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Several papers have been written on the complex problem of the stochastic dynamics of the magnetic moments
of super-paramagnetic particles, simultaneously with the stochastic rotation of these colloidal particles in a
ferrofluid [1–3]. None of these works, however, is sufficiently general and conveniently simple and clear to
be used in sumulational works to appropriately describe the experimental super-paramagntetic resonance lines.
We have a new proposal for the equations of rotational motion, which is appropriate for simulations. Those
equations are stochastic differential equations with multiplicative noise. Therefore, they have to be interpreted
as Stratonovich-Langevin equations and the roles of stochastic calculus have to be used in the simulations. For
this reason we will briefly present the essence of the numerical algorithms used in the solutions of Stratonovich
equations. Finally, the simulational results for the magnetic response functions, and the corresponding dynamic
susceptibilities, will be shown and their consequences will be analyzed.
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I. INTRODUCTION

The dynamics of the magnetic moments of super-
paramagnetic particles constitute a nice example of problem
in the Physics of condensed matter where to apply the tools
of stochastic calculus to perform numerical simulation. If
those particles are in a ferrofluid, then the problem becomes
still more interesting, because one has a coupled rotational
motion of the moments with respect to the particles and of
the particles with respect to the fluid. Several physical vari-
ables may be calculated from the numerical solutions of the
equations of motion for an ensemble of super-paramagnetic
particles, which can then be compared to experimental re-
sults. We give particular attention to the linear response func-
tions, from which the dynamical susceptibility is obtained by
Fourier transform, and then the magnetic resonance absorp-
tion lines.

In section II we introduce some hypothesis, which are very
realistic for real ferrofluids, defining in this way the essence
of the model. The equations of motion are also introduced
in this section. Since the simulation is done for an equilib-
rium ensemble of particles, the probability distributions of the
relevant variables is discussed in section III. General prop-
erties of stochastic differential equations and numerical pro-
cedures to get solutions for their realizations are treated in
section IV. Finally, in section V we solve the set of equa-
tions for the super-paramagnetic particles, for different values
of the physical parameters, calculate the response functions
and the corresponding dynamical susceptibilities and present
the results in figures. Some consequences of our results are
discussed.

II. THE MODEL AND THE EQUATIONS OF MOTION

Some hypothesis used in this work are:
1) The magnetic particle has a symmetry axis of easy mag-

netization, which will be characterized by the unit vector c;

2) The particle’s magnetic moment µ has constant modulus
µ and can rotate inside the particle under the influence of an
interaction potential modeled by V =−K(µ · c)2, where K is a
constant, called ”anisotropy constant”; we will use units such
that µ = 1;

3) The particle’s rotational inertia is negligible in the equa-
tions of motion, in comparison with the Brownian and dissi-
pative terms;

These three hypothesis are very realistic for the normal con-
ditions of super-paramagnetic particles in ferrofluids above
the blocking temperature.

The equations of motion for µ are obtained from the classi-
cal equation for the rotation of a system with angular momen-
tum J in presence of a torque N,

dJ
dt

= N. (1)

The existence of a magnetic moment µ implies the existence
of an angular momentum, such that µ = gJ. In the general
case the ”gyromagnetic factor” g is a tensor, but frequently
it is simply a scalar. We will assume this to be the case and
chose units such that g = 1. Therefore Eq.(1) may be written
as

dµ
dt

= N (2)

The torques on µ are:
a) The torque due to the interaction potential V of hypothe-

sis 2 above is obtained by deriving V with respect to the angle
between µ and c, which results in 2K(µ · c)(µ× c);

b) The Brownian torque due to the atomic vibrations of
thermal origin (phonons) of the particle: αµµ×ξµ;

c) The dissipative torque of resistance to the Brownian ro-
tation (fluctuation dissipation theorem): −γµµ× µ̇ (throughout
this paper µ̇ means time derivative of µ);
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d) The torque of interaction of µ with a magnetic field H,
applied or due to the other particles in the ferrofluid, which
happens to be present at the particles position: µ×H.

Therefore the equation of motion for µ, Eq.(2), may be writ-
ten as

dµ
dt

= µ×
{

H +2K(µ · c)c− γµ
dµ
dt

+αµξµ

}
(3)

Substituting dµ
dt at the RHS of Eq.(3) by the whole of the

RHS, and using the properties of the triple vector product we
get

dµ
dt

=
1

1+ γ2
µ

µ×
{

H +2K(µ · c)c+αµξµ− γµµ×{H +2K(µ · c)c+αµξµ}
}

(4)

If we call He f f = H + 2K(µ · c)c + αµξµ, Eq.(4) becomes the
equation of Landau-Lifshitz.

The only motion of the particle which will be considered is
the rotation of the symmetry axis, c, since the rotation around
c is irrelevant for the motion of µ. The last three terms of
Eq.(3) are due to the interaction of µ with the particle and,
therefore, they have to be present, with opposite sign, in the
equation for c. Besides those terms there is the Brownian
torque on the particle, due to the thermal motion of the liquid’s
molecules and the corresponding dissipative torque, according
to the fluctuation-dissipation theorem. Since the rotational in-
ertia of the particle will be neglected (hypothesis 3 above),
the equation of motion for c reduces to a balance between the
torques,

−2K(µ ·c)(µ×c)+γµµ× µ̇−αµµ×ξµ−γlc× ċ+αlc×ξl = 0 ,
(5)

which may be written more conveniently as

γlc× ċ =−2K(µ · c)(µ× c)+ γµµ× µ̇−αµµ×ξµ +αlc×ξl .
(6)

Making the vector product of Eq.(6), at the left, by c and
using the properties of the triple vector product, follows

dc
dt

=
c
γl
×

{
µ× [

2K(µ · c)c− γµ
dµ
dt

+αµξµ
]
+αlξl

}
, (7)

where, in the last term, we substituted c× (c× ξl) by c× ξl ,
because both expressions are white noise perpendicular to c
and, therefore, have the same statistical properties and the last
expression is simpler.

III. EQUILIBRIUM DISTRIBUTIONS

Before performing the simulations of the dynamics of µ and
c we need to get the equilibrium distributions of these vectors,
which are the initial distributions from which we will simulate
the dynamics. The independent stochastic variables are the

polar coordinates θ and φ of µ and the polar coordinates ϑ and
ϕ of c.

The equilibrium distribution for these four independent
variables, in presence of a magnetic field H in the z direction,
is given by Boltzmann’s distribution,

Po(θ,φ,ϑ,ϕ) = C sin(θ)sin(ϑ)exp((K(µ · c)2 +µ ·H)/T )
(8)

where µ · c = sinθsinϑcos(φ−ϕ)+ cos(θ)cos(ϑ), µ ·H =
H cos(θ)
and C is a normalization constant.

To obtain, the equilibrium distribution for one of the vari-
ables, for example Po(θ), for θ, we perform the numerical
integration of the other independent variables, φ, ϑ and ϕ (see
Fig.1, lines a and b).

For the simulation of the dynamics we will need to gen-
erate an equilibrium ensemble of particles with coordinates
distributed according to Eq.(8). There are several ways of
doing this [4, 5]. Fig.1, line c, shows Po(θ) obtained form
the histogram for the θ’s of 10000 particles of an equilibrium
ensemble, for different parameters, as described in the figure
caption. When the histogram is done for 1000000 particles,
as in the dynamic simulation described below, the theoretical
and simulated curves become indistinguishable.

It is interesting to note that the equilibrium distribution of
the orientation of µ is independent of the anisotropy K. The
orientation of µ depends on the ratio H/T while the orienta-
tion of the particle, specified by c, depends on H, K and T , as
can be seen in Fig.2.

We will see bellow that for the dynamic response of the
magnetization this independence of the orientation of µ with
respect to the anisotropy does not happen, i.e., the dynamic
behavior of µ depends on the anisotropy.

IV. NUMERICAL SIMULATION OF STOCHASTIC
DIFFERENTIAL EQUATIONS WITH MULTIPLICATIVE

NOISE

Equations 4 and 7, taken together, may be written in the
form of a Stratonovich stochastic differential equation [5, 6],
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FIG. 1: Equilibrium distribution for the angle θ between µ and H: a)
without applied field; b) with field H = 1, parallel to the z-axis; c) line
plot of a histogram for the computer generation of the independent
coordinates for 10000 particles with probability distribution given by
Eq.(8)with field H = 1; all curves are independent of the value of the
anisotropy K.
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FIG. 2: Equilibrium distribution for the angle ϑ between c and H.
Dashed line: without applied field, it is just a sin(ϑ); solid thick line:
with field H = 1, parallel to the z-axis, K = 5 and T = 1; solid thin
line: plot of a histogram for the computer generation of the inde-
pendent coordinates for 10000 particles with probability distribution
given by Eq.(8) with the same parameters as in the thick line.

dX(t) = A(X)dt + B̃(X)dW (t) (9)

where X(t) is an n-component vector (in our case n=6,
X = [µ,c] = [µx,µy,µz,cx,cy,cz]), A(X) is an n-component
vector (RHS of equations 4 and 7, except for the terms with
the white-noise), dW (t) is an m-component ”Wiener differen-
tial” (see reference [6]), which corresponds to the integral of
the white-noise over the time interval (t, t + dt), and B̃(X) is

an n×m matrix. Each component dWj of dW is a Gaussian
stochastic process with zero mean and variance dt, i.e.,

〈
dWj(t)

〉
= 0〈

dWj(t)dWk(t)
〉

= δ j,kdt. (10)

In some cases B̃ is a constant matrix, i.e., does not depend
on X , and then Eq.(9) is said to be of ”additive noise”. Oth-
erwise, namely when B̃ depends on X , the equation is said to
be of ”multiplicative noise”. In the former case Eq.(9) may be
solved by ”ordinary stochastic calculus”, while in the last case
one have to use ”Stratonovich” or ”Ito” calculus. This is the
case of equations (4) and (7), since B̃ contains vector products
with µ and c, which are components of X .

We write Eq.(9) in terms of ”finite differences”, according
to Stratonovich calculus. Calling ∆t, ∆X and ∆W the finite
differences of t, X and W between two consecutive instants of
the discretized time, we have

∆X = A(X +∆X/2)∆t + B̃(X +∆X/2)∆W (11)

The term ∆X/2 in the argument B̃ essential for Stratonovich
calculus, whereas it is optional, but convenient, in the argu-
ment of A.

To generate, in computer simulation, the independent com-
ponents ∆Wj of the ”Wiener increments” ∆W , we proceed in
the following way: generate a Gaussian random number RG,
with zero mean and unit variance and write

∆Wj =
√

∆t RG (12)

since the width of the distribution for ∆Wj is
√

∆t.
It is in general, and in our case in particular, difficult, or

even impossible, to isolate ∆X in Eq.(11). For this reason
we will use an algorithm which we call “second order
Stratonovich”, as follows:

1) Calculate ∆X0 equal to the RHS of Eq.(11) without the
terms ∆X/2 in the arguments of A and B̃;

2) Use ∆X0 instead of ∆X in the arguments of A and B̃ to
obtain ∆X .

This procedure is analogous to Runge-Kutta 2nd order in the
case of ordinary differential equations. It gives the same level
of precision as we would have by transforming Eq.(9) into an
Ito differential equation and integrating it by Ito calculus, but
it is simpler to implement.

V. SOLUTION OF EQUATIONS (4) AND (7) BY
STRATONOVICH CALCULUS

Let us write equations (4) and (7) explicitly in the form of
Stratonovich stochastic differential equations:
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dµ =
1

1+ γ2
µ

µ×
{

H +2K(µ · c)c− γµµ×{H +2K(µ · c)c}
}

dt +

+
αµ

1+ γ2
µ

µ×
{

dWµ− γµµ×dWµ

}
(13)

dc =
c
γl
×

{
µ× [

2K(µ · c)c dt− γµdµ
]
+αµµ×dW µ +αldW l

}
(14)

Now we write equations (13) and (14) in form of finite differences according to Stratonovich integration rule. For the time
step (t, t +∆t) we use the following notation: µ = µ(t); c = c(t); and ∆µ and ∆c the corresponding increments in the interval.

∆µ =
1

1+ γ2
µ
(µ+∆µ/2)×

{
H +2K

(
(µ+∆µ/2) · (c+∆c/2)

)
(c+∆c/2)

− γµ(µ+∆µ/2)×
{

H +2K
(
(µ+∆µ/2) · (c+∆c/2)

)
(c+∆c/2)

}}
dt +

+
αµ

1+ γ2
µ
(µ+∆µ/2)×

{
dWµ− γµ(µ+∆µ/2)×dWµ

}
(15)

∆c =
c+∆c/2

γl
×

{
(µ+∆µ/2)×

[
2K

(
(µ+∆µ/2) · (c+∆c/2)

)
(c+∆c/2) dt

− γµ∆µ
]
+αµ(µ+∆µ/2)×dW µ +αldW l

}
(16)

We obtain µ(t +∆t) and c(t +∆t) proceeding as follows, ac-
cording to the 2nd order Stratonovich algorithm, as described
in section IV:

1) Calculate ∆µ0 from Eq.(15), by neglecting everywhere at
the RHS the terms ∆µ/2 and ∆c/2;

2) Calculate ∆c0 from Eq.(16), by neglecting everywhere at
the RHS the terms ∆µ/2 and ∆c/2 and using ∆µ0, just calcu-
lated, instead of ∆µ in the term γµ∆µ;

3) Calculate ∆µ from Eq.(15), by using ∆µ0/2 and ∆c0/2
everywhere at the RHS instead of ∆µ/2 and ∆c/2;

4) Calculate ∆c from Eq.(16), by using ∆µ0/2 and ∆c0/2
everywhere at the RHS instead of ∆µ/2 and ∆c/2 and using
∆µ, just calculated, in the term γµ∆µ;

5) Obtain µ(t +∆t) = µ+∆µ and c(t +∆t) = c+∆c and cor-
rect the norms of those quantities from the small errors (2nd

order in ∆t), which may be produced by the above calcula-
tions, by dividing both by their corresponding norms.

VI. LINEAR RESPONSE FUNCTIONS AND DYNAMIC
SUSCEPTIBILITIES

Assume that a weak field F(t) is applied on a system and
an observable variable B(t) changes its expectation value from
the equilibrium value B0 to

〈
B(t)

〉
= B0 +δB(t), where δB(t)

is a linear functional of F(t). Assume also that, as is usually
the case, the interaction energy of F with the system may be

written in the form H (t) = −A(t)F(t), where A(t) is a dy-
namical variable of the system. The linear response function
ΦBA is implicitly defined by

δB(t) =
Z t

−∞
ΦBA(t− t ′)F(t ′)dt ′. (17)

Assuming, for simplicity, that the equilibrium values A0 and
B0 are zero, the ”Kubo formula” (see equation 4.2.20 of refer-
ence [7]), which relates the correlation function of A and B to
ΦBA, in the classical case, may be written as

ΦBA(t) =
{ −β

〈
Ḃ(t)A(0)

〉
for t ≥ 0

0 for t < 0 (18)

where β = 1/kBT and
〈 · · ·〉 means average over an equilib-

rium distribution for a canonical ensemble of systems.
In the case of a magnetic field Hi(t), applied in direction i,

the response function Φ ji of the magnetization in direction j
is

Φ ji(t) =
〈
µ̇ j(t)µi(0)

〉
for t ≥ 0. (19)

The numerical simulation starts from an equilibrium ensem-
ble of N particles, like introduced in section III, follows the
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evolution of µ j(t) as explained in section V, makes the prod-
uct µ̇ j(t)µi(0) for each particle, sums over all particles and
divides by N.

In what follows we apply the above ”recipe” to calculate the
magnetic response functions of the super-paramagnetic par-
ticles in ferrofluids, for several sets of material parameters.
From the response functions, by Fourier transform, we obtain
the corresponding dynamic susceptibilities,

χ(ω) = χ′(ω)+ iχ′′(ω) =
Z ∞

0
Φ(t)exp(−iωt)dt. (20)

The absorption power in magnetic resonance is propor-
tional to the imaginary part of the susceptibility,

P(ω) ∝ ωχ′′(ω), (21)

which makes the susceptibility a very important function.
We chose a set of values for the material parameters, in

adimensional units, as our standard. Then, by varying one
parameter in each calculation, we isolate its effect on the dy-
namics. For our standard we chose:

H = 1, K = 1, γµ = 0.01, γl = 1, T = 1; (22)

Figure 3 shows the results of the calculations for the re-
sponse functions Φxx(t) and Φyx(t), for the case of the stan-
dard values of the parameters. We used an ensemble of
1000000 particles.
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FIG. 3: Response function Φxx(t) (full line) and Φyx(t) (dashed line)
for the standard case, with parameter values as written on the inset.

Figure 4 shows the imaginary part of the susceptibil-
ity, χ′′xx(ω), for the standard case and several values of the
anisotropy, keeping the standard values for the other parame-
ters. One sees that in absence of anisotropy there is a very
narrow, well pronounced, resonance line, while for increasing
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FIG. 4: Imaginary part of the susceptibility, χ′′xx(ω) for the standard
case (full line), and several values of the anisotropy (dashed lines, as
indicated), keeping the standard values for the other parameters.

anisotropy the resonance becomes broader and less well pro-
nounced. For very high K, which corresponds to ”blocked”
magnetic moment, the resonance disappears.

Figure 5 shows the effect of both viscosities on the suscep-
tibility. The doted and dashed lines correspond to increase γµ
and γl , respectively, by a factor of 10. One sees that in both
cases the line becomes broader, less intense and centered on a
slightly higher resonance frequency.
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FIG. 5: Imaginary part of the susceptibility, χ′′xx(ω), for higher vis-
cosities, γµ = 0.1 (dotted line) and γl = 10 (dashed line), compared
to the case of the standard values (full line).

Figure 6 shows the effect of changing temperature. At
higher temperature the particle’s random rotation becomes
faster and, in consequence, the broadening effect of the
anisotropy field decreases.
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FIG. 6: Imaginary part of the susceptibility corresponding to diferent
temperatures, T=2 (full line) and T=0.5 (dashed line).

VII. CONCLUSIONS

In conclusion one can say that:

1) Simulation of the dynamics of super-paramagnetic mo-
ments in ferrofluids, when compared to resonance experi-
ments, can give important information about their properties:

a) Bigger K: broader resonance line, same resonance fre-
quency;

b) Very big K (blocked): no resonance;

c) Bigger γµ or γl : broader resonance line and slightly
higher resonance frequency;

d) Higher temperature: narrower line, same resonance fre-
quency;

2) Second order Stratonovich is a very good algorithm to sim-
ulate realizations of the dynamics of super-paramagnetic mo-
ments in ferrofluids.
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