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We propose a new local algorithm for the thermalization of n-vector spin models, which can also be used in
the numerical simulation of SU(N) lattice gauge theories. The algorithm combines heat-bath (HB) and micro-
canonical updates in a single step — as opposed to the hybrid overrelaxation method, which alternates between
the two kinds of update steps — while preserving ergodicity. We test our proposed algorithm in the case of the
one-dimensional 4-vector spin model and compare its performance with the standard HB algorithm and with
other HB-inspired algorithms.

Keywords: Monte Carlo algorithms, Heat-bath; Overrelaxation; Critical slowing-down

I. INTRODUCTION

The lattice formulation of quantum field theories provides
a first principles approach to investigate non-perturbative as-
pects of high-energy physics. In this formulation the theory
becomes equivalent to a statistical mechanical model, which
can be studied numerically using Monte Carlo simulations
(see for example [1, 2] and references therein). As a conse-
quence, the system considered evolves according to a Markov
process in the so-called Monte Carlo time and the action-
weighted configuration-space average of the observables is
substituted by a time average over successive (independent)
field configurations of the system. The possibility to use
Monte Carlo simulations to study the theory nonperturbatively
is especially important in the case of quantum chromodynam-
ics, the nonabelian SU(3) gauge theory describing the strong
interactions between hadrons. These simulations are compu-
tationally very demanding and must be done using local ther-
malization algorithms, since global methods (such as cluster
algorithms) do not work well in this case.

We should notice that, based on the above-mentioned
equivalence, when the continuum limit of the lattice quantum
field theory is taken, the corresponding statistical mechanical
model approaches its critical point. More precisely, the dis-
tance from the critical point is given by the lattice parameter β
(directly related to the lattice bare coupling constant), which
corresponds to an inverse temperature. For nonabelian gauge
theories (as a consequence of asymptotic freedom) the contin-
uum limit is given by β→∞, i.e. the critical point corresponds
to temperature zero. The expected critical behavior is there-
fore similar to the one of a two-dimensional continuous-spin
model (e.g. the classical Heisenberg or n-vector spin model
with n > 2) or of a one-dimensional spin model, which show
a critical point only at temperature zero, or β→ ∞.

The process of obtaining independent field configurations
is called thermalization and is usually carried out by applying
at each link of the lattice a local algorithm, such as Metropo-
lis or heat bath (HB). When a critical point is approached, this
process is afflicted by the well-known phenomenon of criti-
cal slowing-down (CSD) [3], which increases the correlation

among successive field configurations. This implies that the
integrated auto-correlation time τint increases as a power of
the lattice side N. In particular, for the Metropolis or HB al-
gorithms one has τint ∼ N2, i.e. the dynamic critical exponent
z is equal to 2. Since statistical Monte-Carlo errors are pro-
portional to

√
2τint , numerical simulations become increas-

ingly inefficient close to a critical point. In order to reduce
the problem of CSD one can combine the standard Metroplis
and HB algorithms with so-called micro-canonical updates,
allowing larger jumps in the configuration space and therefore
improving the generation of independent samples. This is the
idea behind the so-called hybrid overrelaxation method [4]. In
general, adding a few micro-canonical sweeps greatly reduces
CSD and, correspondly, the computational work.

A modification of the heat-bath algorithm, called overheat-
bath (OHB), was introduced some years ago in Ref. [5]. The
basic idea was to incorporate a micro-canonical move di-
rectly into the heat-bath step, thus reducing the computational
cost while preserving the large moves in the configuration
space. As it turns out, combining the two moves (heat-bath
and micro-canonical) in a single step leads to a significant
improvement in performance when compared to the hybrid
overrelaxation method described above, which is based on al-
ternating the two kinds of update moves. The resulting algo-
rithm was indeed able to speed up the thermalization process,
but, as already stressed in Ref. [5], it is not clear if it preserves
ergodicity (especially when working at small temperatures).
The OHB algorithm is used today in numerical simulations
[6], usually combined with other algorithms in order to en-
sure ergodicity. In this work we propose a modification of the
overheat-bath algorithm, which we call the modified heat-bath
algorithm (MHB), incorporating a micro-canonical move into
the heat-bath step without compromising ergodicity. In order
to test the MHB algorithm — and compare its performance
with the standard HB algorithm and the OHB algorithm —
we consider the 4-vector spin model on a 1-dimensional lat-
tice. Note that the model is exactly solvable, which makes it
especially suited for testing the algorithm and comparing re-
sults to the exact solution.

Let us also note that, due to the isometry between the
groups O(4) and SU(2), it is possible to study the SU(2) case
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with the same algorithm used for the 4-vector case. More pre-
cisely, the local update — i.e. the update of a single spin or
gauge field variable while holding the rest of the lattice fixed
— of the SU(2) lattice gauge theory is identical to the one
for the 4-vector model. This does not mean, however, that the
global update of an SU(2) gauge field configuration can be
obtained from the corresponding update of a 4-vector model.
Indeed, the latter update can be done very efficiently using the
Swendsen-Wang-Wolff algorithm, while no such class of al-
gorithms works well for lattice gauge theories. The method
proposed here is therefore intended mostly for use in simula-
tions of lattice gauge theories and not of n-vector models, al-
though hybrid overrelaxation methods have also been applied
in large-scale simulations of n-vector models [7]. Of course,
an efficient thermalization in the SU(2) case is of great phys-
ical interest, since the quenched SU(Nc) case (for Nc ≥ 3)
is usually studied applying the SU(2)-embedding technique
introduced in Ref. [8]. The SU(2) embedding is also used
for simulating other Lie groups, such as the Sp(2) and Sp(3)
groups, in studies of the deconfinement phase transition [9].
Preliminary results for the 2d SU(2) case have been presented
in [10].

II. THE 4-VECTOR SPIN MODEL AND THE
ALGORITHMS

The 4-vector spin model (on a 1-d lattice) is defined by the
Hamiltonian

H = −β
N

∑
x=1

Sx ·Sx+1 , (1)

where the spins Sx are four-dimensional unit vectors,
β ∼1/Temperature , N is the lattice side and · indicates a
scalar product.

In the case of a local algorithm, one has to consider the con-
tribution to the Hamiltonian due to a single spin Sx. This gives
Hss = −βSx ·Hx + constant , where the “effective magnetic
field” Hx is given by Hx = Sx−1 + Sx+1 . (Here we consider
periodic boundary conditions.) The above equation can also
be written as

Hss = −βNx

2
Tr Sx H̃†

x + constant , (2)

where Sx and H̃x are now interpreted as SU(2) matrices in
the fundamental representation and Nx =

√
detHx. Note that

Eq. (2) is clearly analogous to the expression of the single-link
action obtained by considering the contribution of a single link
variable to the SU(2) Wilson action [10].

Using the single-side action (2) and the invariance of the
group measure under group multiplication, one obtains the
HB update [11]

Sold
x → Snew

x = U H̃x (3)

Here, U = u0I + i ∑ j u jσ j is an SU(2) matrix, I is the 2×
2 identity matrix, σ j are the three Pauli matrices and u0 is

randomly generated according to the distribution
√

1−u2
0 exp(βNx u0 )du0 . (4)

At the same time, the vector~u — with components u j normal-

ized to
√

1−u2
0 — points along a uniformly chosen random

direction in three-dimensional space [2].
In the hybrid over-relaxed algorithm one does m micro-

canonical (or energy-conserving) update sweeps over the lat-
tice, followed by one HB sweep. The micro-canonical update
is a local deterministic transformation applied to the SU(2)
matrix Sx, which does not change the value of the Hamil-
tonian. This is achieved by considering the update

Sold
x → Snew

x = H̃x Tr
[
Sold

x H̃†
x

]
− Sold

x . (5)

As stressed in the Introduction, this update represents a large
move in the configuration space, allowing the hybrid over-
relaxed algorithm to reduce CSD at the price of a greater
computational cost, due to the micro-canonical sweeps. Usu-
ally, by setting m = 2,3 one obtains a strong reduction in the
value of τint while increasing the computational cost by a fac-
tor smaller than 2.

In the OHB [5] one tries to include the micro-canonical
step (5) directly into the heat-bath algorithm. To this end one
generates u0 according to the distribution (4) while the com-
ponents of ~u are not randomly chosen but are set using the
relation ~u = −~w , where W = w0I + i~σ · ~w = Sold

x H̃†
x . As a

final step, the vector ~u is normalized to
√

1−u2
0. Clearly,

the idea here is the same one applied in the standard hybrid
over-relaxed algorithm: one tries to maximize the move in the
configuration space by changing the sign of the component of
W that is orthogonal to the effective magnetic field. (Note that
the action S = −βN/2TrW can be viewed as the action of a
matrix W in an effective magnetic field given by the identity
matrix I.) Clearly, this step does not obey the uniform distrib-
ution for~u but is a microcanonical move. Indeed we can think
of the algorithm as a two-step process: a HB move followed
by a microcanonical step. Thus, the algorithm is exact but
may not be ergodic. We analyze the conditions for applica-
bility of the OHB algorithm in a separate work [12], but it
is clear that for some initial configurations the algorithm can
get “trapped” inside a subset of the space of configurations,
compromising the ergodicity condition. One such configura-
tion is, for example, a “cold” start for an n-vector model, in
which all spins are aligned along a fixed direction. In this
case, the OHB is not able to change the lattice configuration
at all. There is a clear problem also if the initial configuration
in the SU(2)-lattice-gauge-theory case is given by variables
in an Abelian subgroup. As can be easily seen, the update
will change the initial configuration in this case, but the result-
ing Markov chain will remain restricted to the Abelian sector,
without exploring the full space of configurations.

In this work we propose a modified HB algorithm (MHB) in
which the generation of the SU(2) matrix U is done as in the
HB case, but followed by one final step: if the scalar product
~u ·~w is positive then one does ~u →−~u, where the matrix W
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FIG. 1: Integrated auto-correlation time of the susceptibility as a function of the lattice side N for HB (×), OHB (¦) and MHB (◦), with 0 (left)
and 1 (right) overrelaxation step. Data have been fitted to the Ansatz τint = aNz.

FIG. 2: Integrated auto-correlation time of the susceptibility as a function of the lattice side N for HB (×), OHB (¦) and MHB (◦), with 2 (left)
and 3 (right) overrelaxation step. Data have been fitted to the Ansatz τint = aNz.

has been defined above. This may also be thought of as a mod-
ification of the overheat-bath (OHB). As said above, the basic
idea, in both cases, is to incorporate a micro-canonical move
into the heat-bath step. The difference is that in our case the
direction of~u is randomly chosen and only its sign is modified,
according to the above rule, while in the OHB algorithm one
fixes ~u ∝−~w directly. Our modification should ensure ergod-
icity while keeping the advantage of having a micro-canonical
step included into the HB step. We have indeed verified that
the MHB algorithm has no problem with cold starts and shows
a better τint than that of the OHB algorithm for energy-related
observables. On the other hand, in the OHB case, the move in
configuration space is more optimized and the iteration cost is
lower, since the algorithm is simpler and it needs fewer ran-
dom numbers. Our results are presented in the next section.

III. RESULTS AND CONCLUSIONS

In order to study the CSD of the new algorithm we have
to investigate if, and with what exponent, its relaxation time
τint (for certain quantities we are interested in) diverges as
the lattice size N increases. To this end, we have to evaluate
τint for different lattice sides N at “constant physics”, namely
as the lattice size is increased, the physical size of the lattice
should remain fixed. This is done by introducing a correlation
length ξ and by keeping the ratio ξ/N fixed, with N ¿ ξ
in order to keep finite-size effects under control. For the 1-
d 4-vector spin model one has ξ ∝ β [13], thus one should
tune N ∝ β in order to keep the ratio ξ/N constant. In our
simulations we considered the lattice sizes N = 32, 64, 96,
128, 160, 224, 256 and β = 2.5N/32 and β = 5.0N/32. In
all cases we did 1.1×106 thermalization sweeps and for the
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analysis we discarded the first 105 sweeps.
In order to test the new algorithm we have evaluated the en-

ergy density ε = N−1 ∑N
x=1 Sx ·Sx+1 , the magnetization M 2 =

(∑N
x=1 Sx )2 and the magnetic susceptibility χ = N−1 〈M 2〉 .

Let us recall that there exists an exact solution [13] for the 1-
d 4-vector spin model, even at finite lattice side N and with
periodic boundary conditions. Thus, we can check the numer-
ical results for the various quantities against the exact solution
(see also [14, Table 1]).

In all cases we have evaluated the integrated auto-
correlation time τint using an automatic windowing procedure
[3] with two different window factors (c = 4 and 8). We also
employ a method based on a comparison between the naive
statistical error with a binning error [15]. We checked that
these three estimates are always in agreement. The error on
the integrated auto-correlation time τint has been evaluated us-
ing the Madras-Sokal formula [3].

Results are reported in Figs. 1 and 2. The data obtained for
τint have been fitted to the Ansatz τint = aNz in order to es-
timate the dynamic critical exponent z. Our study shows that
the MHB algorithm has essentially the same critical exponent
z of the standard HB algorithm but the value of the integrated
auto-correlation time τint is about 30% smaller compared to
the standard HB algorithm. This implies a reduction in the
statistical error and in the computational cost by a factor of

about 20%. Similar results have been obtained in the SU(2)
case [10]. Thus, a good decorrelation can be reached with-
out the use of multiple micro-canonical sweeps. In particular,
from our simulations it appears that the HB algorithm with m
micro-canonical steps is essentially equivalent to the MHB al-
gorithm with m− 1 micro-canonical steps. This feature may
be useful in parallel computing [2] due to the reduction of the
inter-node communication.

At the same time, from our data one sees that the MHB
algorithm has a critical exponent z larger than that of the OHB
algorithm. In order to reduce CSD for the MHB algorithm,
while keeping its ergodicity properties, we are now testing an
algorithm that interpolates between MHB and OHB.

A more extensive study of these algorithms, both in the
O(4) and in the SU(2) cases, will be presented in a forthcom-
ing work [12].
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