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Numerical Simulation of N-vector Spin Models in a Magnetic Field
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Three-dimensional N-vector spin models may define universality classes for such diverse phenomena as i)
the superfluid transition in liquid helium (currently investigated in the micro-gravity environment of the Space
Shuttle) and ii) the transition from hadronic matter to a quark-gluon plasma, studied in heavy-ion collisions at
the laboratories of Brookhaven and CERN. The models have been extensively studied both by field-theoretical
and by statistical mechanical methods, including Monte Carlo simulations using cluster algorithms. These
algorithms are applicable also in the presence of a magnetic field. Key quantities for the description of the
transitions above — such as universal critical amplitude ratios and the location of the so-called pseudo-critical
line — can be obtained from the models’ magnetic equation of state, which relates magnetization, external
magnetic field and temperature. Here we present an improved parametrization for the equation of state of the
models, allowing a better fit to the numerical data. Our proposed form is inspired by perturbation theory, with
coefficients determined nonperturbatively from fits to the data.
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I. INTRODUCTION

The N-vector (continuous-spin) models are proposed as
class representatives for phase transitions in several interest-
ing physical systems, such as the superfluid transition in liquid
helium, in the N = 2 case [1], and the deconfinement tran-
sition in quantum chromodynamics (QCD) with 2 flavors of
light quarks, in the N = 4 case. The deconfinement phase
transition is obtained when hadrons (e.g. protons and neu-
trons) melt into a quark-gluon plasma at very high tempera-
tures, such as the temperatures that were present at beginning
of the universe. There is great interest in describing this tran-
sition and in obtaining the properties of the high-temperature
phase, a new state of matter that might be present today in
the interior of neutron stars. In the case of two degener-
ate light quark flavors (i.e. up and down), the transition is
believed to be described by the three-dimensional 4-vector
model. More precisely, one invokes the effective σ-model
[2], a (three-dimensional) Ginzburg-Landau effective theory
written assuming universality and respecting the chiral sym-
metry of QCD. The theory relates the QCD order parameter,
which is the chiral condensate < ψψ > (where ψ is the quark
field), to the magnetization of a continuous-spin model. The
analogue of the magnetic field H is given by the (nonzero but
small) quark mass and the reduced temperature is defined for
lattice QCD as t ∼ 6/g2−6/gc

2(0), where g is the lattice cou-
pling. For two quark flavors one then obtains — if transition
is second order — a three-dimensional 4-vector model in the
presence of a magnetic field. The equivalence just described
allows one to study critical properties of the QCD phase tran-
sition from the spin-model equation of state. One of these
properties is the so-called pseudo-critical line, the analogue of
the critical point for the case of nonzero magnetic field. The
pseudo-critical line is defined by the points where the suscep-
tibility shows a (finite) peak, corresponding to the rounding of
the divergence observed for H = 0, T = Tc.

We note that the equivalence between 2-flavor lattice QCD

and the 4-vector model is still not verified in comparisons
of the respective numerical data (see e.g. [3] and references
therein). Thus, a better knowledge of the magnetic equation of
state for the 4-vector model is of great importance to achieve
higher precision in this comparison, to verify if the equiva-
lence really holds and/or to establish the nature of the QCD
phase transition, recently claimed to be of first order [4].

Also in the case of the 2-vector (or XY ) model, a
high-precision nonperturbative determination of the equa-
tion of state is of interest, since there are still discrep-
ancies between the latest experimental and perturbative-
renormalization-group values for critical quantities at the su-
perfluid helium transition [5]. Note that both these determi-
nations are very accurate, while the available nonperturbative
values (from Monte Carlo simulations at zero magnetic field
[6, 7]) are not as precise.

The Hamiltonian for the N-vector models is given by

H = −J ∑
<i, j>

Si ·S j − H ·∑
i

Si , (1)

where the spin variables Si are taken as vectors on a sphere of
unit radius in an N-dimensional space. The main difference
with respect to the Ising case is the possibility of configura-
tions where the spins are locally aligned but for long distances
this alignment is lost, yielding a null average for the magne-
tization. Such configurations — called spin waves — possess
arbitrarily low energy and tend to destroy the order of the sys-
tem even at low temperatures. In d = 3 the models display a
phase transition, with the presence of spontaneous magneti-
zation below the critical temperature, but the spin waves lead
to Goldstone-mode induced singularities, causing a diverging
susceptibility and strong finite-size effects for all T < Tc when
H → 0.

Monte Carlo simulations can be performed very efficiently
for N-vector models, via cluster algorithms, also in a magnetic
field [8, 9]. The simulation in the presence of external field
has the advantage that one can obtain the equation of state di-
rectly from the data, as described below. Also, in this case one
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can “measure” the actual magnetization of the system, with-
out the need of an estimator such as the absolute value. In fact,
the magnetic field already selects only one of the equivalent
(zero-field) ground states that would lead to the same value of
the estimator but would average to zero over the simulation
in the zero-field case. The numerical simulation is done via
cluster algorithm, which can be applied to the case of nonzero
magnetic field by employing the ghost-spin trick. The observ-
ables are the magnetization parallel to the magnetic field and
the two susceptibilities (parallel and orthogonal to H).

We have recently proposed [10] an improved parametric
form for the equation of state of the models. Our proposed
form — inspired by perturbation theory — is a series expan-
sion with two sets of terms, which contribute (mainly) sep-
arately to the description of the high- and low-temperature
regions of the phase diagram. In this way we achieve a bet-
ter description of the low-temperature phase at zero magnetic
field (i.e. the coexistence line), characterized by the singulari-
ties described above. As a consequence, we are able to obtain
a very precise characterization of the pseudo-critical line for
the 4-vector model. We are currently applying the parame-
trization to a study of the N = 2 case. This will allow a better
determination of the ratio of critical amplitudes for the spe-
cific heat in the superfluid helium transition. Here we present
preliminary results of this study, comparing the equations of
state obtained for the cases N = 2, 4.

II. THE MAGNETIC EQUATION OF STATE

At infinite volume, the scaling function for the singular part
of the free energy is given by

Fs(t,h) = b−d Fs(byt t,byhh) , (2)

where b is arbitrary, t = (T −Tc)/T0, h = H/H0 and yt , yh are
related to the usual critical exponents β and γ. The above form
implies the relation between magnetization and the applied
magnetic field, known as the magnetic equation of state

M/h1/δ = fM(t/h1/βδ) . (3)

Equivalently

y = f (x) , (4)

with y = h/Mδ, x = tβ/M. The normalization constants are
given by f (0) = 1, f (−1) = 0. In the case of the N-vector
models, the singularities at low temperature determine the be-
havior of the magnetization as the square root of H. This
behavior (i.e. the Goldstone-mode effect) is included in the
following Ansatz [11] for the equation of state at low values
of x

x = −1+ay1/2 +by+ cy3/2 + · · · (5)

Note that these effects are present in N-vector models along
the coexistence line, i.e. at low temperatures and small mag-
netic field (or equivalently, at low values of the variable x).

The pseudo-critical line, described in the previous section,
is given by finite peaks in the susceptibility. It characterizes
the critical region when the external field is not zero (e.g. in
the QCD case). The scaling form for the susceptibility along
the pseudo-critical line is given by

χ = ∂M/∂H = (1/H0)h1/δ−1 fχ(t/h1/β) . (6)

Note the χ has a peak at tp for each fixed h and that

tp = zp h1/βδ (7)

H0 χp = h1/δ−1 fχ(zp) . (8)

Thus, the location of pseudo-critical line is given by zp, ob-
tained from the scaling function (or equation of state) for the
susceptibility, which involves the derivative of fM(t/h1/βδ).
Note also that zp is a universal constant.

For the 4-vector and the 2-vector models, the equation of
state was determined numerically respectively in [8] and [9],
by taking into account the Goldstone-mode singularities and
determining the location of the pseudo-critical line. The fitting
function for f (x) = y used an interpolation of two forms: the
Ansatz in Eq. (5) at low x and Griffiths’s analyticity conditions
at large x

x(y) = Ay1/γ + By(1−2β)/γ + · · · (9)

Then the equation of state fM(z) = M/h1/δ is obtained from
x(y). The problem is that the “transition” between the two fit-
ting forms above is close to the pseudo-critical point, which is
itself obtained from the equation of state for the susceptibility
[defined in Eq. (6) above], involving a derivative. It would be
therefore preferable to use a parametric form for f (x) without
the need for interpolation, ensuring a smooth derivative and
a better determination of the pseudo-critical point zp. To this
end we can consider the parametric form

M = m0 Rβ θ , (10)
t = R

(
1−θ2) , (11)

H = h0 Rβδ h(θ) . (12)

This yields

x =
1−θ2

θ2
0−1

(
θ0

θ

)1/β
, f (x) = θ−δ h(θ)

h(1)
, (13)

where h(θ) is an odd function, with root given by θ0. This
form was introduced in [12] by Guida & Zinn-Justin for the
Ising model (therefore without considering the effect due to
Goldstone modes at low x) and used for perturbative studies
of the N-vector case with the inclusion of the leading contri-
bution of θ0. The form leads to a smooth curve, and allows a
direct relationship with critical amplitude ratios. We propose
[10] an improved parametrization given by

h(θ) = θ
(
1−θ2/θ2

0
)2

(1+
n

∑
i=1

ciθ2i)
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FIG. 1: Plot of the data together with the fitting form for y(x) in the 4-vector case (left panel) and in the 2-vector case (right panel).

×[1+
m

∑
j=1

d j(1−θ2/θ2
0)

j ] . (14)

The above form is based on the parametrization used pertur-
batively in [12] for the Ising model, but takes into account
terms associated with the effects of singularities induced by
Goldstone modes, as discussed in the Introduction. These new
terms are included by means of the d j coefficients, associated
with an expansion around the coexistence line. (The d j’s are
considered in addition to the usual ci coefficients, related to
the high-temperature/high-x behavior.)

In Ref. [10] we have used the proposed form above for fits
to existing Monte Carlo data for the 4-vector case. ¿From our
fits we see that d j’s are indeed necessary for the description
of the data. Our best fit is obtained considering (in addition to
θ0) two coefficients of type c and two of type d

θ2
0 = 2.17(4) (15)

c1 = 0.9(1) , c2 = −0.62(7) (16)
d1 = −1.56(4) , d2 = 1.15(5) . (17)

We note that these results have errors that are one order of
magnitude smaller than the perturbative description, and fit to
the data with a value of χ2 per degree of freedom that is two
orders of magnitude smaller. The fit is shown together with
the data in Fig. 1 (left panel).

As explained above, the location of the pseudo-critical line
(useful for comparison between QCD data and the N-vector
model’s equation of state) is obtained from the peak in the
scaling function for the susceptibility (see Eq. 6). The peak
can be determined numerically from the two equations (13)
by varying θ. Our result is obtained with less than 1% of error

θp = 0.587(2) , zp = 1.29(1) , fχ(zp) = 0.341(1) .
(18)

The results are in agreement with previous determinations of
zp and fχ(zp), but our error for zp is much smaller.

Next, we show our preliminary results for the N = 2 case.
We have produced new data, simulating the three-dimensional
XY -model in the presence of a magnetic field by means of the
(Wolff) cluster algorithm. We use the improved form of the
model’s Hamiltonian, introduced by Hasenbusch and Török
for the zero-field case in [6]. We also use their values for the
critical temperature and critical exponents. When fitting the
data to our parametrization of the equation of state, we find —
regarding the role played by the c and d coefficients — essen-
tially the same characteristics as in the N = 4 case described
above, with the difference that in this case 6 parameters are
needed. Our best fit is obtained using

θ2
0 = 3.25(2) (19)

c1 = 1.05(4) , c2 = −0.11(3) , c3 = 0.53(2) (20)
d1 = −6.75(2) , d2 = 14.7(2) . (21)

We show the data together with the fit in Fig. 1 (right panel).
We see that the slope of the curve is significantly higher for the
N = 4 case, corresponding to a stronger effect of Goldstone-
mode singularities, as has already been found in [9]. Notice
that the data in the N = 2 case have smaller error bars, leading
to a very precise determination of the curve. This will enable
us to calculate (see e.g. [10]) the critical amplitude ratio of the
specific heat with the same accuracy as the experimental and
perturbative values. We quote our values for the location of
the pseudo-critical region in the 2-vector case

θp = 0.563(2) , zp = 1.61(2) , fχ(zp) = 0.349(1) .
(22)

As for the N = 4 case, the results are in agreement with previ-
ous determinations of the pseudo-critical line [9], but the error
for zp is smaller by one order of magnitude.
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III. CONCLUSIONS

We have introduced an improved parametric form for the
description of the equation of state of 3d N-vector models. We
show that the new parametric form indeed provides a better fit
to the numerical data as compared to previous parametriza-
tions. In particular, the consideration of the d j coefficients is
essential for a good description of the Monte Carlo data in
the whole range of values of x. Also, we were able to verify
clearly the different roles played by ci and d j parameters in the
high- and low-x regions. Indeed, in this form the coefficients
ci and d j contribute respectively to the high- (θ≈ 0) and low-
(θ ≈ θ0) temperature regions. We also stress that, in addition
to providing a better fit to the numerical data, the expression
considered is a continuous function, needing no interpolation
between the two x regions. This is particularly useful for the
determination of the pseudo-critical line, since the interpolat-
ing form introduced in [8] is unstable precisely in this region.

In fact, our determination of zp is very precise in comparison
to the previous estimates from the interpolated form and the
perturbative equation of state. As a consequence of a better
determination of the pseudo-critical line in the N = 4 case, one
may get an unambiguous normalization of QCD data for com-
parison to the 4-vector equation of state, showing better agree-
ment for larger quark masses [3]. We are currently extending
our analysis to the N = 2 case. Our preliminary results, pre-
sented here, confirm the fact that the equation of state can be
obtained with very high precision using our method. This will
allow a determination of the the critical amplitude ratio of the
specific heat with the same accuracy as the experimental and
perturbative values, which is of a few tenths of a percent [5].
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