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We review the implementation of@deformed fermionic algebra in the Nambu—Jona-Lasinio model (NJL).
The gap equations obtained from a deformed condensate as well as from the deformation of the NJL Hamiltonian
are discussed. The effect of both temperature and deformation in the chiral symmetry restoration process as well
as in the pion properties is studied.
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. INTRODUCTION II. THE NAMBU-JONA-LASINIO MODEL

The Nambu—Jona-Lasinio model was first introduced to de-

Chiral symmetry breaking is an important phenomena irscribe the nucleon-nucleon interaction via a four-fermion con-
hadron physics and is of fundamental importance for hadrofact interaction. Later, the model was extended to quark de-
properties. The difficulties involved in obtaining low-energy grees of freedom becoming an effective model for quantum
properties directly from QCD, the fundamental theory ofchromodynamics.
strong interactions, have motivated the construction of effec- The Lagrangian of the NJL model is given by
tive models. Due to its simplicity and effectiveness in describ- ]
ing hadrons at low energies, the NJL model [1] has become the LnoL = PO + Lin, 1)
most familiar effective model for strong interactions.

o 2 - 2
The standard scenario for spontaneous chiral symmetry Lint = G| ()" + (WivsT)“) @

breaking is the arising of a quark condensate. In the I\I‘]LLinearizing the above interaction in a mean field approach,
model the condensates appear when the strength of the Cont?l% last term does not contribute if the vacuum is parity and

interaction exceeds a critical val_ue,. separatmg the W'gnerl'_orentz invariant. The Lagrangian with the linearized interac-
Weyl and Nambu-Goldstone realizations of chiral symmetryy. s then

The condensate qq > is the order parameter.

- - . LnoL = Yo +2G () Py, ®)
Apart from giving a reasonable description of the light _ . . g _< ) . '
mesons, the NJL model is also very useful for studying theRegarding this Lagrangian as a Dirac Lagrangian for massive
chiral symmetry breaking process as well as its restoration &uarks we obtain a dynamical mass for the quarks

finite temperature [2, 3]. The NJL model is in addition very B

suitable for testing new ideas. In previous works, we have m= —2G (), )
investigated the effect af-deformation in the chiral symme- \here(qiy) is the vacuum expectation value of the scalar den-
try breaking process within the context of the NJL model. Insjty gy, representing the quark condensates. Eq. (4) describes
particular, we observed how the condensate is affected by theow the dynamical mass is generated with the appearance of
deformation. As a direct consequence, the dynamical quarihe quark condensates. The quarks are massless if the conden-
mass, the chiral symmetry breaking and restoration processggte vanishes.

are accordingly affected [4, 5]. From the anti-commutation relations for the fermionic

. _ . fields, the condensate can be written as
The aim of this work is to study the effect of both tem-

perature and deformation in the chiral symmetry restoration, WW(X)) = =Tr lim (T [WX)W(Y)]), (5)
and evaluate the pion properties imgaeformed NJL model ymx

at finite temperature. This paper is organized as follows. Invhere

Sec. 1l briefly review the Nambu—Jona-Lasinio model, Sec. )

Il introduces theg-deformed fermionic algebra which will be (TWEW(Y)]) =iSe (x-y), (6)
used along this work, and shows how the deformed algebra iéndSF (x—y) is the Feynman propagator in the configuration
implemented in the NJL model. In Sec. IV, we present the in- - P
vestigation of the chiral symmetry restoration with both finite space. In the momentum space this propagator is given by
temperature and-deformation. Finally, Sec. V contains our Wpu+m

main conclusions. S(p)= pPZ—me+ie
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A Fourier transformation let us write the condensate in thedestroy the bare vacuuf@) :

following fashion
Z 4 b(p,s)|0) = d(p,s)[0) = 0. 12)
- p ik
POI) = —i Jlim Ty (2T[)4S: (P VP (7)  The spinorau(p,s) andv(p,s) are normalized helicity eigen-
states satisfying

which after a 3D non-covariant cutoff becomes " "
YuP"u(p,s) = yup*v(p,s) =0, (13)

z
NcN¢ = A m t 1
_ dppf ——, 8 u'(p,s)u(p,s) =Vv'(p,s)v(p,s) = L. 14
=, 4P e ®) (p.9)u(p,s) = V' (p,)v(p;$) (14
where@(p) = 20(p), N is the number of colors an; is the

number of flavors. Using this result we obtain the NJL gap _ ; t to_
equation in its more familiar form (see reference [3]) INJL = [T {cose(p)Jrssme(p)b (p.9)d'(=p.9)| [0},

Q) =

We now introduce the following BCS-like vacuum

p,s=t1
z (15)
1oA 3 m which, for a given momentump, is expanded as
mM=2NN; =  dppf—. 9 ) ,
IcINf _,_[2 p p2 + m2 ( )

INJL) = co6(p) |0)

A. The Bogoliubov-Valatin approach +sind(p) cose(p)bT(p, +)dT(—p, +)10)
—sinB(p) cosB(p)b’ (p, —)d"(—p, ) |0)
The Bogoliubov-Valatin variational approach is an alterna- —sird e(p)bT(p, —)dT(—p, —)bT(p,+)dT(—p,+) |0).
tive way to obtain the NJL gap equation and observe the dy- (16)

namical chiral symmetry breaking process [6]. The variational

approach to obtain the gap equation consists on the followinghe operators which annihilate this vacuum are given by the
procedure: a) to define a variational vacuum, b) to calculat@®ogoliubov-Valatin transformations

the vacuum expectation value of the Hamiltonian, obtaining

the functional for the total energy, and c) to minimize the B(p,s) :cose(p)b(p,s)+ssin9(p)dT(—p,s), a7
functional, obtaining the variational parameters and the gap

equation. For this purpose we start with the NJL Hamiltonian

corresponding to the Lagrangian Eq.(1) D(p,s) = cosB(p)d(p,s) — ssinB(p)b' (—p,s),  (18)

oL = <10y 0y~ G [(@W)°+ @ivey)?].  (0) B(p,S) [NJL) = D(p,s) [NJL) = 0. (19)

and make a Fourier decomposition in the quark fields
z

To calculate the expectation value of the NJL Hamiltonian
with respect to the state Eq. (15)

d3p . .
X,0) = b(p,s)u(p,s)€P* +d'(p,s)v(p,s)e P>,
W0 =3 s [b.Su(p.s (p.s)v(p >(11)} NSLJhen|NIL). o0
defining the annihilation operatogp, s) andd(p, s) of parti- it is convenient to expresg in terms of the quasi-particles

cles and anti-particles with momentynand helicitys, which  operatord(p,s) andD(p,s) as

3 i .
VX0 =3 5 [Blp.IMi(p. 98+ Do sMa(p. 9™ @)
where
Mz(p,s) = [cosB(p) +Y’sinB(p)] u(p,s), (22)
Ma(p.s) = [cosB(p) —y’sinB(p)] u(p,s). (23)

Making use of the spinor relations

YosM(—p, s) = u(p,s), (24)
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1 p
Z U(p,S)UT(p,S) = E (1y yo) ) (25)
5 Pl
the functional for the total energy in the Hartree approximation is obtained as
2
W@ = —2NN ’ ﬂpcoscp(p)—4c3(N Ni)2 ‘ sing(p) (26)
- cINf (2]'[)3 IcINt (2_,_[)3 .
\
The form of¢(p) which minimizes the total energy Eq. (26) ,qJij - a;fmj |‘| (1+Qa}fi aji> , (32)
is obtained from the condition i=mj+1
W g
—— =0. (27)
3p(p)
_ . whereQ=q1—1, j=1/2andm; = +£1/2. As discussed in
This procedure yields to [4], the first consequence of the above deformation is that only
Z s the operators correspondingrg = —% are modified, mean-
ptan@(p) = 4GN:N; d>p sing(p) (28)  ing that only negative helicity quarks (anti-quarks) operators
(4m)® ’ will be deformed since in the NJL model we deal with quarks
) (anti-quarks) creation and annihilation operators.
which becomes
Z 3 We have two different approaches to obtain a new gap equa-
m= 4GN.N HL7 (29)  tion. The first one consists in to perform theleformation in
(211)3 VP2 +m the condensate, which is a part of the self-consistent equa-

) o ) } tion for the dynamical mass. In the second one the
provided the variational angles acquire the following form  yeformation is performed in the NJL Hamiltonian, and we
m m use the Bogoliubov-Valatin procedure to obtain the new gap
tang(p) = —, Sing(p) = —=—- (30)  equation. We now turn to a detailed discussion of these two
P p?+m? different approaches.

Ill.  g-DEFORMATION IN THE NJL MODEL

In this section we discuss the implementation of the de-
formed algebra to the NJL model. Tigedeformed fermionic
algebra [7] that we shall use is based in the work of Ubriaco
[8], where the thermodynamic properties of a many fermion A. Deforming the condensates
system were studied. In the construction ofeovariant form
of the BCS approximation [9], it was shown that the creation

and annihilation operators of theey, (2] + 1) fermionic alge- To obtain the deformed gap equation we work with the
bra are given by BCS-like vacuum (15) in the standard Bogoliubov-Valatin
variational approach. The quark fields are expressed in terms
Ajm; = &jm |_| (1+Qa}ti aji> , (31) of g-deformed creation and annihilation operators as
i=mj+1
|
z d3p . .
W0 =T 5 [BR.9up. 9+ D' PP (33)
S

where theg-deformed quark and anti-quark creation and an-of the non-deformed ones according to Egs. (31) and (32)
nihilation operators8, B', D, andD', are expressed in terms

B —b (1+ Qb1b+) . Bt —pt (1+Qb1b+) . (34)

D —d (1+ Qd1d+) , ot =d' (1+Qd1d+) . (35)
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B, =hby, Qﬂ = bL (36) where <I|5Lp>q is the g-deformed condensate calculated using
D, —d, @I _ dL 37) the BCS-like vacuum, Eg. (15), and Eq. (11),

where+ (—) stands for the positive (negative) helicity and

the notation has been simplifiedp,s) — s. We would like

to note that, as discussed in Ref. [9], the deformed vacuum —

differs from the non-deformed one only by a phase and, there- <WJ>q - <NJLNJQUJQ| N‘]L>

fore, the effects of the deformation comes solely from the = (Qy) + (NJIL|Q|NJIL), (39)
modified field operators. Additionally, theedeformed NJL

Lagrangian, constructed usinjg instead ofy, is invariant

under the quantum grouply(2) transformations. This can

be seen by using the two-dimensional representation of the

SU,(2) unitary transformation given in Ref. [8]. where (Qy) is the non-deformed condensate and
The deformed gap equation is (NJL|Q|NJL) represents all non-vanishing matrix ele-
ments arising from thg-deformation of the quark fields. The
m= —2G(Py)q. (38)  contribution of thesg-deformed matrix elements is
|
Z d3p
(NJL|QINJL =Q W{sin&)(p)—sinm(p) cosB(p)]. (40)

The calculation of the deformed condensate will be performed in a similar way as in the usual case. It requires also
regularization procedure since the NJL interaction is not perturbatively renormalizable. For reasons of simplicity a non-covaria
trimomentum cutoff is applied arising

Z\ 3

z
_3m Q\~ p? Q p
<qw>q__n2l<l_2) 0 dpw/p2+m2+§ 0 Olpp2+m2

for each quark flavor. At this point we see that the dynamical mass is again given by a self-consistent equation since t
condensate depends also on the mass. Inserting Eq. (41) into Eq. (38) we obtain the deformed NJL gap equation

(41)

Z Z
2Gm Q A p2 Q A p3
m="0r|(1-= dp—— + = dp—H—s | 42
@ ( 2) 0 IO\/p2+mZ+2 o “Ppz e (42)

It is easy to see that fa@ = 0 (q = 1), we recover the NJL G related to the cutoff. The dynamical mass is accordingly
gap equation in its more familiar form modified through the deformed gap equation (42).
Z . ) The behavior of the condensate around the critical cou-
_ @ p pling, G, is similar for both deformed and non-deformed
™ o \/p? 4 e cases meaning that the adopted proceduregtdeform the
] ) underlyingsu(2) algebra in a two flavor NJL model does not
wheremy appears only if we consider the current quark masghange the behavior of the phase transition aro@pd The
term Lmass= —moPy in the NJL Lagrangian Eq. (1). formalism developed in [8, 9] allow-values smaller than one
The pion decay constant is calculated from the vacuum twhich corresponds t@ > 0). It is worth to mention that in
one pion axial vector current matrix element, which, in thethis case thei-deformation effect goes in the opposite direc-
simple 3D non-covariant cutoff we are using [6], is given by tjon, namely, the condensate value and the dynamical mass

Z A &p 1 decrease fog < 1.
f2 = Nen? 3 ; (44)
0 (2m)° (p2+mP)>?
for each quark flavor. The deformed calculationfgfis per- B. Deforming the NJL Hamiltonian
formed directly by substituting the dynamical mass in Eq.
(44) from the one obtained in Eq. (42). Here itis important to stress again that the deformed version

As in the non-deformed case, thegap equation has non- of this vacuum differs from the non-deformed one only by
trivial solutions when the couplinG exceeds a critical value a phase and, therefore, the effects of the deformation comes
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solely from the deformation of the Hamiltonian. The last terms of Egs. (47) and (48), namel(Q) and
The deformed functional for the total energy will be ob- W [Q,8(p)], stand for the new terms of first order@gener-
tained from the vacuum expectation value of thdeformed ated when the algebra is deformed, and, therefore, they vanish

NJL Hamiltonian: for g=1(Q=0). The full resulting interaction includes 3-,
4-, 5-, and 6-body interactions, which corresponds to the new
WAB(p)] = (NIL| 74, [NJIL), (45)  terms of orde, Q?, @3, andQ?, respectively. We have con-

S sidered only the three-body terms of ordgr
where theg-deformed Hamiltonian is

Ay = 1y O~ G (W)~ G (Wgvely) . (46)

anduyyq is given by Eq. (33). Due to the additive structure of
the g-deformation, the deformed Hamiltonian can be written

as The non-deformed case, which corresponds o=

1(Q=0), has been discussed in Sec. Il. In order to obtain
7ﬂquL= HyaL+ #(Q), (47) the new gap equation, we need to calculate the new matrix
elements arising from thg-deformation of the NJL Hamil-
and the functional will have the same form tonian, and add them to the non-deformed functional. This
procedure yields to the futi-deformed functional for the to-
WwAB(p)] =W [6(p)] + W[Q,8(p)]- (48)  talenergy:
|
A z
d°p Q" d’
wae = —2NeNf (1+ cosp+ NcNf = cos
[6(p)] eNt (14 Q) (2n)3p Sp-+NeNr 5 (Zn)gp ¢
z z 2
NeNf s- d°p 2 d*p
+NcNs 32 QGA (211)3 cosp— (NcNf)“G(4+ Q) (211)3 singy . (49)
\
Defining the new variables provided the variational angles have the same old structure
Py = P+, (50) (but they now arej-dependent)
P = (1+Q)p, (51) tanZBq(p)_r,sinZBq(p)_\/L,
NcN¢ 3 a K2+ M2
Py = — GA 52 a
0 o Q, (52)
K = —gp, (53) Kq
2 cosBy(p) = —————, (57)
/ Q \/K§+M2
G =G|1+ 2) (54)
where
and performing the same minimization procedure as in the
non-deformed case we obtain Kq=Py+o0aK. (58)
4
d*p/ Itis easy to see that, when— 1(Q — 0), Egs. (55), (56),

Py tan@+Ksing=4G'NcNy  —sing.  (55)
(2m)

and (57) reduce to their non-deformed versions Eqgs. (28),
(29), and (30), sinc&y — pandG — G.

In analogy with the non-deformed case we can write the
gap equation in terms of the quark condensates as

The termKsing was overlooked in a previous paper [5]
[14]. Trying to keep as much similarity as possible with the
usual solution, instead of solving the equatietang(p) +

Ksing(p) = M, thesing(p) will be substituted byx tang(p), M= _2G (P (59)
with o = 0.59chosen to minimize the difference betwesmgp
andtangin the interval0, T1/4]. Comparing the two forms of the gap equation Egs. (42) and
The new gap equation then becomes (59), we find a new deformed condensate given by
Z 3 z
/ M — NcNg = A M
M—dgnN SR ) @y = M Mg M o)

T[Z 0 K(2]+M2

(2“)3,/K(24+M27
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This condensate is different from the one obtained in the prethe above partition function, one can calculate the thermal ex-
vious section, where the condensate was explicitly deformegectation value of an operatdr

[4]. It also has exactly the same form of the non-deformed

one, but is written in terms of the new variables. It is worth to ((a)) = iTrﬂl {exp[—B (Hua— KA} (65)
mention that the new condensate is not obtained by calculating Z

the vacuum expectation value of a deformed scalar densityyhere the operator in question can be, for example, the scalar
In fact, it corresponds to the gap equation which arises fromyensityy or the quarks density'y

the variational procedure started from tirdeformed Hamil- Here the Hamiltonian is given by
tonian. The new pion decay constant can also be obtained in
analogy to the non-deformed case HygL = —iPy- 0P — G(PY)? — G(Piysty)? + mePy, (66)
ZA 3 — _iTyv- 00— £
F2 — NM2 d p3 1 . (61) 1Qy- U — Lint + Moy, (67)
o (2m (K% + Mz) which, in the mean field approximation, is written as

A closer look to the left side of Eq. 55 shows that the dy-

namical mass has two components: one proportional to the Hyr = —iQy- DqJ+mt,ﬁlp+Gof+ NEOZN— %057 (68)
original dynamical mass and another term which we call c c
Mo wheremis the effective quark mass
M=[1+(1-0/2)Q ptanB(p) + potanB(p),  (62) m— mo— 2G04, (69)
m Mo
"y A is the number operator
dyn
_ _ .t
where pg = ngé\s is Py (Eq. 52) forN; = 3 andNs = 2. N=Dyob = W'y, (70)
We can then calculate the effect of the deformation on th%ndol o, are defined as
dynamical massan: '
M o1 = (({TY)), (71)
m= ——————, (63) _
1+(1-a/2)Q o2 = ((Tyo)) - (72)

whereM is obtained by solving Eq. (59). In an analogous the Hamiltonian in the mean field approximation represents a
way, the effect on the condensate can be calculated by substiysiem of free particles of massand the chemical potential
tutingM — min the numerator of Eqg. (60) [15] . is given by

G
IV. TEMPERATURE AND g-DEFORMATION H=Ho— 302, (73)

In this section we want to study the interplay of temperaturéVheretbo is the chemical potential when there is no vector in-
andg-deformation in the NJL model. We review the standard€raction, generated by the Fierz transformationigd. Equa-
approach to introduce finite temperature and chemical poterions (69) and (73) form a system of self-consistent coupled
tial in the NJL model [2, 3] in subsections IV.A and IV.B. €dquations
When temperature is introduced in the model, the condensate m= my— 2Go;
is replaced by the thermal expectation value of the scalar den- { . G ’
sity, which contains the Fermi-Dirac distributions. We also H=Ho— . 02-

have a gap equation for the chemical potential, which is modg|ying the above equations we obtain the effective mass and

ified by the interactions in such a way that we need to SolVenemical potential, which we can put back in the expressions
a system of coupled gap equations. In subsections IV.C anf. 5, and g, to obtain the condensate and the density at a
IV.D, the standard formalism is extended to incorporate thegiven temperaturd.

effects ofg-deformation. In particular, aspects of chiral sym-
metry restoration and pionic properties in the< 1 regime

will be discussed. B. Thermal Expectation Values

(74)

The dynamical mass calculation depends on expectation
values containing the Fermi-Dirac distributions. The ther-

. . _ mal expectation values relevant for the NJL model, namely
The starting point for the study of the thermodynamics of;, 504, can be calculated within the formalism of the ther-
the NJL model is the partition function mal Green function [11], which has the advantage of separat-

Z = Trexp[—B (HniL— WA)] (64)  ing the parts that depend on the temperature and the chemical
wherep = T~1, 4{ is the valence quark number operator of potential. The thermal Green function for a free fermion at a
flavori, andy; are the corresponding chemical potential. Fromtemperaturd and chemical potentigl is written as

A. The NJL model at Finite Temperature
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FIG. 1: Chiral condensate (in units ef10-2 GeV®) and dynamical quark mass as functions of both temperaturejaieformation in the

q < 1regime. The results presented in the figures were obtained with the following paranite&58 GeV 2, A = 0.6 GeV, my = 5.87
MeV, andpy = 0.35 GeV.

p+m

SF(pT,W= m+2m6(p2—rr12)
x (B+m) [8(p°)n(p, T, ) +6(—p°)N(p, T, W], (75)
where
1
n(p, T, = T-expBE_1]’ (76)
and
, 1
n(p, T,y = (77)

~ 1+exp[-B(E+W]’

are the fermions and anti-fermions distribution function respectively with+/p2 + ne.
Making use of the anti-commutation relation for the fermionic fields, the expectation values can be written as

(PO)wE)) = —Tr lim (TWBW)), (78)

{(Byow)) = —Tr lim yo (T [WYBY)]) - (79)
The term on the right-hand side of the above equations is the definition of the thermal Green function in the configuration spac

IS (x=y; T, 1) = (T [WEBY))) - (80)

The expectation values are then re-written as
z
i P o T e P
(PO)P(x))) = —i lim Tr (2n)4SF (P T, e : (81)
i T %P Ci(x-y)p
{(Wyow)) = i lim Tr WVOSF (mT,we - (82)

Applying a cutoff in the momentum, the results for ando, and the barion density can be written as
are the following NN z

3

A
~ NeNg Z A PB = %<<on¢>> = . dpf?[n—n].  (85)

01 = (<w¢>> = 2

dpng[l—n—ﬁ], 83)
ZO

A
0= (yow) = 5~ dpFin—Tl, (84)
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gap equation for the mass. However, the chemical potential
is also affected once it depends on the mass through the cou-
e 5 : R pled equations. Thus, for a given temperature, we obtain the
By o ; : mass and the chemical potential by solving the system of cou-
' g : i : pled gap equations. We then calculate the condensate and the
density.

In order to visualize the chiral symmetry restoration process
with the influence from both temperature and deformation, we
plot the surfaces shown in Fig. (1) where the chiral condensate
and the constituent quark mass are plotted as functions of both
temperature and-deformation.

At g < 1 deformations, an interesting result is observed: the
chiral symmetry restoration is similar to the one observed by
Klimt et al. as function of temperature and density [13]. How-
ever, the process is slower ggets smaller when compared
with the case op getting larger. Figure 1 shows that the con-
densate is substantially affected by the deformation and low-
ers ag) decreases, while the effect of temperature is softened.
0 The same behavior is observed in the dynamical quark mass

' since it is linearly constrained to the condensate by the gap
q 10 T(Gev) equation.
We have also calculated the barion density as a function of
T andq, which is displayed in Fig. 2. The effect of the defor-
FIG. 2: The barion density in units of the nuclear matter densitymation on the barion density in only observed as the tempera-
po = 0.15fm~3 as a function of both temperature apdeformation  ture increases. The density also lowers dgcreases, and the
in theq < 1 regime. temperature effect is also smoothed down.

The behavior of the dynamical mass and the chiral conden-
sate directs to chiral symmetry restoration. We would there-
fore expect the pion to become massless in the rit 0. In

C. Condensates, mass, and chiral symmetry restoration the next section, we evaluate the pion decay constant and mass
in order to investigate the pion properties in a regime where

An interesting window to the application gfdeformation condensate is lower than in the standard NJL model due to the
to hadronic physics can be opened fpvalues smaller than effects of theg-deformation.
one. It is tempting to explore the behavior of the condensate
in this new regime for smaller values qf even considering
that the truncation at ord€) may not be granted. In this case, D. Pion Properties in theq < 1 regime
we observed in [5] that the chiral symmetry is restored in the
limit g — 0, since the condensate vanishes. Itis then worth to Recent works [12] have shown that the spontaneous chiral
investigate the effect of both temperature apdeformation  symmetry breaking may result from a balance of the density
in the chiral symmetry restoration process as well as in th@f states and their mobility in the medium. It may occur with
pion properties. a vanishing< qq > condensate as long as the low density of

In order to study the effect of both temperature apd states is compensated by a high mobility. In this case, the
deformation in the chiral symmetry restoration process, wecondensate is no longer the order parameter.
can replace the gap equation for the mass in the system of The effective models for QCD, like the NJL, fail to describe

coupled equations by its deformed version Eq. (86) hadronic observables when the condensate is small or null.
- The g-deformed version of the NJL model seems to be an al-
M =mp—2G <<WJ>> ’ (86)  ternative to study the low condensation scenario. As a first

so that the new system of coupled equation we need to solv@Pplication, we start with the pion mass since it cannot be re-
is produced in the standard NJL model in a low condensation

regime.
{ M = mo —GZG/ZL (87) With a fixed value for the current quark mass, after obtain-
H=Ho— {02 ing the pion decay constant through Eq. 61, we obtain the pion

whereZ; represents the deformed version of the thermal con @SS by using the Gell-Mann-Oakes-Renner (GOR) relation

densate;. 2:< u d) 7]
Solving the new set of coupled gap equations we can ob- mﬁFn Mo+ My ) KLPLPM ’ (68)
serve the condensate as a function of temperature for differemtritten in terms of our deformed quantities. The pion prop-
values of the deformation parameter. It is important to menerties (decay constant and mass) as functions of both temper-
tion that the effects of the algebra deformation come fromature andg-deformation are shown in Figure 3. In order to
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FIG. 3: The pion decay constant and the pion mass as functions of both temperatgrdefodnation in they < 1 regime.

have an idea of the effect of the deformation in a low condenfollows. The quark condensate and the dynamical mass de-
sation regime, we consider the case|ef 0.5, where conden- crease ag gets smaller than one, and chiral symmetry would
sation is approximately 35% lower than in the non-deformede restored in the limig — O [5]. This effect is specially
case (see Fig. 1). In this particular scenario, we obtain a pionbserved at low temperatures, since we have thermal restora-
mass of about 190 MeV. The standard NJL model would givdion at largeT. Surprisingly, as the condensate lowers due to
a pion mass of about 100 MeV in such condensation scenarithe deformation, the pion not only keeps massive but also in-
The correlations between the constituents of the system intra@reases. The GOR relation, Eq. 88, with our deformed quan-
duced when the underlyingy(2) algebra is deformed seems tities gives the reason for this behavior, where the pion decay
to compensate the low condensation, which is responsible faronstant decreases faster than the square root of the conden-
keeping a reasonable mass for the pion even when the valsate.
of the condensate is getting smaller. It seems that the effect of the deformation compensates the
lower condensation, suggesting that the quarks’ mobility is af-
fected when the algebra is deformed. In fact, the correlations
V. FINAL REMARKS introduced by the deformation generate an extra momentum
Po for the constituents of the system (see Eq. 52) which is
So far we have performed thtgpdeformation of the NJL  responsible for enhancing the mobility in the medium.
model with finite temperature also taken into account. We
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