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Chiral Symmetry Restoration and Pion Properties in aq-Deformed NJL Model
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We review the implementation of aq-deformed fermionic algebra in the Nambu–Jona-Lasinio model (NJL).
The gap equations obtained from a deformed condensate as well as from the deformation of the NJL Hamiltonian
are discussed. The effect of both temperature and deformation in the chiral symmetry restoration process as well
as in the pion properties is studied.
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I. INTRODUCTION

Chiral symmetry breaking is an important phenomena in
hadron physics and is of fundamental importance for hadron
properties. The difficulties involved in obtaining low-energy
properties directly from QCD, the fundamental theory of
strong interactions, have motivated the construction of effec-
tive models. Due to its simplicity and effectiveness in describ-
ing hadrons at low energies, the NJL model [1] has become the
most familiar effective model for strong interactions.

The standard scenario for spontaneous chiral symmetry
breaking is the arising of a quark condensate. In the NJL
model the condensates appear when the strength of the contact
interaction exceeds a critical value, separating the Wigner-
Weyl and Nambu-Goldstone realizations of chiral symmetry.
The condensate< q̄q> is the order parameter.

Apart from giving a reasonable description of the light
mesons, the NJL model is also very useful for studying the
chiral symmetry breaking process as well as its restoration at
finite temperature [2, 3]. The NJL model is in addition very
suitable for testing new ideas. In previous works, we have
investigated the effect ofq-deformation in the chiral symme-
try breaking process within the context of the NJL model. In
particular, we observed how the condensate is affected by the
deformation. As a direct consequence, the dynamical quark
mass, the chiral symmetry breaking and restoration processes
are accordingly affected [4, 5].

The aim of this work is to study the effect of both tem-
perature and deformation in the chiral symmetry restoration,
and evaluate the pion properties in aq-deformed NJL model
at finite temperature. This paper is organized as follows. In
Sec. II briefly review the Nambu–Jona-Lasinio model, Sec.
III introduces theq-deformed fermionic algebra which will be
used along this work, and shows how the deformed algebra is
implemented in the NJL model. In Sec. IV, we present the in-
vestigation of the chiral symmetry restoration with both finite
temperature andq-deformation. Finally, Sec. V contains our
main conclusions.

II. THE NAMBU–JONA-LASINIO MODEL

The Nambu–Jona-Lasinio model was first introduced to de-
scribe the nucleon-nucleon interaction via a four-fermion con-
tact interaction. Later, the model was extended to quark de-
grees of freedom becoming an effective model for quantum
chromodynamics.

The Lagrangian of the NJL model is given by

LNJL = ψiγµ∂µψ+Lint , (1)

Lint = G
[
(ψψ)2 +(ψiγ5τψ)2

]
. (2)

Linearizing the above interaction in a mean field approach,
the last term does not contribute if the vacuum is parity and
Lorentz invariant. The Lagrangian with the linearized interac-
tion is then

LNJL = ψiγµ∂µψ+2G〈ψψ〉ψψ. (3)

Regarding this Lagrangian as a Dirac Lagrangian for massive
quarks we obtain a dynamical mass for the quarks

m=−2G〈ψψ〉 , (4)

where〈ψψ〉 is the vacuum expectation value of the scalar den-
sity ψψ, representing the quark condensates. Eq. (4) describes
how the dynamical mass is generated with the appearance of
the quark condensates. The quarks are massless if the conden-
sate vanishes.

From the anti-commutation relations for the fermionic
fields, the condensate can be written as

〈ψ(x)ψ(x)〉=−Tr lim
y→x+

〈T [ψ(x)ψ(y)]〉 , (5)

where

〈T [ψ(x)ψ(y)]〉= iSF (x−y) , (6)

andSF (x−y) is the Feynman propagator in the configuration
space. In the momentum space this propagator is given by

SF (p) =
γµpµ+m

p2−m2 + iε
.
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A Fourier transformation let us write the condensate in the
following fashion

〈ψ(x)ψ(x)〉=−i lim
y→x+

Tr
Z

d4p

(2π)4 SF (p)e−i(x−y)p, (7)

which after a 3D non-covariant cutoff becomes

〈ψψ〉=−NcNf

π2

Z Λ

0
dpp2 m√

p2 +m2
, (8)

whereφ(p) = 2θ(p), Nc is the number of colors andNf is the
number of flavors. Using this result we obtain the NJL gap
equation in its more familiar form (see reference [3])

m= 2NcNf
1
π2

Z Λ

0
dpp2 m√

p2 +m2
. (9)

A. The Bogoliubov-Valatin approach

The Bogoliubov-Valatin variational approach is an alterna-
tive way to obtain the NJL gap equation and observe the dy-
namical chiral symmetry breaking process [6]. The variational
approach to obtain the gap equation consists on the following
procedure: a) to define a variational vacuum, b) to calculate
the vacuum expectation value of the Hamiltonian, obtaining
the functional for the total energy, and c) to minimize the
functional, obtaining the variational parameters and the gap
equation. For this purpose we start with the NJL Hamiltonian
corresponding to the Lagrangian Eq.(1)

HNJL =−iψγ ·∇ψ−G
[
(ψψ)2 +(ψiγ5τψ)2

]
, (10)

and make a Fourier decomposition in the quark fields

ψ(x,0)=∑
s

Z
d3p

(2π)3

[
b(p,s)u(p,s)eip·x +d†(p,s)v(p,s)e−ip·x

]
,

(11)
defining the annihilation operatorsb(p,s) andd(p,s) of parti-
cles and anti-particles with momentump and helicitys, which

destroy the bare vacuum|0〉 :

b(p,s) |0〉= d(p,s) |0〉= 0. (12)

The spinorsu(p,s) andv(p,s) are normalized helicity eigen-
states satisfying

γµpµu(p,s) = γµpµv(p,s) = 0, (13)

u†(p,s)u(p,s) = v†(p,s)v(p,s) = 1. (14)

We now introduce the following BCS-like vacuum

|NJL〉= ∏
p,s=±1

[
cosθ(p)+ssinθ(p)b†(p,s)d†(−p,s)

]
|0〉 ,
(15)

which, for a given momentump, is expanded as

|NJL〉= cos2 θ(p) |0〉
+sinθ(p)cosθ(p)b†(p,+)d†(−p,+) |0〉
−sinθ(p)cosθ(p)b†(p,−)d†(−p,−) |0〉
−sin2 θ(p)b†(p,−)d†(−p,−)b†(p,+)d†(−p,+) |0〉 .

(16)

The operators which annihilate this vacuum are given by the
Bogoliubov-Valatin transformations

B(p,s) = cosθ(p)b(p,s)+ssinθ(p)d†(−p,s), (17)

D(p,s) = cosθ(p)d(p,s)−ssinθ(p)b†(−p,s), (18)

B(p,s) |NJL〉= D(p,s) |NJL〉= 0. (19)

To calculate the expectation value of the NJL Hamiltonian
with respect to the state Eq. (15)

〈
NJL

∣∣HNJL
∣∣NJL

〉
, (20)

it is convenient to expressψ in terms of the quasi-particles
operatorsB(p,s) andD(p,s) as

ψ(x,0) = ∑
s

Z
d3p

(2π)3

[
B(p,s)M1(p,s)eip·x +D†(p,s)M2(p,s)e−ip·x

]
, (21)

where

M1(p,s) =
[
cosθ(p)+ γ0sinθ(p)

]
u(p,s), (22)

M2(p,s) =
[
cosθ(p)− γ0sinθ(p)

]
u(p,s). (23)

Making use of the spinor relations

γ0sv(−p,s) = u(p,s), (24)
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∑
s

u(p,s)u†(p,s) =
1
2

(
1− γ · p

|p|γ
0
)

, (25)

the functional for the total energy in the Hartree approximation is obtained as

W [φ] =−2NcNf

Z
d3p

(2π)3 pcosφ(p)−4G(NcNf )
2

[Z
d3p

(2π)3 sinφ(p)

]2

. (26)

The form ofφ(p) which minimizes the total energy Eq. (26)
is obtained from the condition

δW [φ]
δφ(p)

= 0. (27)

This procedure yields to

ptanφ(p) = 4GNcNf

Z
d3p′

(4π)3 sinφ(p′), (28)

which becomes

m= 4GNcNf

Z
d3p

(2π)3

m√
p2 +m2

, (29)

provided the variational angles acquire the following form

tanφ(p) =
m
p

, sinφ(p) =
m√

p2 +m2
. (30)

III. q-DEFORMATION IN THE NJL MODEL

In this section we discuss the implementation of the de-
formed algebra to the NJL model. Theq-deformed fermionic
algebra [7] that we shall use is based in the work of Ubriaco
[8], where the thermodynamic properties of a many fermion
system were studied. In the construction of aq-covariant form
of the BCS approximation [9], it was shown that the creation
and annihilation operators of thesuq (2 j +1) fermionic alge-
bra are given by

A jm j = a jm j ∏
i=mj+1

(
1+Qa†

ji a ji

)
, (31)

A†
jm j

= a†
jm j ∏

i=mj+1

(
1+Qa†

ji a ji

)
, (32)

whereQ = q−1−1, j = 1/2 andmj =±1/2. As discussed in
[4], the first consequence of the above deformation is that only
the operators corresponding tomj =−1

2 are modified, mean-
ing that only negative helicity quarks (anti-quarks) operators
will be deformed since in the NJL model we deal with quarks
(anti-quarks) creation and annihilation operators.

We have two different approaches to obtain a new gap equa-
tion. The first one consists in to perform theq-deformation in
the condensate, which is a part of the self-consistent equa-
tion for the dynamical mass. In the second one theq-
deformation is performed in the NJL Hamiltonian, and we
use the Bogoliubov-Valatin procedure to obtain the new gap
equation. We now turn to a detailed discussion of these two
different approaches.

A. Deforming the condensates

To obtain the deformed gap equation we work with the
BCS-like vacuum (15) in the standard Bogoliubov-Valatin
variational approach. The quark fields are expressed in terms
of q-deformed creation and annihilation operators as

ψq(x,0) = ∑
s

Z
d3p

(2π)3

[
B(p,s)u(p,s)eip·x +D†(p,s)v(p,s)e−ip·x

]
, (33)

where theq-deformed quark and anti-quark creation and an-
nihilation operatorsB, B†, D, andD†, are expressed in terms

of the non-deformed ones according to Eqs. (31) and (32)

B− = b−
(

1+Qb†
+b+

)
, B†

− = b†
−

(
1+Qb†

+b+

)
, (34)

D− = d−
(

1+Qd†
+d+

)
, D†

− = d†
−

(
1+Qd†

+d+

)
, (35)
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B+ = b+ , B†
+ = b†

+, (36)

D+ = d+ , D†
+ = d†

+, (37)

where+ (−) stands for the positive (negative) helicity and
the notation has been simplified:(p,s) → s. We would like
to note that, as discussed in Ref. [9], the deformed vacuum
differs from the non-deformed one only by a phase and, there-
fore, the effects of the deformation comes solely from the
modified field operators. Additionally, theq-deformed NJL
Lagrangian, constructed usingψq instead ofψ, is invariant
under the quantum groupSUq(2) transformations. This can
be seen by using the two-dimensional representation of the
SUq(2) unitary transformation given in Ref. [8].

The deformed gap equation is

m=−2G〈ψψ〉q , (38)

where〈ψψ〉q is theq-deformed condensate calculated using
the BCS-like vacuum, Eq. (15), and Eq. (11),

〈ψψ〉q =
〈
NJL

∣∣ψ̄qψq
∣∣NJL

〉

= 〈ψψ〉+ 〈NJL|Q |NJL〉 , (39)

where 〈ψψ〉 is the non-deformed condensate and
〈NJL|Q |NJL〉 represents all non-vanishing matrix ele-
ments arising from theq-deformation of the quark fields. The
contribution of theseq-deformed matrix elements is

〈NJL|Q |NJL〉= Q
Z

d3p

(2π)3 [sin2θ(p)−sin2θ(p)cos2θ(p)] . (40)

The calculation of the deformed condensate will be performed in a similar way as in the usual case. It requires also a
regularization procedure since the NJL interaction is not perturbatively renormalizable. For reasons of simplicity a non-covariant
trimomentum cutoff is applied arising

〈ψψ〉q =−3m
π2

[(
1− Q

2

)Z Λ

0
dp

p2
√

p2 +m2
+

Q
2

Z Λ

0
dp

p3

p2 +m2

]
(41)

for each quark flavor. At this point we see that the dynamical mass is again given by a self-consistent equation since the
condensate depends also on the mass. Inserting Eq. (41) into Eq. (38) we obtain the deformed NJL gap equation

m=
2Gm
π2

[(
1− Q

2

)Z Λ

0
dp

p2
√

p2 +m2
+

Q
2

Z Λ

0
dp

p3

p2 +m2

]
. (42)

It is easy to see that forQ = 0 (q = 1), we recover the NJL
gap equation in its more familiar form

m=
2Gm
π2

Z Λ

0
dp

p2
√

p2 +m2
+m0, (43)

wherem0 appears only if we consider the current quark mass
termLmass=−m0ψψ in the NJL Lagrangian Eq. (1).

The pion decay constant is calculated from the vacuum to
one pion axial vector current matrix element, which, in the
simple 3D non-covariant cutoff we are using [6], is given by

f 2
π = Ncm

2
Z Λ

0

d3p

(2π)3

1

(p2 +m2)3/2
, (44)

for each quark flavor. The deformed calculation offπ is per-
formed directly by substituting the dynamical mass in Eq.
(44) from the one obtained in Eq. (42).

As in the non-deformed case, theq-gap equation has non-
trivial solutions when the couplingG exceeds a critical value

Gc related to the cutoff. The dynamical mass is accordingly
modified through the deformed gap equation (42).

The behavior of the condensate around the critical cou-
pling, Gc, is similar for both deformed and non-deformed
cases, meaning that the adopted procedure toq-deform the
underlyingsu(2) algebra in a two flavor NJL model does not
change the behavior of the phase transition aroundGc. The
formalism developed in [8, 9] allowq-values smaller than one
(which corresponds toQ > 0). It is worth to mention that in
this case theq-deformation effect goes in the opposite direc-
tion, namely, the condensate value and the dynamical mass
decrease forq < 1.

B. Deforming the NJL Hamiltonian

Here it is important to stress again that the deformed version
of this vacuum differs from the non-deformed one only by
a phase and, therefore, the effects of the deformation comes
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solely from the deformation of the Hamiltonian.
The deformed functional for the total energy will be ob-

tained from the vacuum expectation value of theq-deformed
NJL Hamiltonian:

W q [θ(p)] =
〈
NJL

∣∣H q
NJL

∣∣NJL
〉
, (45)

where theq-deformed Hamiltonian is

H q
NJL =−iψqγ ·∇ψq−G

(
ψqψq

)2
−G

(
ψqiγ5ψq

)2
, (46)

andψq is given by Eq. (33). Due to the additive structure of
the q-deformation, the deformed Hamiltonian can be written
as

H q
NJL = HNJL+H (Q), (47)

and the functional will have the same form

W q [θ(p)] = W [θ(p)]+W [Q,θ(p)] . (48)

The last terms of Eqs. (47) and (48), namelyH (Q) and
W [Q,θ(p)], stand for the new terms of first order inQ gener-
ated when the algebra is deformed, and, therefore, they vanish
for q = 1(Q = 0). The full resulting interaction includes 3-,
4-, 5-, and 6-body interactions, which corresponds to the new
terms of orderQ, Q2, Q3, andQ4, respectively. We have con-
sidered only the three-body terms of orderQ.

The non-deformed case, which corresponds toq =
1(Q = 0), has been discussed in Sec. II. In order to obtain
the new gap equation, we need to calculate the new matrix
elements arising from theq-deformation of the NJL Hamil-
tonian, and add them to the non-deformed functional. This
procedure yields to the fullq-deformed functional for the to-
tal energy:

W q [θ(p)] = −2NcNf (1+Q)
Z

d3p

(2π)3 pcosφ+NcNf
Q
2

Z
d3p

(2π)3 pcos2 φ

+NcNf
NcNf

3π2 QGΛ3
Z

d3p

(2π)3 cosφ− (NcNf )
2G(4+Q)

{Z
d3p

(2π)3 sinφ

}2

. (49)

Defining the new variables

Pq = P+P0 , (50)

P = (1+Q) p , (51)

P0 = −NcNf

6π2 GΛ3Q , (52)

K = −Q
2

p , (53)

G
′

= G

(
1+

Q
4

)
, (54)

and performing the same minimization procedure as in the
non-deformed case we obtain

Pq tanφ+K sinφ = 4G′NcNf

Z
d3p′

(2π)3 sinφ . (55)

The term K sinφ was overlooked in a previous paper [5]
[14]. Trying to keep as much similarity as possible with the
usual solution, instead of solving the equationPq tanφ(p) +
K sinφ(p) = M, thesinφ(p) will be substituted byα tanφ(p),
with α = 0.59chosen to minimize the difference betweensinφ
andtanφ in the interval[0,π/4].

The new gap equation then becomes

M = 4G
′
NcNf

Z
d3p

(2π)3

M√
K2

q +M2
, (56)

provided the variational angles have the same old structure
(but they now areq-dependent)

tan2θq(p) =
M
Kq

,sin2θq(p) =
M√

K2
q +M2

,

cos2θq(p) =
Kq√

K2
q +M2

, (57)

where

Kq = Pq +αK . (58)

It is easy to see that, whenq→ 1(Q→ 0), Eqs. (55), (56),
and (57) reduce to their non-deformed versions Eqs. (28),
(29), and (30), sinceKq → p andG

′ →G.
In analogy with the non-deformed case we can write the

gap equation in terms of the quark condensates as

M =−2G
′ 〈

ΨΨ
〉
. (59)

Comparing the two forms of the gap equation Eqs. (42) and
(59), we find a new deformed condensate given by

〈
ΨΨ

〉
=−NcNf

π2

Z Λ

0
dp p2 M√

K2
q +M2

(60)
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This condensate is different from the one obtained in the pre-
vious section, where the condensate was explicitly deformed
[4]. It also has exactly the same form of the non-deformed
one, but is written in terms of the new variables. It is worth to
mention that the new condensate is not obtained by calculating
the vacuum expectation value of a deformed scalar density.
In fact, it corresponds to the gap equation which arises from
the variational procedure started from theq-deformed Hamil-
tonian. The new pion decay constant can also be obtained in
analogy to the non-deformed case

F2
π = NcM

2
Z Λ

0

d3p

(2π)3

1
(
K2

q +M2
)3/2

. (61)

A closer look to the left side of Eq. 55 shows that the dy-
namical mass has two components: one proportional to the
original dynamical massm and another term which we call
M0

M = [1+(1−α/2)Q] p tan2θ(p)︸ ︷︷ ︸
m︸ ︷︷ ︸

Mdyn

+ p0 tan2θ(p)︸ ︷︷ ︸
M0

, (62)

where p0 = −QGΛ3

π2 is P0 (Eq. 52) forNc = 3 andNf = 2.
We can then calculate the effect of the deformation on the
dynamical massm:

m=
M

1+(1−α/2)Q
, (63)

whereM is obtained by solving Eq. (59). In an analogous
way, the effect on the condensate can be calculated by substi-
tutingM →m in the numerator of Eq. (60) [15] .

IV. TEMPERATURE AND q-DEFORMATION

In this section we want to study the interplay of temperature
andq-deformation in the NJL model. We review the standard
approach to introduce finite temperature and chemical poten-
tial in the NJL model [2, 3] in subsections IV.A and IV.B.
When temperature is introduced in the model, the condensate
is replaced by the thermal expectation value of the scalar den-
sity, which contains the Fermi-Dirac distributions. We also
have a gap equation for the chemical potential, which is mod-
ified by the interactions in such a way that we need to solve
a system of coupled gap equations. In subsections IV.C and
IV.D, the standard formalism is extended to incorporate the
effects ofq-deformation. In particular, aspects of chiral sym-
metry restoration and pionic properties in theq < 1 regime
will be discussed.

A. The NJL model at Finite Temperature

The starting point for the study of the thermodynamics of
the NJL model is the partition function

Z = Trexp[−β(HNJL−µiNi)] , (64)
whereβ = T−1, Ni is the valence quark number operator of
flavor i, andµi are the corresponding chemical potential. From

the above partition function, one can calculate the thermal ex-
pectation value of an operatorA

〈〈A〉〉=
1
Z

TrA
{

exp[−β(HNJL−µiNi)]
}

, (65)

where the operator in question can be, for example, the scalar
densityψψ or the quarks densityψ†ψ.

Here the Hamiltonian is given by

HNJL =−iψγ ·∇ψ−G(ψψ)2−G(ψiγ5τψ)2 +m0ψψ, (66)

=−iψγ ·∇ψ−Lint +m0ψψ, (67)

which, in the mean field approximation, is written as

HMF =−iψγ ·∇ψ+mψψ+Gσ2
1 +

G
Nc

σ2N − G
2Nc

σ2
2, (68)

wherem is the effective quark mass

m= m0−2Gσ1, (69)

N is the number operator

N = ψγ0ψ = ψ†ψ, (70)

andσ1, σ2 are defined as

σ1 = 〈〈ψψ〉〉 , (71)

σ2 = 〈〈ψγ0ψ〉〉 . (72)

The Hamiltonian in the mean field approximation represents a
system of free particles of massm and the chemical potential
is given by

µ= µ0− G
Nc

σ2, (73)

whereµ0 is the chemical potential when there is no vector in-
teraction, generated by the Fierz transformation ofLint . Equa-
tions (69) and (73) form a system of self-consistent coupled
equations

{
m= m0−2Gσ1,
µ= µ0− G

Nc
σ2.

(74)

Solving the above equations we obtain the effective mass and
chemical potential, which we can put back in the expressions
for σ1 andσ2 to obtain the condensate and the density at a
given temperatureT.

B. Thermal Expectation Values

The dynamical mass calculation depends on expectation
values containing the Fermi-Dirac distributions. The ther-
mal expectation values relevant for the NJL model, namely
σ1 andσ2, can be calculated within the formalism of the ther-
mal Green function [11], which has the advantage of separat-
ing the parts that depend on the temperature and the chemical
potential. The thermal Green function for a free fermion at a
temperatureT and chemical potentialµ is written as
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FIG. 1: Chiral condensate (in units of−10−2 GeV3) and dynamical quark mass as functions of both temperature andq-deformation in the
q < 1 regime. The results presented in the figures were obtained with the following parameters:G = 6.58 GeV−2, Λ = 0.6 GeV, m0 = 5.87
MeV, andµ0 = 0.35GeV.

SF (p;T,µ) =
p/+m

p2−m2 + iε
+2πiδ

(
p2−m2)

× (p/+m) [θ(po)n(p,T,µ)+θ(−po)n(p,T,µ)] , (75)

where

n(p,T,µ) =
1

1+exp[−β(E−µ)]
, (76)

and

n(p,T,µ) =
1

1+exp[−β(E +µ)]
, (77)

are the fermions and anti-fermions distribution function respectively withE =
√

p2 +m2.
Making use of the anti-commutation relation for the fermionic fields, the expectation values can be written as

〈〈ψ(x)ψ(x)〉〉=−Tr lim
y→x+

〈〈T [ψ(x)ψ(y)]〉〉 , (78)

〈〈ψγ0ψ〉〉=−Tr lim
y→x+

γ0 〈〈T [ψ(x)ψ(y)]〉〉 . (79)

The term on the right-hand side of the above equations is the definition of the thermal Green function in the configuration space:

iSF (x−y;T,µ) = 〈〈T [ψ(x)ψ(y)]〉〉 . (80)

The expectation values are then re-written as

〈〈ψ(x)ψ(x)〉〉=−i lim
y→x+

Tr
Z

d4p

(2π)4 SF (p;T,µ)e−i(x−y)p, (81)

〈〈ψγ0ψ〉〉=−i lim
y→x+

Tr
Z

d4p

(2π)4 γ0SF (p;T,µ)e−i(x−y)p. (82)

Applying a cutoff in the momentum, the results forσ1 andσ2
are the following

σ1 = 〈〈ψψ〉〉=−NcNf

π2

Z Λ

0
dpp2 m

E
[1−n−n] , (83)

σ2 = 〈〈ψγ0ψ〉〉=
NcNf

π2

Z Λ

0
dpp2 [n−n] , (84)

and the barion density can be written as

ρB =
1
3
〈〈ψγ0ψ〉〉=

NcNf

3π2

Z Λ

0
dpp2 [n−n] . (85)



V. S. Tiḿoteo and C. L. Lima 215

0.4
0.6

0.8
1 0

0.2

0.40

1

2

3

4

5

T (GeV)q

ρ
/ρ

o

FIG. 2: The barion density in units of the nuclear matter density
ρ0 = 0.15f m−3 as a function of both temperature andq-deformation
in theq < 1 regime.

C. Condensates, mass, and chiral symmetry restoration

An interesting window to the application ofq-deformation
to hadronic physics can be opened forq-values smaller than
one. It is tempting to explore the behavior of the condensate
in this new regime for smaller values ofq, even considering
that the truncation at orderQ may not be granted. In this case,
we observed in [5] that the chiral symmetry is restored in the
limit q→ 0, since the condensate vanishes. It is then worth to
investigate the effect of both temperature andq-deformation
in the chiral symmetry restoration process as well as in the
pion properties.

In order to study the effect of both temperature andq-
deformation in the chiral symmetry restoration process, we
can replace the gap equation for the mass in the system of
coupled equations by its deformed version Eq. (86)

M = m0−2G′ 〈〈ΨΨ
〉〉

, (86)

so that the new system of coupled equation we need to solve
is

{
M = m0−2G′Σ1,
µ= µ0− G

Nc
σ2,

(87)

whereΣ1 represents the deformed version of the thermal con-
densateσ1.

Solving the new set of coupled gap equations we can ob-
serve the condensate as a function of temperature for different
values of the deformation parameter. It is important to men-
tion that the effects of the algebra deformation come from

gap equation for the mass. However, the chemical potential
is also affected once it depends on the mass through the cou-
pled equations. Thus, for a given temperature, we obtain the
mass and the chemical potential by solving the system of cou-
pled gap equations. We then calculate the condensate and the
density.

In order to visualize the chiral symmetry restoration process
with the influence from both temperature and deformation, we
plot the surfaces shown in Fig. (1) where the chiral condensate
and the constituent quark mass are plotted as functions of both
temperature andq-deformation.

At q< 1 deformations, an interesting result is observed: the
chiral symmetry restoration is similar to the one observed by
Klimt et al. as function of temperature and density [13]. How-
ever, the process is slower asq gets smaller when compared
with the case ofρ getting larger. Figure 1 shows that the con-
densate is substantially affected by the deformation and low-
ers asq decreases, while the effect of temperature is softened.
The same behavior is observed in the dynamical quark mass
since it is linearly constrained to the condensate by the gap
equation.

We have also calculated the barion density as a function of
T andq, which is displayed in Fig. 2. The effect of the defor-
mation on the barion density in only observed as the tempera-
ture increases. The density also lowers asq decreases, and the
temperature effect is also smoothed down.

The behavior of the dynamical mass and the chiral conden-
sate directs to chiral symmetry restoration. We would there-
fore expect the pion to become massless in the limitq→ 0. In
the next section, we evaluate the pion decay constant and mass
in order to investigate the pion properties in a regime where
condensate is lower than in the standard NJL model due to the
effects of theq-deformation.

D. Pion Properties in theq < 1 regime

Recent works [12] have shown that the spontaneous chiral
symmetry breaking may result from a balance of the density
of states and their mobility in the medium. It may occur with
a vanishing< q̄q> condensate as long as the low density of
states is compensated by a high mobility. In this case, the
condensate is no longer the order parameter.

The effective models for QCD, like the NJL, fail to describe
hadronic observables when the condensate is small or null.
Theq-deformed version of the NJL model seems to be an al-
ternative to study the low condensation scenario. As a first
application, we start with the pion mass since it cannot be re-
produced in the standard NJL model in a low condensation
regime.

With a fixed value for the current quark mass, after obtain-
ing the pion decay constant through Eq. 61, we obtain the pion
mass by using the Gell-Mann-Oakes-Renner (GOR) relation

m2
πF2

π =
(

mu
0 +md

0

)
× ∣∣〈Ψ̄Ψ

〉∣∣ , (88)

written in terms of our deformed quantities. The pion prop-
erties (decay constant and mass) as functions of both temper-
ature andq-deformation are shown in Figure 3. In order to
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FIG. 3: The pion decay constant and the pion mass as functions of both temperature andq-deformation in theq < 1 regime.

have an idea of the effect of the deformation in a low conden-
sation regime, we consider the case ofq= 0.5, where conden-
sation is approximately 35% lower than in the non-deformed
case (see Fig. 1). In this particular scenario, we obtain a pion
mass of about 190 MeV. The standard NJL model would give
a pion mass of about 100 MeV in such condensation scenario.
The correlations between the constituents of the system intro-
duced when the underlyingsu(2) algebra is deformed seems
to compensate the low condensation, which is responsible for
keeping a reasonable mass for the pion even when the value
of the condensate is getting smaller.

V. FINAL REMARKS

So far we have performed theq-deformation of the NJL
model with finite temperature also taken into account. We
studied theq-deformation of the underlyingsu(2) algebra in
a two flavor version of the NJL model and investigated an
important feature of chiral symmetry: its restoration at finite
temperature. Also, we studied the pion properties in a low
condensation scenario, where the standard NJL model would
underestimate the pion mass.

As far as the effects of both temperature and deformation
are concerned, our main conclusions can be summarized as

follows. The quark condensate and the dynamical mass de-
crease asq gets smaller than one, and chiral symmetry would
be restored in the limitq → 0 [5]. This effect is specially
observed at low temperatures, since we have thermal restora-
tion at largeT. Surprisingly, as the condensate lowers due to
the deformation, the pion not only keeps massive but also in-
creases. The GOR relation, Eq. 88, with our deformed quan-
tities gives the reason for this behavior, where the pion decay
constant decreases faster than the square root of the conden-
sate.

It seems that the effect of the deformation compensates the
lower condensation, suggesting that the quarks’ mobility is af-
fected when the algebra is deformed. In fact, the correlations
introduced by the deformation generate an extra momentum
P0 for the constituents of the system (see Eq. 52) which is
responsible for enhancing the mobility in the medium.
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