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Removing the Wess Zumino Fields in the BFFT Formalism
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In this paper we give a method that removes the Wess Zumino fields of the BFFT formalism. Consequently,
we derive a gauge invariant system written only in terms of the original second class phase space variables where
important physical properties can be raised. Here, the Wess Zumino fields are considered only as auxiliary
variables that permit us to reveal the underlying symmetries present in a second class system. We apply our
formalism in three important and nontrivial constrained systems which are the Abelian Proca model, the Chern
Simons Proca theory and the reduced SU(2) Skyrme model.
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I. INTRODUCTION and the collective coordinates expansion of the SU(2) Skyrme
model[7, 8]. These three physical systems are important non-

The BFET f lismi1. 2 N d ¢l trivial examples of the second class constrained systems. The
ne orma 'S”.‘[ » 2] converts secon  C1aSS CON"ppqjian Proca model is a four dimensional field theory which
strained systems into first class ones by enlarging the orig

| del h iabl ith the Wess Z ldescribes electromagnetism with massive photon field. The
nal second class pnase space variables wi € Wess 2UMiaern Simons Proca theory concerns with the interaction of a

(WZ) fields. In o_rde_r to gu_arantee ”_“ﬂ the same degrees harged particle with magnetic field and it is known that this
freedom are maintained with the original second class syss,ye| exhibits a noncommutative algebra[9]. The Skyrme
tem, the WZ fields are introduced in equal number to th odel is a nonlinear effective field theory which describes

number of second class constraints. The introduction of th'ﬁadrons physics and its quantization is obtained with quantum

WZ fields modifies the second class constraints and the Sefiechanics on a curved space. Here, we would like to remark

ond class Hamiltonian in order to satisfy a first class alge.'that, using our formalism (embedding techniques), we have

bra. Thus, the presence of the WZ fields allows us to Obta'%btained a noncommutative Skyrmions system, a new result

a gauge invariant model where symmetries are r_evealed f.ronv?/hich is derived from a particular gauge condition. In Section
the original second class system. The symmetries permit US \we make our concluding remarks

to describe the physical properties in a more general way. For’
this reason we can disclose important and interesting physical
results. As an example, we can cite the case of a noncommut- II. ABRIEF REVIEW OF THE BFEFT FORMALISM
ing second class algebra resulting from a nonstandard gauge

condition[3, 4]. As we have mentioned in the introduction, the BFFT for-
The purpose of this paper is to give a method in order to remalism converts second class system into first class one by

move the WZ fields of the BFFT formalism and, consequentlyadding Wz fields to the original second class system. All the

to obtain a gauge invariant system written only in terms of thesecond class constraints and the second class Hamiltonian are

original second class phase space variables. In our formalisrehanged in order to satisfy a first class algebra.

the WZ fields are treated as aUXiliary variables that permit US Consider the origina| phase space Variab|es(@$pi)

to build a first class system from the second class one, angyhere a constrained system has two second class constraints,

consequently, to enforce symmetries. As an additional step, o = 1,2, obeying the algebra

we replace the WZ fields by convenient functions that lead us

to derive a first class system written only in terms of the initial

second class phase space variables. As we will see, we can {Ta, Tg} = Dy, 1)

choose gauge symmetry generators and, consequently, 9aUfiere the matrixdqg has a nonvanishing determinant. First,

fixing c_ondltlo_ns that aIIo_w us to reveal mt_erestmg phySICaIin the BFFT formalism, the two first class constraints are con-
properties. Since many important constrained systems havsqructeol by the following expansion

only two second class constraints, so, in this paper, we de-
scribe our formalism only for systems with two second class
constraints without any loss of generality. (G, P, Pa) = To + i Tém), ?)
In order to clarify the exposition of the subject, this paper m=1
is organized as follows: In Section Il we give a short review
of the BFFT formalism. In Section Ill, we present the formal-
ism. In Section IV, we apply the formalism to the Abelian
Proca model[5], the Chern Simons Proca theory (CSP)[6] {®q, P} = g, 3)

where®, are the WZ fields satisfying the algebra
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beingwqg an antisymmetric matrix.'l'ofm> are the correction

terms which are powers aby ,i.e, T\ ~ ™. The first Dy = Fo (i, pi).- (11)
class constraints must satisfy the boundary condition
At this stage, two conditions must be satisfied: the first one

Ta(Gi, pi,0) = TOEO) =Tq. (4) determines that the algebraic form of the functiéq$g;, pi)
must have the same infinitesimal gauge transformations given
From the Abelian first class algebra by ®q, i.e.
{fa7fﬁ} = 07 (5) 6(D(] = 6FC( (qia pi)a (12)

we obtain recursive equations which determine the correctiowhere
termsT§m>. As an example, we have a basic equation in the

lowest order 3Py = e{Py, T}, (13)

A and
Do+ Xay " Xyg = 0, (6)

and the first order correction term written as 5Fy = &{Fq, T}, (14)

(1) being € an infinitesimal parameter anf the second class
Ta = Xap(ali, pi) PP (7)  constraint that builds the extended gauge symmetry generator;

. . ) the second condition imposes that when we make the con-
The matrices.o,g andXqg in Egs.(3) and (6), which are the  giraint surfaceT, = 0, whereT, is the original second class

inherent arbitrariness of the BFFT formalism, can be choseggnsiraint that builds the discarded first class constraint, the
with the aim of obtaining algebraic simplifications in the de'functionFq(qi pi) must vanish, i.e.

termination of the correction terrﬂ'é'm.
In a similar way, the gauge invariant Hamiltonian is ob-
tained by the expansion To=0 = Fu(q, pi) =0. (15)

With this condition we must recover the second class Hamil-
~ ® (m) tonian, Hec.  The relation (15) is the boundary condition of
H =Hc+ Z HY, (8)  the formalism or the gauge fixing constraint that reduces our
m=1 gauge invariant model to the second class one. This condition
whereH is the canonical second class Hamiltonian and theensures the equivalence of the gauge invariant model obtained
correction termsH (™, are powers ofpq ,i.e., HM ~ q)gm)_ by our prescription and the original secqnd class theory that
Also, from the Abelian first class algebra has been embedded by the BFFT formalism[10]. _
It is important to mention that we have arbitrariness in our
prescription because we need to select one of the two first
{H’fa} =0, (9) class constraints, Egs.(2), to be the extended gauge symme-
try generator. In addition, the two conditions exposed above,
we have recursive equations which determine the correctioat first, do not determine completely the algebraic form of the
termsH(™ and, consequently, the gauge invariant Hamil-function Fa(qi, pi). However, arbitrariness, in principle, oc-
tonian. curs in all methods that embed second class constrained sys-
tems and can be useful to unveil important physical properties
of the models.
lll.  REMOVING THE WESS ZUMINO FIELDS Substituting Eq.(11) in the BFFT first class Hamiltonian,
Eq.(8), we obtain a gauge invariant Hamiltoni#h, written
Our formalism begins by choosing, as examfiig,one of ~ only as a function of the original second class phase space
the two first class constraints, Eg.(2), to be the extended gaug@riables(q;, p;), satisfying the first class algebra
symmetry generator of the theory

{A,T1} =0, (16)
T=T. (10) {T1, 1} =0, (17)

The other first class constraifi,, will be discarded. To elim-  where now the second cla$s becomes the only gauge sym-
inate the WZ auxiliary fieldspy, we must find functions(an metry generator of the theory. The relations (16) and (17)
appropriate functional) for the WZ fields written only in terms show that, in some situations,due to the specific arbitrari-
of the original second class phase space variatdegi), ness of our prescription we can achieved similar results of the
namely gauge unfixing formalism[5, 10, 11] .
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IV. APPLICATIONS OF THE FORMALISM In order to apply our formalism, we choose the first class
constraint, Eq.(23), to be the extended gauge symmetry gen-
A. The Abelian Proca model erator
The Abelian Proca model is a four dimensional field theory T Ty = Tyt T = -85 + MPAG + T, (28)

with the corresponding Lagrangian density given by
The infinitesimal gauge transformations of the WZ fields gen-

1 2 erated by the extended gauge symmetry geneliatoe
L= _ZF“VFW + 7A“A“, (18)
whereg,, = diag(+,—, —,—) and Ry = 3,A, — d,A.. The 80 = £ {6, ~0im + Ao+ Tl } =
explicit mass term breaks the gauge invariance and, conse-
quently, we have a second class constrained system. The pri- e{0(x), Tu(Y)} = 8(x—Y), (29)
mary constraint is
Ti=To~0. (19) 8T = £{To, —0iTs +NMPAo+ Ty} = &{Tp(X), Ty () } = 0.
(30)
By using the Legendre transformation we obtain the canonicatrom the infinitesimal gauge transformations, Eq.(30), we can
Hamiltonian written as choose a representation fii as
z
Ho = o H= T =0. (31)
A representation fof can be determined by imposing the first
z lass strong equation, Eq.(22)
1 1 m? c geq » Eq.(22),
d | STOTE + 2R Fij — — (AG— A7) + o) |, (20)
Ti+MPO—0= 8= — =T — 32
with 15 = ngii = —Fgi. From the temporal stability condition 1t V= b= g (32)

gtfrg;gtprlmary constraint, £q.(19), we get the secondary ConAs we can observe, the function fosatisfies the infinitesimal

gauge transformation, Eq.(29),

T, = —0iTg + MPAg ~ 0. (21) . 1
00=¢{0,T} = s{szfo,Tz} =
We observe that no further constraints are generated via this

iterative procedure. Thefl; andT, are the total second class

constraints of the Abelian Proca model. 1

Using the BFFT formalism to convert this second class sys- € {—mz”& —0iT; + mon} =e3(x—Y). (33)
tem into first class one, we obtain the two first class constraints
and the gauge invariant Hamiltonian written as[5] Substituting the WZ formulas, Egs.(31) and (32), in the ex-

tended first class Hamiltonian, Eq.(24), we get a first class
Hamiltonian written only in terms of the original second class

T = Ti+nve, (22)  fields

T, = T2+Tfe, (23)

- e z

H = Ho+ d3 ﬁ_’_i( ie)z_szaiAi , (24) H=He+ d3 {TTOGAH- mz("lﬂo) } (34)

where the extra canonical pair of fiellandmy satisfy the al-  or
gebra{6(x), To(y) } = €d(x—Yy). The first class constraints and
the first class Hamiltonian obey the following Poisson brack- z

~ 1

(f.To} = 0, (25) being the only gauge symmetry generator

{Ti,H} = T2, (26)
{f,,A} = 0. (27) Ty = —0iTs + NPAy, (36)
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which satisfies an Abelian first class algebra where the WZ variables satisfy the following Poisson brackets
{T2, T2} =0, 37) {ci,cj} =¢ji. (48)
{H, T} =0. (38)

At this point, we begin our formalism by choosing the first
Here, we would like to comment that the first class Hamil—CIaSS constraint, Egs.(43), to be the extended gauge symmetry

tonian, Eq.(35), is identical to the gauge invariant Hamiltoniand®nerator
which was derived by using the GU formalism[5]. Then, this

result confirms the validity of our formalism. ~ B
Y T:T1:T1+\/§Clzpl+§(h+\/§cl~ (49)

B. The Chemn Simons Proca theory The infinitesimal gauge transformations of the WZ variables
generated by the extended gauge symmetry genérados

The Chern Simons Proca theory (CSP) describes a charged
particle constrained to move on a two dimensional plane, in-
teracting with a constant magnetic fidvhich is orthogonal

to the plane. In the vanishing mass limit (infrared limit), the . B
Lagrangian that governs the dynamics is dc, = efcy, Th=e{cz, p1 + S0+ VBa} =¢VB. (51)

~ B
5c; = g{c;, T} =¢fc, pr+ §q2+\/§cl}:0, (50)

) From the infinitesimal gauge transformations, Eq.(50), we can
B . .
L— EQiEij Gj — éqi g, (39) choose a representation foras

wherek is a constant angho = 1. The CSP model is a second ¢, =0. (52)
class constrained system with the two constraints given by

A representation foc, can be determined by imposing the
first class strong equation, Eq.(44)

T=pit e, i=12 (40)
f 1
wherep; are the canonical momentg; (= %), and the Pois- T2+VBe=0= c= _ﬁTZ’ (53)
son brackets between the second class constraints read as i o o
As we can see, the function fap satisfies the infinitesimal
gauge transformation, Eq.(51),

{Ti,Tj} = BSij. (41)
From the Legendre transformation we obtain the second class 3, =¢ {c27'|~'} =€ { _1T27'|~'} =
Hamiltonian VB
: k el tonlocve (54)
He = piGi —L = 54id;. (42) VB 2 TEVE

Using the BFFT formalism to convert this second class sysThen, substituting the functions feg andc,, Egs.(52) and
tem into first class one, we get the two first class constraint§53), in the first class Hamiltonian, Eq.(45), we obtain a gauge

and the gauge invariant Hamiltonian written as[12] invariant Hamiltonian written only in terms of the original sec-
ond class phase space variables

T = 1+ VBa, (43) K K K,
T, = +VBo, (44) H=300+ghT+ 5512 =
~ k 2 1
H = > qmﬁﬁsijqu +g6c| (45) 2
5 +la+= ) |, 55
wherec; and c; are the WZ variables. By construction, we 2 |2 <q1 B) ] (55)

have a first class algebra
being the only gauge symmetry generator

{T.Ty = o (46) B
{A,T} =0, (47) =Pt 5% (56)
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which satisfies an Abelian first class algebra CSP gauge invariant system and the original CSP second class
model.
{TlaTl} = 07 (57)
{A, T} =0. (58)

C. Thereduced Skyrme model or the Skyrme model expanded

We can observe that when we make—= p, — %Ch — 0 (the in terms of the SU(2) collective coordinates

second class constraint that builds the discarded first class

constraint, condition two of the formalism) the first class The Skyrme model describes baryons and their interactions
Hamiltonian, Eq.(55), reduces to the CSP second class Hamithrough soliton solutions of the nonlinear sigma model type
tonian, Eq.(42). This result guarantees the equivalence of olragrangian given by

Z 2

f 1
L= d3 Z”Tr(auU6“U+)+@Tr[UWHU,U*aVU]Z , (59)

where f;; is the pion decay constang is a dimensionless From the temporal stability condition of the spherical con-
parameter and) is a SU(2) matrix. Performing the col- straint, Eq.(61), we get the secondary constraint

lective semiclassical expansion[8] just substitutihg,t) by

U (r,t) = A(t)Uo(r)AT (t) in Eg. (59), beingA a SU(2) matrix,

we obtain
T,=am ~0. (65)
We observe that no further constraints are generated via this
L =—M+ATr[0pAdA ] (60) iterative procedureT; andT; are the second class constraints
’ with

whereM is the soliton mass andis the moment of inertia[8].
The SU(2) matrixA can be written a#\ = ag +ia - T, where
T; are the Pauli matrices, and satisfies the spherical constraint

! P (TL, T} = 2aa. (66)

relation

Using the BFFT formalism we obtain the first class con-

Ti=aa-1~0,1=0123. (61)  straints written as[13]
The Lagrangian (60) can be read as a functiog; afs -
N1 = Ti+br=aa —1+by, (67)
T, = Tho—aaby =am —aaby, (68)

L=—M+22&4;. (62)

Calculating the canonical momenta which satisfy an Abelian first class algebra

oL B {:l:la-IN—Z} = 07 (69)

Tg 9 CH

; (63)
with the WZ variables obeying the following Poisson bracket
and using the Legendre transformation, the canonical Hamilrelation

tonian is computed as

He=Tia—L = M+2\aa {bi,bj} =2¢;,i,j=1,2. (70)
3
= M+ % Zjn’m;. (64)  The first class Hamiltonian is given by
i=
|
. 1 aa 1 aabp (&ai)*(b2)?
H = — ——— TG — — ajTij
8haa+by ' Aaa+b ! aa+b
1 ..
= Mt 28 a2, (71)

8\ g+ by
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which also satisfies an Abelian first class algebra which satisfies an Abelian first class algebra
{A, T4} =0, a=1,2. (72)
The first class Lagrangian is written as {1, Ty =0, (82)
' grangian is wn (A, T} =0. (83)
aa A b Note that when we make the second class constraint equal to
L=-M +2}\a " 2@ay)? (73)  zero, T, = T = 0, we observe that the first class Hamil-

tonian, Eq.(80), reduces to the original second class Hamil-

At this stage, we are ready to app|y our formalism. Wetoniaﬂ,. Eq(64) This result enS!.lr.eS the equivalence of our
begin by choosing the first class constraint, Eq.(67), to be th§auge invariant model and the original second class system.

extended gauge symmetry generator The gauge invariant Hamiltonian, Eq.(80), can be written
as
T=Ti=Ti+bi=aa—1+b. (74) 1
H=M+ _mMi, 84
The infinitesimal gauge transformations of the WZ variables + 8)\Tn ' (84)

generated by the extended gauge symmetry genéfaioe o
where the phase space methit! given by

3y = e{by, T} =¢e{br,aa—1+b} =0,  (75) i
80y = efbs, T} = e{bpa@—1+b} =26 (76) MT =3 ®

From the infinitesimal gauge transformations, Eq.(75), we can . . . . .
. is a singular matrix which hag; as an eigenvector with null
choose a representation for as

eigenvalue, namely,

b; =0. 77 -
! (77) aMil = 0. (86)
A representation fob, can be determined by imposing the o i .
first class strong equation, Eq.(68) Then, due to the fact that the matM is singular, in prin-
ciple, it is not possible to obtain the first class Skyrmion La-
grangian written only in terms of the original second phase
oAb _ aT iables with the gauge symmetry generator bBi
aT —aab,=0= b= . (78)  Space varia gauge sy yg ng
a;a; Eq.(81).
Now we choose the other first class constraint, Eq.(68), to

As we can see, the function ftwe satisfies the infinitesimal be the extended gauge symmetry generator of theory

gauge transformation, Eq.(76),

. T TT T=T,=T,—aab>=aT —aaib. 7
6b2:5{b2’T}:5{%,T1}zs{%vaa_l}:_zg. 2=To—aab, = a1 —gaby (87)

ak ik (79)  The infinitesimal gauge transformations of the WZ variables
Then, substituting the functions ftw andb,, Eqs.(77) and generated by this extended gauge symmetry generadoe
(78), in the first class Hamiltonian, Eq.(71), we obtain a gauge
invariant Hamiltonian written only in terms of the original sec-

ond class phase space variables dby = €{b17'|:'} =efby,am —aaby} = —2eaa;, (88)
oby = €{by, T} =¢{by, a5 —aaby} =0. (89)
H-M +i [Hjnj _ (aiT[i)T _ From the infinitesimal gauge transformations, Eq.(89), we can
8\ a;a,; choose a representation for as
1 (To)? by = 0. (90)
M - T — =7
+ an T T, aa | (80)

The use of the condition (90) in the extended gauge symmetry
with the only gauge symmetry generator of the theory generator, Eq. (87), ensures that the infinitesimal gauge trans-
formations of the original phase space variablag 16;) are
given by T, = g;15. A representation fob; can be obtained
Ti=aa —1, (81) byimposing the first class strong equation, Eq.(67)
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the gauge invariant Lagrangian, Eq.(99). This important result
also confirms the consistency of our formalism.
ga —1+by =0 Along the text we have mentioned the property that we have
= b =1-3a4q. (91)  only one gauge symmetry generator. Thus from this property
we can obtain a second class system from the gauge condition
The function forb; satisfies the infinitesimal gauge transfor-
mation, Eq.(88),
Tig = aja — 011G — 1, (100)

dby =&{b, T} =e{l—aa,am} = —2¢. (92)  where@ is a constantTig is a deformed spherical constraint

with the Poisson bracket
Substituting the functions fdy andby, Eqs.(90) and (91), in

the first class Hamiltonian, Eq.(71), we get a gauge invariant
Hamiltonian written only in terms of the original second class {T2, Tho} = —2&3 — 20T TS, (101)
phase space variables
It is not difficult to observe that no additional constraints are
generated by imposing the deformed spherical condition re-
H=M-+ iaianj T, (93) lation (100). T, and T, are now the total second class con-
8\ straints of the model. Using the Dirac brackets formula [3, 14]

with the only gauge symmetry generator of the theory
{A,B}ps = {A,B}+

T2 = gy, (94)
. . o 1
which satisfies an Abelian first class algebra Tt ({A T2} {T9,B} — {A T1g}{T2,B}),  (102)
(T, T2} =0 (95) We obtain the commutation relations between the collective
{I—~|’ ) 0’ (96) coordinates operators upon quantization
s 125 = Y.
Again, when we make the second class constraint equal to e A TE — T 103
zero, T; = @ja — 1 = 0, the gauge invariant Hamiltonian {&,ajjo = 2+ 01 (103)
Eq.(93) reduces to the original second class Hamiltonian, aia + BT
Eq.(64). {a, Mo = 9 —ﬁv (104)
The first class Skyrmion Lagrangian can be deduced by per- aiTi — &
forming the inverse Legendre transformation {m,m}ps = w. (105)

L~ Note that if we maked = O we recover the usual algebra of
L=ma —H, (97) " this collective coordinates operators[15]. Therefore, it is im-
portant to observe that using a specific embedding procedure,
choosing a particular gauge condition and applying the Dirac
bracket quantization we get a noncommuting collective coor-
dinates operators, relation(103). This new result is only de-

where the momenturts is eliminated by using the Hamilton
equation of motion

T T S rived if we have used, = g;T; as the symmetry generator in
a={a,H} = ﬂalalm' (98) the first class Skyrmion system.
Using relation (98) in EQ.(97) we derive the first class La-
grangian written as V. CONCLUSIONS
L= _M2\ aa 99 In this paper, we give some prescriptions in order to elimi-
=M+ aja;’ (99) nate the WZ fields of the BFFT formalism. The WZ variables
are considered only as auxiliary tools that enforce symmetries
with the infinitesimal gauge variation given byg; = €a;, in an initial second class constrained system. Then, after em-

wheree is a constant. Notice that it is only possible to derivebedding a second class system by the BFFT formalism, we
this first class Lagrangian, Eq.(99), if we adopt the symmesubstitute the WZ fields by convenient functions and, conse-
try generator of the theory @& = as, EQ.(94). Moreover, quently, we derive a gauge invariant Hamiltonian written only
using the relations (91) and (98) and imposing the constrainin terms of the original second class phase space variables.
surfacea g = 0, we obtainb; = 0. Consequently, we can This first class system has one gauge symmetry generator. It
observe that the BFFT first class Lagrangian (73) reduces ti3 an advantage because we have the possibility to select one
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gauge condition which can reveal important physical properin the algebraic calculations.
ties. In all first class conversion formalisms there are ambi-
guities in the construction of the first class constraints and the
gauge invariant Hamiltonian[2] and this situation is not dif-
ferent in our prescription. For example, the choices of the
extended gauge symmetry generator (and, consequently, the
gauge symmetry generator of the theory) and the key func-
tion Fq (g, pi), EQ.(11), are arbitrary. However, these different  The author would like to thank A.G. Sk for critical read-
possible options can be used in order to unveil important physng. This work is supported in part by FAPEMIG, Brazilian
ical results or some choices can be related to obtain benefiResearch Agency.
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