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The cross sections of D2(v, j) + Nin(T ), n = 19 and 20, collision systems have been estimated by using
Artificial Neural Networks (ANNs). For training, previously determined cross section values via molecular
dynamics simulation have been used. The performance of the ANNs for predicting any quantities in molecule-
cluster interaction has been investigated. Effects of the temperature of the clusters and the rovibrational states
of the molecule are analyzed. The results are in good agreement with previous studies.

Keywords: Artificial Neural Networks; Molecular Dynamics; Clusters; Reactivity

I. INTRODUCTION

There is a strong motivation to investigate the size depen-
dent chemical and physical properties of atomic clusters be-
cause of the development of electronic devices. Especially,
hydrogen-metal systems have been studied extensively ow-
ing to their technological importance [1]. Cluster systems
which are bridging between atoms on the one hand and bulks
on the other offer an important opportunity to address a vari-
ety of structural and dynamical problems [2]. As the number
of atoms grows, the theoretical and experimental difficulties
grow much faster. Not surprisingly this leads to a number of
many open questions. Even the middle size clusters have not
been conclusively understood. In reactivity of clusters with
molecules, e.g., the modes such as: temperature of the cluster,
size, stability, symmetry, rovibrational states of the molecule,
impact energies, impact sites, etc., play important roles and
also some of these factors are strongly coupled. Therefore,
the cluster-molecule reactivity problems are difficult and open
questions [3-8]. Understanding of the dynamic and energetic
factors of these reactions is important for elucidation of the
microscopic mechanisms. As a result, the processes involved
in chemisorptions of molecules on surface of small clusters
are a research area of great interest for many years [3-24].

Various experimental [9-13] and theoretical [3-8,14-24]
studies on the chemisorptions of hydrogen and deuterium on
various metal clusters show that there can be large changes in
the cluster reactivity within a very narrow size range. These
investigations have provided valuable information about the
reactivity of clusters. For example, Jellinek and Güvenç have
pointed out maxima in the reactive cross sections (CSs), at
about room temperature collision energy, of D2 + Ni13 sys-
tem resulting from indirect dissociation mechanism. Similar
trends were observed for different sizes of the clusters [19,20]
and on surface reactivity [25-28]. Additionally, in our resent
work [29] a detailed quasiclassical trajectory study of the re-
actions of the D2(v, j) molecule with the larger clusters, Ni19
and Ni20, was reported at a wide range of temperatures of the
clusters and of the rovibrational states of the molecule in or-
der to reduce the scarcity in the literature. However, a de-

tailed searching the CS calculations for all rovibrational states
of the molecule and all interested temperatures of the clus-
ters have not been realized due to the long run time consump-
tion. Therefore, in the present work Artificial Neural Network
(ANN) estimation has been performed to determine the CSs
of the D2(v, j) + Nin(T ), n = 19 and 20, collision systems.
Previously calculated CS values in Ref. [29] via molecular
dynamics (MD) simulation have been used for training the
ANNs.

The deterministic nature of a nonlinear system allows ex-
tracting its functional structure from a time series using appro-
priate nonlinear techniques [30]. By analogy with the human
brain, neural network (NN) is massively parallel system that
relies on the simple processors and dense arrangements of the
individual interconnections of processing units in which in-
formation is passed [31]. These networks have demonstrated
their ability to deliver simple and powerful solutions in ar-
eas that have challenged conventional computing. In the re-
cent decade, ANNs have been widely and successfully used
in many fields, including hysteresis modelling. This area has
been developed to solve demanding pattern processing prob-
lems which were intractable or extremely cumbersome when
implemented using traditional approaches [32].

In this paper the performance of ANNs for predicting the
CS quantities in molecule-cluster interaction has been inves-
tigated. Furthermore, the effects of the rovibrational states of
the molecule and the cluster temperature are also analyzed.
The CSs are determined at T = 0,300,600,1200,1500,1800
and 2100 K for both Ni19 and Ni20 clusters with the various
vibrational (v = 0,1,2) and rotational ( j = 0− 20) states of
the molecule, D2. The ANN results are in good agreement
with previous MD studies. Initial vibrational excitation of
the molecule, for example, increases the reaction CSs more
efficiently than the initial rotational excitation. In addition,
the strong dependence of the reactive CSs on the collision en-
ergies, below 0.1 eV , is also observed with ANN estimation
results. In the next section, outlines of the theoretical back-
ground and of ANN procedure are given. The numerical re-
sults and their discussions are presented in Sec. 3, and we
conclude with a brief summary.
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II. COMPUTATIONAL BACKGROUND AND ARTIFICIAL
NEURAL NETWORKS

The computational details for the MD results (to be
used here to train ANN) are previously described in Ref.
[29]. However, repeating the most relevant parts here may
be necessary for the readers and clearness of the presenta-
tion. In that work the D2 bombardment of the clusters at
various impact parameters has been performed using a con-
stant energy MD computer simulation. Hamilton’s equations
of motion were solved using Hamming’s modified 4th order
predictor-corrector propagator with a step size of 5× 10−16

s for the deuterium atoms in the system. The potential en-
ergy surface (PES) used in that simulation was formed by a
four-body LEPS (London-Eyring-Polanyi-Sato) function ac-
counts for D−D and D−Ni interactions (for details see Refs.
[18,22]). An embedded atom (EA) potential was used to de-
scribe the interaction between the Ni atoms [33]. With any
specified collision energy and impact parameter on the clus-
ter, 500 trajectories, corresponding to different initial relative
orientations of the molecule with respect to the cluster, were
run for each set of initial conditions in order to determine the
dissociative chemisorption (DC) probability of the molecule.
Through these probabilities the CSs of the DC are obtained.
The minimum energy structures of the Ni19 and Ni20 clusters
are a double-icosahedron formed by three pentagonal rings
and a double-icosahedron with an additional atom on the sur-
face, respectively. Detail information was presented in Ref.
[29].

The ANN is an important information processing paradigm
that was inspired by the way of biological nervous systems
works, such as: the functionality of the brain. The key ele-
ment of this paradigm is the novel structure of the information
processing system. It is composed of a large number of highly
interconnected processing elements (neurons) working in uni-
son to solve specific problems. An ANN is configured for a
specific application, such as pattern recognition or data classi-
fication, through a learning process like people. In biological
systems learning involves adjustments of the synaptic connec-
tions that exist between the neurons. This is true for ANN’s
training process as well. A NN is represented by weighted
interconnections between processing elements (PEs). These
synaptic weights are the parameters that actually define the
non-linear function performed by the NN. The process of de-
termining such parameters is called training or learning [34],
relying on the presentation of many training patterns. The
ability to find correlation among apparently disconnected data
and the tolerance to noisy data are the main features of the
ANNs. For a real problem, any ANN must be trained at the
beginning. Here, we have employed Back-Propagation (BP)
training algorithm [32, 35]. Thus, NNs are inherently adap-
tive, conforming to the imprecise, ambiguous and faulty na-
ture of real-world data.

The BP algorithm is the most widely used NN because of
its relatively simplicity and universal approximation capacity
[36]. The BP algorithm defines a systematic way to update
the synaptic weights of multi-layer perceptron (MLP) net-
works. The supervised learning is based on the gradient de-

FIG. 1: General structure of MLP neural network architecture.

scent method, minimizing the global error on the output layer.
The learning algorithm is performed in two stages [37]: feed-
forward and feed- backward. In the first phase, the inputs are
propagated through the layers of processing elements, gen-
erating an output pattern in response to the input pattern pre-
sented. In the second phase, the errors calculated in the output
layer are then back propagated to the hidden layers where the
synaptic weights are updated to reduce the error. This learning
process is repeated until the output error value, for all patterns
in the training set, are below a specified value. The definition
of the network size (the number of hidden layers and of neu-
rons in each layer) is a compromise between generalization
and convergence. Convergence is the capacity of the network
to learn the patterns on the training set, and generalization is
the capacity to respond correctly to new patterns. The idea
is to implement the smallest network possible, so it is able to
learn all patterns, and at the same time, provide good general-
ization. However, a very long training process, with problems
such as local minima; and the restriction of learning only sta-
tic input -output mappings are two limitations of BP [37]. In
this study a three-layered ANN is used and trained with the
BP algorithm [38]. Detailed information about ANNs proce-
dure has been given in Refs. [37-39] and related references
therein.

The BP network used is composed of an input layer, a hid-
den layer and an output layer (Fig. 1). The number of neurons
in the hidden layer has been determined via experimentation.
The experimental results show that the optimum number of
hidden neurons was six. In the present work the number of
class is equal to 1, which is the number of neuron in the out-
put layer. As mentioned above, to overcome BP limitations,
like local minima, an adaptative learning rate (0.3) and a mo-
mentum constant (0.7) has been used. The stopping criteria
for the network training are the sum of squared error (0.02)
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FIG. 2: Estimated ANN results versus used MD data [29] for train-
ing.

and a maximum number of epochs (10000).

III. RESULTS AND DISCUSSIONS

In order to see the agreements of the ANN estimated
CS values with the used MD data they are compared in Fig.
2, which are normalized between 0 and 1. As it has pre-
sented in the figure, the ANNs can learn perfectly the rela-
tionships between the input variables (X1; cluster size, X2;
cluster temperature, X3 and X4; vibrational and rotational
states, respectively, and X5; collision energies), and the out-
put (Y; CSs). The number of MD data [29] and their ranges
that are used as input for the training of the ANN are pre-
sented in Table I. For one of the two X1 values (Ni19) 364
data have been used which were calculated for five different
temperatures (X2) of the cluster with the ground state of the
molecule (v = 0, j = 0), (X3, X4), with various collision en-
ergies (X5) up to 1.0 eV and for 2202 K at v = 0 rotational
states (X4) j = 0− 11,13,15 and at v = 1, j = 0. For the
X1=20 (i.e., Ni20), 644 samples consisting of (v = 0, j = 0,3)
and (v = 1, j = 0) states of the molecule at 0 K cluster and
(v = 0, j = 0,1,3,5,7,9,10,12,15,20), (v = 1, j = 0,1,3,5,9)
and (v = 2, j = 0,1,3,5,7) at 291 K have been used. To-
tally, 1008 data have been evaluated to improve the ANNs and
tested with the used MD data. Then it is understood that the
ANNs are able to produce reliable values with 0.03% mean
error in this particular analysis.

The contour graphs in Fig. 3 present the reactive CSs of the
D2(v, j) molecule with the Ni19(T = 300 K) cluster as a func-
tion of the collision energy (up to 1.0 eV ) and rotational states
( j = 0− 20), for three vibrational modes; v = 0,v = 1 and
v = 2 (respectively from top to bottom). In the low energy
region (starting from near zero) reactivity increases rapidly
and reaches to a maximum value about 0.05 eV for all vibra-
tional cases. As the collision energy increases further, the CSs
decrease and have minimum values. Finally, for the higher
collision energies the curves increase slowly. The maximum

FIG. 3: Cross sections for D2(v, j) + Ni19(300 K) as functions of
rotational states and collision energy for three vibrational modes; v =
0 (top), v = 1 (middle) and v = 2 (bottom), respectively.
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TABLE I: The MD data ranges [29] that used as input to train the ANNs.

X1 X2 X3 X4 X5 Number of data
19 164 0 0 0.01-1.0 28
19 775 0 0 0.01-1.0 28
19 1351 0 0 0.01-1.0 28
19 1684 0 0 0.01-1.0 28
19 2202 0 0-11, 13, 15 0.01-1.0 224
19 2202 1 0 0.01-1.0 28
20 0 0 0, 3 0.01-1.0 56
20 0 1 0 0.01-1.0 28
20 291 0 0, 1, 3, 5, 7, 9, 10, 12, 15, 20 0.01-1.0 280
20 291 1 0, 1, 3, 5, 9 0.01-1.0 140
20 291 2 0, 1, 3, 5, 7 0.01-1.0 140

peaks in the low energy region represent a formation of the
molecule-cluster complex, that is, the molecule is attached to
the surface of the cluster and can orient itself to search for the
”active-site” to break its bond. This ”resonance” enhances the
reactivity as seen from Fig. 3. As energies increase the mole-
cule has less and less time on the surface to orient itself (the
life-time of the molecule-cluster complex decreases), there-
fore, it cannot follow the minimum energy path to lower the
effect of the repulsive part of the PES. Hence, in parallel, the
reactive CSs drop as collision energies increase to the higher
values. Towards 1.0 eV all the CS slightly increase and merge
gradually to a similar value. For high temperatures of the clus-
ters (the liquid-like forms) on the other hand, this increment
is somewhat larger. They also merge gradually to a similar
value. This means that if the collision temperature is lower
than or similar to the room temperature, then the temperature
(T ) of the cluster plays strong roll in the reactivity (for details
see Refs. 4-8).

The cluster is at room temperature, T = 300 K. In the low
collision energy region (Etr < 0.1 eV ) the dynamics of the
DC is also complicated due to the curve crossings. The MD
results [29] showed that at the lowest energy considered, the
(v = 1, j = 0) state is the most reactive one, and the others are
ordered in the decreasing order as (v = 0, j = 0),(v = 0, j =
3), and (v = 0, j = 10), respectively. This shows that vibra-
tionally excited molecule is more reactive than the rotationally
excited molecules. On the other hand, at the collision energy
of Etr = 0.03 eV , the (v = 0, j = 0) state is the most reac-
tive one, and the others are ordered in the decreasing order
as (v = 1, j = 0),(v = 0, j = 3), and (v = 0, j = 10), respec-
tively. Above this energy, the (v = 1, j = 0) is always the
most reactive state, and the (v = 0, j = 10) is the least reac-
tive state up to Etr = 0.1 eV despite the fact that the internal
energy of the (v = 0, j = 10) state is higher than that of the
(v = 1, j = 0) state. This shows that energy should be put
into the vibrational modes not into the rotational states to in-
crease the reactivity. As a result of that study, Ref. [29], be-
low 0.1 eV energy rotational excitation hinders the reactivity,
i.e., the higher the rotational state, lower the cross section. At
the higher collision energies (above 0.3 eV ) higher rotational
excitation yields higher reactivity. The ”resonance” phenom-
enon is observed clearly for the (v = 0, j = 0) state, and it

is less pronounced for the other excited states. Similarly, in
this work ANN determined data produces all interested spe-
cific regions. There are two typical saddle points near (0.08
eV , j = 6) and (0.40 eV , j = 2) values for v = 0. Moreover,
for Etr = 0.20 eV and j = 5 values a minimum CS region
has been observed. For v = 1 and v = 2, the similar minima
are observed (0.88 eV , j = 8) and (0.58 eV , j = 7), respec-
tively. However, their values are not very lover because the
excitations in the vibrational mode of the molecule increase
the reactivity.

Now we discuss the size and the temperature effect on the
CS values by analyzing the minimum values of CSs. As the
size of the cluster increases by a small amount, there is not
a big difference between 19 and 20 atom clusters as shown in
Table II. Their structural geometries are also closer each other
and this leads similar trends in CSs which are in good coin-
cidence with MD investigations [29]. As shown in the table
increase in the temperature of the clusters causes high reac-
tivity and the values of the CSs increase. Interestingly, for
all cases this minima are observed at j = 5 for v = 0. How-
ever, for v = 1 at j = 9 the minima is observed for the high
temperatures, greater than 1500 K, despite of j = 8 for other
temperatures. For v = 2 this typical rotational state is j = 8
for all temperature except 0 K.

IV. CONCLUDING REMARK

The main goal of this study is to test the performance
of ANNs for predicting any quantities in any molecule cluster
interaction studies. It has been observed that it can be used as
an efficient tool to estimate the CS values for D2 + Ni19 and
D2 +Ni20 collisions.

The DC-CS determined (by ANNs) from the rovibra-
tionally excited molecules with the solid- and liquid-like
forms of the clusters strongly depend on to the collision en-
ergy, especially below 0.2 eV . At the higher energies this de-
pendence is weaker. In this study the dynamics of the DCs
with respect to the v, j, and T are also complicated in the low
collision energy region (below 0.1 eV ). In general, the rota-
tional excitations and the high temperature of the cluster hin-
der the reactivity. This is more pronounced especially below
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TABLE II: Determined rotational states and collision energy regions in which the minimum CSs are observed at different temperature of the
clusters.

N = 19 N = 20
T (K) v j Etr CSs j Etr CSs

0 0 5 0.22 40.33 5 0.22 40.33
1 8 0.88 61.06 8 0.88 61.20
2 0 1.00 72.00 0 1.00 72.13

300 0 5 0.20 39.93 5 0.20 40.11
1 8 0.88 60.66 8 0.88 60.81
2 7 0.58 71.62 7 0.58 71.66

600 0 5 0.18 39.16 5 0.19 39.71
1 8 0.89 59.92 8 0.89 60.42
2 7 0.56 70.67 7 0.57 71.17

900 0 5 0.18 39.16 5 0.18 39.33
1 8 0.89 59.92 8 0.90 60.07
2 7 0.56 70.67 7 0.56 70.71

1200 0 5 0.17 38.81 5 0.17 38.97
1 8 0.90 59.60 8 0.90 59.75
2 7 0.55 70.24 7 0.55 70.28

1500 0 5 0.16 38.47 5 0.16 38.63
1 9 0.97 59.18 9 0.97 59.31
2 7 0.54 69.85 7 0.54 69.89

1800 0 5 0.15 38.16 5 0.15 38.30
1 9 0.98 58.69 9 0.98 58.82
2 7 0.53 69.48 7 0.53 69.52

2100 0 5 0.13 37.85 5 0.13 37.99
1 9 0.98 58.24 9 0.99 58.37
2 7 0.52 69.14 7 0.52 69.18

0.1 eV .
Notice that no extra effort is necessary to compute the CSs

for all the rovibrational states and the initial collision energies.
After getting a sufficient set of data for the training process,
ANNs can be used to predict for all the interested initial con-
ditions of the system. In conclusion, we believe that ANNs
introduces new ideas that may help researchers to tackle op-
timization problems that, so far, have not been conveniently

investigated.
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[7] J. Jellinek and Z. B. Güvenç, in Topics in Atomic and Nuclear

Collisions (eds. B. Remaund et al.) (New York, Plenum Press
1994) p. 243.
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Jellinek, Int. J. Quantum Chem. 84, 208 (2001).
[21] J. Jellinek and I.L. Garzon, Z. Phys. D 20, 239 (1991).
[22] M.S. Stave and A.E. DePristo, J. Chem. Phys. 97, 3386 (1992).
[23] R. Fournier, M.S. Stave, and A.E. DePristo, J. Chem. Phys. 96,

1530 (1992).
[24] Y.L. Alvarez, G.E. Lopez, and A.J. Cruz, J. Chem. Phys. 107,

1420 (1997).
[25] C.T. Rettner and D.J. Auerbach, Chem. Phys. Lett. 253, 236

(1996).
[26] A. Gross, Surf. Sci. Rep. 32, 291 (1998).
[27] K.D. Rendulic, G. Anger, A. Winkler, Surf. Sci. 208, 404

(1989).
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