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Monte Carlo Simulations of a
Semi-Flexible Polymer Chain: A First Glance
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We present preliminary results for Monte Carlo simulations of a three dimensional semi-flexible polymer
chain with continuous monomer positions. In these simulations, standard Metropolis Monte Carlo methods
are used to examine the basic properties of the model, such as equilibration configurations, overall size, and
transition temperatures.
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I. INTRODUCTION

There are many examples of polymer systems, ranging in
complexity from strands of DNA and protein molecules to ex-
amples of simple plastics. Regardless of the level of com-
plexity, the three dimensional structure of a polymer chain
will determine many of its most important properties. Monte
Carlo methods have shown great promise in studying polymer
conformation problems [1]. In particular, a wide variety of
Monte Carlo methods have been applied to single chain poly-
mer systems that include flexibility[2–4]. Many of these types
of studies consider the bond fluctuation model [5], in which
the monomer positions are confined to a lattice. Through the
use of a polymer model with continuous monomer positions,
we hope to add more realism to the study of general poly-
mer conformation problems. In this preliminary work, we
concentrate on understanding the basic features of our poly-
mer model, such as equilibration time, overall size of equili-
brated configurations, and location of transition temperatures.
In particular, we examine the transition between folded and
unfolded states.

II. MODEL

The polymer model consists of a chain of N identical
monomers, where each monomer position varies continuously
in three dimensions. There are three types of interactions: a
harmonic bond length interaction between nearest neighbor
bonded monomers, a bond angle interaction between adjacent
bonds, and a non-bonded interaction between all non-bonded
monomers. The Hamiltonian for this model is

H = JL

N−1

∑
i

(li−1)2 + JA

N−2

∑
i

(cos(θi)+1)2 + JNB ∑
i, j

f (ri j)

(1)
where N is the number of monomers, JL is the bond length
interaction parameter, li is the ith bond length, where the pre-
ferred bond length is li = 1.0, and ∑N−1

i is the sum over all
N− 1 bonds. In the second term, JA is the bond angle inter-
action parameter, ∑N−2

i is the sum over all N − 2 bond an-
gles, and θi is the angle between adjacent bonds, which has
a preferred bond angle of θi = 180. In the third term, JNB is
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FIG. 1: Plot comparing the non-bonded interaction potential, f (r),
to a Lennard-Jones potential.

the non-bonded interaction parameter, ∑i, j is the sum over all
non-bonded pairs of monomers, and f (ri j) is the non-bonded
interaction potential, where ri j is the distance between two
non-bonded monomers. The function f (r) represents a quasi-
Lennard-Jones potential [6] and is intended to model variable
solvent quality [7, 8]. This function is given by

f (r) =
{

3(r−2)2−2(r−2)3−1, for 0 < r < 3,
0, otherwise, (2)

where the minimum of this function is at r = 2. Fig. 1 com-
pares f (r) to a standard Lennard-Jones potential, showing that
f (r) has a softer repulsion as monomers come closer together.

We work in reduced units, in which JNB = 1, and JL and JA
can be varied. For the current study we examine the behavior
of the model for

JL = 30,JA = 30,JNB = 1. (3)

Initial simulations indicated that when JL is too small (∼ 1),
the monomers distribute in a bimodal fashion, where bonds
are either very short or very long. The current choice of
JL = 30 appears to produce relatively stiff bonds. In regulating
the bond angle stiffness, we set JA = 30 to allow for a semi-
flexible polymer chain with enough freedom to find globular
states.
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(Folded)
T = 1.0

(Unfolded)
T = 5.0

FIG. 2: Above we see a folded configuration at a low temperature and an unfolded configuration at a high temperature, each with a chain
length of N = 40. In these models, spheres represent monomers, and cylinders represent bonds between monomers.

III. METHOD

In simulating the polymer model, standard Metropolis
Monte Carlo methods [9] have been used. Changes are made
to the polymer configurations using the following types of
moves: monomer diffusion, reptation, crank-shaft, and ran-
dom pivot. One Monte Carlo sweep (MCS) consists of N
attempted monomer diffusion moves and a single attempt of
each of the other types of moves. A monomer diffusion move
randomly selects a monomer, and then displaces it a random
distance within a small cubic volume. A reptation move ran-
domly selects one monomer from either end of the chain and
then reattachs it to the opposite end of the chain. A crank-shaft
move randomly selects two non-bonded monomers and then
rotates the portion of the chain between those monomers by a
small random angle. A random pivot move randomly selects
a single monomer and the portion of the connected chain on
either side of the monomer. A random direction is then cho-
sen and the selected portion of the chain is then rotated around
this random axis by a small random angle.

To characterize the behavior of the polymer, we observe
quantities such as the radius of gyration and the average en-
ergy per particle. These two quantities offer much insight into
the general properties of the polymer model, such as config-
uration types and equilibration time. Energies, E/N, are cal-
culated using Eq. 1, and the radius of gyration is calculated
using

Rg =

√
∑N

i (~ri−~rcm)2

N
(4)

where ~ri is the ith monomer position, and ~rcm is the position
of the center of mass. The radius of gyration represents the
overall size of the polymer chain. For a given N, low values of
Rg represent more compact folded configurations, and higher
values of Rg represent unfolded configurations.
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FIG. 3: Radius of gyration and energy per particle as a function of
Monte Carlo time for N = 25,40,80, for T = 1.0. Symbols are added
every 104 MCS, to help distinguish the three curves. The first portion
of 106 MCS are shown.
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FIG. 4: Similar to Fig. 3 but for T = 2.0. The N = 40 series has
been removed for clarity. Symbols are added every 104 MCS point,
to help distinguish the three curves.

IV. SIMULATION RESULTS

Typical simulations ran between 105 and 106 MCS, when
starting from a straight configuration. In each simulation, Rg
and E/N are calculated after each MCS. For the following re-
sults, radius of gyration and energy per particle are reported
every 103 MCS. The chain size in these simulations was usu-
ally in the range of N = 25 to N = 80, however, simulations
have been run for sizes up to N = 256. Typical configurations
for a N = 40 chain can be seen in Fig. 2. The first chain rep-
resents a folded configuration at a low temperature (T = 1.0),
and the second chain represents an unfolded configuration at
a higher temperature (T = 5.0).

In Fig. 3 the radius of gyration and energy per particle are
both plotted as functions of time for three different chain sizes,
all at a low temperature (T = 1.0). Symbols are added every
104 MCS, to help distinguish the three curves. In this figure,
each chain relaxes into a folded state, and at this temperature,
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FIG. 5: Radius of gyration as a function of Monte Carlo time for
a chain of length N = 25, where each sequence shows the polymer
fluctuating at a different temperature.

the relaxation time scale is much shorter than 2.5×105 MCS.
Fig. 4 is similar to Fig. 3 but shows data at a slightly higher

temperature (T = 2.0). The N = 40 curve has been removed
for clarity. The principal feature in this figure is that fluctua-
tions occur on time scales much larger than those at T = 1.0.
We see that the fluctuations in Fig. 3 are quite rapid on this
time scale, but for T = 2.0 in Fig. 4 fluctuations occur on
much larger time scales. Another feature seen in this figure
is that larger fluctuations occur for shorter chains.

Observing how the radius of gyration changes with respect
to temperature allows us to gain insight into the “transition”
between folded and ufolded states. In Fig. 5, three Rg time
series are given for a polymer of size N = 25, each at a dif-
ferent temperature. For the low temperature, T = 1.0, the
polymer reaches a folded state with no large fluctuations. For
the highest temperature, T = 4.0, the polymer rapidly fluctu-
ates between slightly folded states and unfolded states. For
the temperature T = 2.5, which is near the apparent transition
temperature for this chain size, the polymer slowly fluctuates
between folded and unfolded states. We can also see the rela-
tionship between radius of gyration and temperature in Fig. 6,
where the chain sizes are N = 25, 40, and 80. As chain size
increases, the apparent transition temperature increases. The
shifting and broadening of the transition region is thought to
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FIG. 6: Plots of squared and scaled average radius of gyration as a
function of temperature for three different chain lengths, where the
connecting lines are guides to the eye. When not shown, error bars
are much smaller than the symbol size.

be related to the stiffnes of the chain. By exploring different
values of JA, we expect to achieve a better understanding of
this apparent transition.

V. CONCLUSIONS

Using standard Monte Carlo methods, we have studied the
basic properties of a semi-flexible polymer chain. Through
the observation of such quantities as the radius of gyration
and the energy per particle, we have been able to understand
the basic physical behaviors of our polymer model. However,
these standard Monte Carlo methods become inefficient for
larger systems, creating a need for a faster sampling method.
In the near future, we would like to increase the efficiency
of our simulations through the application of Wang-Landau
sampling [10–12] techniques. This will not only “speed up”
our simulations, but it should also allow us to gain a better
understanding of the model.

Acknowledgments

We thank W. Paul and F. Rampf for helpful discussions.
This work is supported by NSF grants DMR-0307082 and
DMR-0341874, and LLNL grant B551576.

[1] See e.g., K. Binder and A. Milchev, J. Comput. Aided Mater.
Des. 9, 33 (2002).

[2] M. Stukan, V. Ivanov, A. Y. Grosber, W. Paul, and K. Binder, J.
Chem. Phys. 118, 3392 (2003).

[3] F. Rampf, W. Paul, and K. Binder, Europhys. Lett. 70, 628
(2005).

[4] J. Martemyanova, M. Stukan, V. Ivanov, M. Müller, W. Paul,
and K. Binder, J. Chem. Phys. 122, 174907 (2005).

[5] I. Carmesin and K. Kremer, Macromolecules 21, 2819 (1988).
[6] A. Milchev, W. Paul, and K. Binder, J. Chem. Phys. 99, 4786

(1993).

[7] V. Ivanov, W. Paul, and K. Binder, J. Chem. Phys. 109, 5659
(1998).

[8] V. Ivanov, M. Stukan, V. Vasilevskaya, and K. Binder, Macro-
mol. Theory Simul. 9, 488 (2000).

[9] D. P. Landau and K. Binder, A Guide to Monte Carlo Simula-
tions in Statistical Physics (Cambridge University Press, New
York, NY, 2000), ISBN 0-521-65366-5.

[10] F. Wang and D. Landau, Phys. Rev. Lett. 86, 2050 (2000).
[11] F. Wang and D. P. Landau, Phys. Rev. E, 64, 056101 (2001).
[12] F. Wang and D. P. Landau, Braz. J. Phys., 34, 354 (2004).


