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Using variational and diffusion Monte Carlo methods, we have calculated the ground state energy of spinless
charged particles (for N ≤ 10) interacting through a repulsive Coulomb potential, moving in two-dimensions
and kept together by an external parabolic potential. Using a very simple trial wave function, we obtain results
comparable to those of a sophisticated model of a quantum dot.
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I. INTRODUCTION AND MODEL

With technological advances in the preparation and in the
fabrication of microstructures it is now possible to confine
electrons and atoms in restricted regions. The principal exem-
ples of experimental progress in this area are semiconductor
quantum dots [1] and laser trapping of cold atoms [2]. Semi-
conductor quantum dots constitute a quasi ideal system for the
study of the physical properties of a two-dimensional system
of strongly interacting electrons, laterally confined by an ex-
ternal potential. From the theoretical point of view, computer
simulation [3, 4] has achieved the greatest success inusmuch
as approximate analytical methods [5] have encountered difi-
culties, since both the many body effects and the individual
behavior of each electron have a crucial role in these systems.
The major difficulty in the theoretical methods is due to the
fact that the electrons in the quantum dots are confined in a
very small area and hence they cannot be treated as part of a
continuous distribution of charges. These systems, consisit-
ing of a finite number of electrons confined to a small region
in semiconductor structures are known as quantum dots and
more recently as artificial atoms.

In this paper we report an application of Variational Monte
Carlo and Diffusion Monte Carlo method (VMC-DMC) to
calculate the ground state energy of a two-dimensional system
used as a model for quantum dots. The simulations are per-
formed with a confinement frequency ~ω = 0.28 Hartree (H).
We consider a system consisting of a small number of spinless
charged particles interacting through a repulsive Coulomb po-
tential, moving in two dimensions and an external parabolic
potential well. The Hamiltonian is given by
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Here, ~ri is the position of the ith particle relative to the cen-
ter of the confinement; m∗ is the effective mass and ε is the
dielectric constant of the semiconductor. In effective atomic
units, defined by ~= e2

ε = m∗ = 1, the energy and length units
are Ry∗ = m∗e2/2~2 (4πεε0)

2 and a∗B = ~2 (4πεε0)/m∗e2 [6].
The average density n0 of electrons in the dot may be rep-
resented by a parameter rs defined by n0 = N/πr2 = 1/πr2

s .

Thus, because the external parabolic confinement is responsi-
ble for the average density of electrons, the confinement fre-
quency is ω2 = e2/4πε ε0m∗r3

s
√

N.

II. NUMERICAL SIMULATION

In this work most of the VMC-DMC calculations were per-
formed for clusters with the electron number varying between
N = 1 and 10. The simulations were performed in two steps:
first we perform a calculation using the VMC method. In this
method the main idea is to assume a trial wave function ΨT ,
which can be optimized with respect to a set of variational pa-
rameters α, in order to minimize the expectation value of the
energy. In this step use variance minimization of the local en-
ergy to improve the trial wave function [7]. Next, we improve
the variational estimate by using the DMC method. In this
method one propagates the trial wave function in imaginary
time t using the operator e−tH in the long time limit to elim-
inate higher excited states and project out the ground state.
For more details of the VMC and DMC method see ref.[8].
We use a simplified algorithm as suggested in Ref.[8]. In our
work we use a simple trial wave function given by a single
particle Gaussian times a correlation Jastrow factor product

ΨT = e−∑i αr2
i e

∑i< j
βri j

1+γri j . (2)

Here α, β and γ are variational parameters. The parameter β is
fixed to give the necessary cusp condition when electrons ap-
proach one another, ri j → 0. Parameters α and γ are optimized
in order to minimize the expectation value of energy and its
variance. Several independent Monte Carlo runs consisting of
different initial electron distributions are performed in order
to make sure that the ground state energy is reached. Physi-
cal quantities are obtained for each set of parameters during
several independent Monte Carlo runs consisting of approxi-
mately 100000 steps carried out after the system has reached
equilibrium.
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III. RESULTS AND DISCUSSION

Table I shows the results of DMC for a system of charged
spinless particles (column 3) and the results by Pederiva et al.
[9] (column 2) for a circular quantum dot in a semiconductor
structure using the Quantum Monte Carlo method. We origi-
nally intended to compare our results (column 3) to those of
Bedanov et al. [3], for a system of classical particles confined
by a parabolic potential, in order to get a first estimate of quan-
tum effects for such system. The direct comparison to those
results is however puzzling due to the differences in the defin-
ition of the system of units, a problem that has been noted by
several authors. For this reason we decided to make a com-
parison with the results of Pederiva [9] for a semiconductor
quantum dot. We do not expect excelent agreement since we
consider a system of spinless particles. In spite of the differ-
ences mentioned above, our results show an overall qualitative
agreement and a reasonable quantitative behavior as is shown
in Table I. The quantitative differences in the results come ba-
sically from the contribution of the exchange interaction to the
total energy. The qualitative behavior is brought about by the
Coulombic interaction and the parabolic type of confinement.
We can see that the values by Pederiva et al. are always above
ours. This is expected, since the inclusion of spins will allow
for smaller typical distances between electrons, thus augment-
ing the potential energy and consequently the total energy.

TABLE I: Ground state energy in H, for circular quantum dots with
confinement frequency ~ω = 0.28H.

N E(Ref. [9] ) E(This work)
2 1.02165(1) 1.021602(1)
3 2.2339(1) 2.141503(5)
4 3.7145(1) 3.586869(1)
5 5.5338(1) 5.346638(4)
6 7.6001(1) 7.379415(5)
7 10.0342(1) 9.691703(6)
8 12.6900(1) 12.262552(7)
9 15.5801(1) 15.062426(8)
10 18.7232(1) 18.107263(6)

In Fig.1 we plot the change in the electrochemical potential
EN as a function of N. This change is due to the addition
of an extra electron EN = µ(N + 1)− µ(N), where N is the
number of electrons in the cluster, µ(N) = E(N)−E(N− 1)
is the electrochemical potential of the system. As one can
see, the electrochemical potential decreases as a function of
the number of electrons, and seems to show valleys and peaks
in electron numbers 2,6 and 9 that are related to changes in
the structure of the cluster in agreement with experiment [10].
The most remarkable change observable in the Figure occurs

when the number of particles is equal to six. For this particular
number of particles one electron lies in an internal shell and
the other five in the external shell. For the configurations with
five or less electrons the changes are not so drastic since all
the electrons form a single shell.
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FIG. 1: Change of the eletrochemical potential for ω = 0.28.

IV. CONCLUSION

A combination of the variational and diffusion Monte Carlo
methods using a very simple wave function provides a good
description of a system of spinless charged particles. In spite
of this simplicity, our results are in good agreement with more
sophisticated models of quantum dots. Because of this, we
believe our results could be of interest as a first estimate of
quantum corrections to classical approaches.
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