
β

mβ
, Ωβ =

qβB0

mβc
,

bβ =
k⊥p⊥
mβΩβ

, Cβ =−2qβmβqd0

a
,

where qd0 = εd eZd is the equilibrium charge of the dust par-
ticle (positive, εd = +1, or negative, εd =−1) and H denotes
the Heaviside function.

The term εN
i j is entirely new and arises only due to the

process of fluctuation of the charge of the dust particles. Its
form is strongly dependent on the model used to describe the
charging process of the dust particles. The expression for this
term is [18, 19]

εN
i j =−4πind0

ω
UiS j , (A8)

with

Ui ≡ i
ω+ i(νch +ν1)

∑
β

qβ

m2
β

(A9)

×
+∞

∑
n=−∞

Z
d3 p

p⊥pσ′β(p) fβ0

Dnβ

(
p‖
p⊥

)δi3

Rnβ
i3 ,

S j ≡ 1
ωnd0

∑
β

q2
β

+∞

∑
n=−∞

Z
d3 p

ν0
βd(p)

ω

×ϕ0( fβ0)
Dnβ

(
p‖
p⊥

)δ j3

Rnβ
3 j

− δ j3

ωnd0
∑
β

q2
β

Z
d3 p

ν0
βd(p)

ω
L( fβ0)

p⊥

+i
δ j3

ωnd0
∑
β

q2
β

+∞

∑
n=−∞

Z
d3 p

[
ν0

βd(p)/ω
]2

Dnβ

×L( fβ0)
p⊥

Rnβ
3 j , (A10)

where

νch =−∑
β

qβ

mβ

Z
d3 p pσ′β (p) fβ0 , (A11)
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ν1 = ∑
β

qβ

mβ

+∞

∑
n=−∞

Z
d3 p

[
iν0

βd(p)/ω
]

Dnβ

× pσ′β(p) fβ0 Rnβ
33 . (A12)

In the expressions (A9), (A11) and (A12), we have used the
notation σ′β(p) ≡ (∂σβ/∂qd)|qd=−Zde, and σβ is given by Eq.
(A4).

Effects of the collisional charging of the dust particles occur
in the terms with ν0

βd(p)/ω, and effects of presence of dust
particles, introduced via quasi-neutrality relation (ni0 6= ne0),
occurs in terms with Xβ ≡ ω2

pβ/ω2.

APPENDIX B: COMPARING THE FORMULATION OF THE
PRESENT PAPER WITH SOME RESULTS FOUND IN THE

LITERATURE

In this appendix it is established the connection between
the expressions for the dielectric tensor which we are using,
based on the formulation developed in Ref. [18] and given in
its general form in Appendix A, and some expressions very
used in the literature. In particular we show that our results
can be cast in the form which appears in a series of papers
of Tsytovich et al. [10, 29, 30], if restrictive assumptions are
made.

We start with the general expressions of Appendix A, and
concentrate in the 33 component of the dielectric tensor,
which is the only component which is of interest for the
present comparison, and we make the same restrictions used
by Tsytovich at al. in the cited works. According to Eq. (A6),
we write this component as

ε33 = εC
33 + εN

33.

Assuming the absence of external magnetic field and con-
centrating in the case of electrostatic oscillations, it is seen
that only the term n = 0 contributes to the sum in n in equa-
tion (A7) of Appendix A, and that terms which contain L( fβ0)
are absent. Then we can write

εC
33 = 1+χ33

where

χ33 =
1
ω ∑

β

4πq2
β0

k‖

Z
d3 p

k‖v‖
ω− k‖v‖+ iν0

βd(v)
∂ fβ0

∂p‖
.

Upon completion of the numerator of the integrand and
some further manipulations, we obtain

χ33 = ∑
β

4πq2
β0

k2
‖

Z
d3 p

1
ω− k‖v‖+ iν0

βd(v)
k · ∂ fβ0

∂p

+
1
ω ∑

β

4πq2
β0

k2
‖

Z
d3 p

iν0
βd(v)

ω− k‖v‖+ iν0
βd(v)

k · ∂ fβ0

∂p
.

In order to compare with Ref. [30] we must replace k‖→ k

and fβ0 →Φβ
p. Noting that ν0

βd(v) is equal to νd,β(v), given by

equation (5) of Ref. [30], and considering that in our model
neutral particles are not included in the formulation, νn,β = 0,
it is seen that νβ(v) used in Ref. [30], is the same as ν0

βd(v)
of the present paper. After some trivial manipulations, it is
therefore possible to write as follows the εC

33 component of
the present formulation,

εC
33 = 1+∑

β
χβ

k,ω +
nd

ω
χσ

k,ω,

where χβ
k,ω and χσ

k,ω are given by Eqs. (20) and (21) of Ref.
[30].

Using the same assumptions it is easy to obtain similar re-
sults relevant to the term εN

33. For instance, for j = 3 Eq. (A10)
can be cast as follows,

S3 =−i
k‖

4πω
χσ

k,ω.

Moreover, from (A11) it is seen that νch is the same used in
Ref. [30], and from Eq. (A12), we obtain

ν1 = indχσ,σ′
k,ω ,

where χσ,σ′
k,ω is given by Eq. (23) of Ref. [30].

Therefore, it is seen that for i = 3 Eq. (A9) can be written
in the following form,

U3 =
iω

ω+ i(νch +ν1)
∑
β

Z
d3 p

vv‖σ′β fβ0

ω− k‖v‖+ iν0
βd

.

Inserting all these results in Eq. (A8) and re-arranging
terms, we get

εN
33 = χdei

k,ω−
nd

ω
χσ

k,ω,

where χdei
k,ω is given by equation (30) of Ref. [30].

Therefore it is seen that the complete 33 component of the
dielectric tensor, derived using the formulation of the present
paper, is given by

ε33 = 1+∑
β

χβ
k,ω +χdei

k,ω. (B1)

Taking into account that in the formulation of the present
paper the dynamics of the dust particles is not included, it is
seen that Eq. (B1) is the same as Eq. (28) of Ref. [30].
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