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A New Method to Study Stochastic Growth Equations: Application
to the Edwards-Wilkinson Equation
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In this work we introduce a method to study stochastic growth equations, which follows a dynamics based on
cellular automata modeling. The method defines an interface growth process that depends on height differences
between neighbors. The growth rules assign a probability pi(t) for site i to receive a particle at time t, where
pi(t) = ρ exp[κΓi(t)]. Here ρ and κ are two parameters and Γi(t) is a kernel that depends on height hi(t) of site
i and on heights of its neighbors, at time t. We specify the functional form of this kernel by the discretization of
the deterministic part of the equation that describes some growth process. In particular, we study the Edwards-
Wilkinson (EW) equation which describes growth processes where surface relaxation plays a major role. In
this case we have a Laplacian term dominating in the growth equation and Γi(t) = hi+1(t)+ hi−1(t)− 2hi(t),
which follows from the discretization of ∇2h. By means of simulations and statistical analysis of the height
distributions of the profiles, we obtain the roughening exponents, β, α and z, whose values confirm that the
processes defined by the method are indeed in the universality class of the original growth equation.
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I. INTRODUCTION

In nature, as well as in physics laboratories and industrial
applications, one can find a large sort of rough surfaces (or
interfaces) and the interest in studying such structures has in-
creased in the last decades[1–3]. In a computational approach,
one can develop discrete growth models based on a set of sym-
metries and conservation laws. Proceeding with simulations,
one can obtain the scaling exponents and other quantities of
interest.

On the other hand, one can write stochastic (continuum)
growth equations in order to give an analytical approach to
the problem of interface growth, obeying the same symme-
tries and conservation laws considered in the definition of the
mentioned discrete models. Obviously, the agreement of re-
sults from both points of view, discrete and continuous, is of
fundamental importance.

In the study of interface growth dynamics, one is mostly
concerned about the temporal behavior of the interface rough-
ness, which is a measure of the interface width. The most
relevant information about the dynamical details of a growth
process can be obtained from the temporal behavior of the
roughness. In particular, for self-affine interfaces, it is known
that the roughness grows with time as a power law, where we
define the growth exponent, β. Actually, due to correlations,
the roughness does not grow indefinitely with time; the inter-
face eventually reaches a stationary regime where the rough-
ness saturates. Both the saturation roughness and saturation
time depend on the system size as a power law, for which we
define the roughness exponent, α, and the dynamic exponent,
z, respectively.

A set of values for these three roughening exponents, in a
given dimension, defines an universality class. Thus, if two or
more processes have the same exponents values, one can say
that they belong to the same universality class, which means
that their underlying dynamics obey the same symmetries and

conservation laws.
In this work we introduce a method[4] to study sto-

chastic differential equations that describe interface growth
processes. This method is based on a cellular automata
dynamics[5], in a sense that we associate a particle deposition
probability to each site, which depends on the local height
profile, considering a synchronous update scheme. Other
works that apply cellular automata models to study growth
processes have also been done lately[6–8].

Our goal is to show that the method introduced provides
the expected results for the universality class of the equation
that we are interested in studying. In this paper we apply this
method to the Edwards-Wilkinson (EW) equation, which is
associated to the random deposition with surface relaxation.
In section II we introduce the basic concepts and relevant
quantities in the study of interface growth phenomena. In sec-
tion III we introduce the method and discuss its main features.
In section IV we present the simulations results obtained by
the application of the method to the EW equation, showing
that the method introduced indeed reproduces the expected
results for this universality class. Finally, we draw some con-
clusions and perspectives in section V.

II. DEFINITIONS

The discrete computational growth models we are consid-
ering in this paper are defined in a one-dimensional lattice of
size L, initially flat and with periodic boundary conditions.
The deposition processes occur in discrete time steps and, in
general, we define one time step as the deposition of L parti-
cles. The particles are all identical.

In the study of interface growth we are mainly interested in
the temporal behavior of the roughness ω(L, t), which is given
by
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ω2(L, t) =
1
L

L

∑
i=1

[
hi(t)−h(L, t)

]2
, (1)

where

h(L, t) =
1
L

L

∑
i=1

hi(t) (2)

is the mean height of the interface.
The roughness provides a measure of the interface width

and generally, in growth processes, we have a power law for
its temporal behavior,

ω∼ tβ, (3)

where β is the growth exponent. For the simplest deposition
model, the random deposition (RD), it is known[2] that the
roughness grows indefinitely, with β = 1/2. The main char-
acteristic of the RD model is that no correlations are present
in the dynamics, hence the collums grow independently from
each other.

For other deposition models, where there are correlations
among the sites, it is known[2] that the roughness grows ini-
tially as the power law (3) and then stabilizes in a value, the
saturation roughness ωsat , after a saturation time tx, for which
we have

ωsat ∼ Lα , (4)

tx ∼ Lz, (5)

where α is the roughness exponent and z is the dynamic expo-
nent. The three exponents are not independent and, using the
Family-Vicsek scaling law[9], it is possible to collapse curves
ω x t obtained for various system sizes onto a single curve
f (u), called scaling function.

Consider for example the random deposition with surface
relaxation model (RDSR)[10]. The particle is deposited in a
random position in the lattice and is allowed to relax to the
position of lowest height, considering the first neighbors. In
this way, the particle flux is larger for local minimum than for
local maximum positions. For this model the exponent values,
in d = 1, are[2, 10]

α =
1
2

, β =
1
4

, z = 2 .

In order to provide an analytical approach to the study of
interface growth, one can construct a stochastic growth equa-
tion based on the discrete model. However, there is no direct
way to derive an equation from the discrete model. All one
can do is write down an equation that respects the same sym-
metries of the discrete model[2] and hope for the best. If the

analytical solutions match the previous results obtained from
the simulations, one can say that the given equation can be
correctly associated to the discrete model.

As we have seen, the particle flux in the RDSR model is
larger for local minimum positions. So it is reasonable to say
that the time derivative of the local height profile is propor-
tional to the Laplacian. Thus, in order to associate a stochastic
equation to this deposition model, we write

∂h(x, t)
∂t

= ν∇2h(x, t)+η(x, t) , (6)

where in the left hand side we have the temporal variation
of the height at position x, while in the right hand side we
have ν > 0 and η(x, t), which is a white noise (zero aver-
age, δ-correlated in space and time). This is the Edwards-
Wilkinson equation[11], or simply EW equation, which pro-
vides the same exponent values obtained for the RDSR model
and hence can be correctly associated to this model.

III. THE METHOD

Consider a one-dimensional lattice of size L, initially flat
and with periodic boundary conditions. Each time step, all the
sites are simultaneously visited so that site i receives a particle
at time t with probability pi(t) given by

pi(t) = ρ eκΓi(t) . (7)

Here 0 < ρ < 1 and κ > 0 are two parameters, fixed through-
out the evolution of the interface, and Γi(t) is a kernel that de-
pends on the heights of site i and its neighbors. The particular
functional form of Γi(t) will be given by the discretization of
the deterministic part of the growth equation we are intended
to study. In the case of the EW equation (6), the kernel is
given by the discretization of the Laplacian ∇2h,

Γi(t) = hi+1(t)+hi−1(t)−2hi(t) . (8)

In the way we have defined the method, we can eventually get
pi(t) > 1. In this situation, we impose the condition

pi(t)≥ 1 =⇒ pi(t) = 1 =⇒ hi(t +1) = hi(t)+1 .

IV. SIMULATIONS RESULTS

We applied the method presented in the previous section
in the study of the EW equation, with the kernel defined in
the expression (8). We initially observed the evolution of the
interface for ρ = 0.5, κ = 0.1 and L = 500, as one can see in
the top of figure 1, where we show a typical profile obtained
for this set of parameters. In the bottom of figure 1, we show
the temporal behavior of the roughness for ρ = 0.5, κ = 0.1
and L = 200. As one can see, the roughness grows initially
as a power law with β close to 1/4, after a short transient. To
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make sure of the value of the growth exponent, we show in the
inset the roughness divided by t1/4 as a function of t, for the
same values of the parameters ρ and κ, but for larger systems
(L = 102, 103 and 104). In this case, a horizontal line means
β = 1/4 and as one can see, the larger the system size, the
closer to 1/4 is the value of the growth exponent, and longer
the system stays in this regime.
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FIG. 1: In the top we show a typical profile for ρ = 0.5, κ = 0.1
and L = 500, where we change the color of the particles each 50
time steps and let the system evolve until t = 750. In the bottom,
we have a log-log plot of the roughness ω as a function of time t,
for ρ = 0.5, κ = 0.1 and L = 200, averaged over 200 samples. The
traced line corresponds to the function y = x1/4. In the inset we show
the roughness divided by t1/4 as a function of t, for L = 102, 103 and
104.

In order to obtain the values of the roughness and dynamic
exponents, α and z, we let the system reach the saturation
regime for some system sizes, between L = 25 and L = 400,
still keeping ρ = 0.5 and κ = 0.1, as one can see in figure 2.
In the inset, we show that a good collapse, with α = 1/2 and
z = 2, was obtained, confirming thus that the method, with the
kernel given in equation (8), is indeed in the EW universality
class.

We then proceed by showing the results obtained by varying
the parameter κ. As one can see in the left of figure 3, we
identified a κ-dependent crossover between the RD and the
RDSR regimes. Initially we have β = 1/2 and then β = 1/4
and the crossover time tc increases as κ decreases. In fact we
found a power law for tc as function of κ,

tc ∼ κz′κ , (9)

with z′κ =−1.02(2), as one can see in the right of figure 3.
Thus, for small κ, the system will stay more time in a RD

regime with deposition rate ρ. In fact, the lower the value of κ,
the higher the value of Γi(t) must be so that pi(t) 6= ρ, which
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FIG. 2: Keeping ρ = 0.5 and κ = 0.1, we varied the system size and
plotted the roughness ω against time t, for L = 25,50,100,200,300
and 400 - from bottom to top. In the inset we show the good collapse
obtained with α = 1/2 and z = 2. These graphics are in a log-log
scale.
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FIG. 3: In the left we have log-log plot of the roughness ω as a
function of time t for L = 250, ρ = 0.5 and κ = 10−3,10−2 and 10−1.
This result is averaged over 40 samples. Initially we have β = 1/2
and then β = 1/4, as one can see by comparing with the traced and
dotted lines, respectively. In the right, we show the crossover time tc
as a function of κ, for L = 250 and ρ = 0.5. For κ > 0.02 it is hard
to get precise values for tc.

means that the interface roughness must be large enough so
that correlations can be seen in the system.

We also studied the dependence of the saturation roughness
and saturation time, ωsat and tx, with the parameter κ and we
found that

tx ∼ κzκ , (10)

ωsat ∼ κακ , (11)

with ακ = −0.511(5) and zκ = −1.03(5), as one can see in
figure 4.

V. CONCLUSIONS AND PERSPECTIVES

We introduced a method to study stochastic growth
equations. We applied this method to the study of the EW
one-dimensional equation and we found the expected values
for the critical exponents within this universality class,
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FIG. 4: Log-log plot of the saturation roughness and saturation time,
ωsat and tx, as functions of the parameter κ. Here ρ = 0.5, L = 250;
the results are averaged over 25 samples. The straight lines are linear
fits to the data.

proving that the method was successful in this application.
We also found a crossover between the RD and RDSR classes
when we varied the parameter κ. A power law behavior was
found for the crossover time tc, the saturation roughness ωsat
and the saturation time tx, as functions of κ. As perspectives
we are intended to apply this method in the study of other
equations such as the Kardar-Parisi-Zhang equation[12] and
the equation of growth with surface diffusion[13, 14]. We
shall also apply this method to growth in two-dimensional
substrates.
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