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I. PREFACE

This paper is the outgrowth of lectures the author gave at the
Physics Institute and the Chemistry Institute of the University
of São Paulo at São Carlos, Brazil, and at the VIII’th Summer
School on Electronic Structure of the Brazilian Physical So-
ciety [1]. The main text is a description of density-functional
theory (DFT) at a level that should be accessible for students
entering the field or researchers from other fields. A large
number of footnotes provides additional comments and ex-
planations, often at a slightly higher level than the main text.
A reader not familiar with DFT is advised to skip most of the
footnotes, but a reader familiar with it may find some of them
useful.

The paper is not meant to be a scholarly review of DFT,
but rather an informal guide to its conceptual basis and some
recent developments and advances. The Hohenberg-Kohn the-
orem and the Kohn-Sham equations are discussed in some
detail. Approximate density functionals, selected aspects of
applications of DFT, and a variety of extensions of standard
DFT are also discussed, albeit in less detail. Throughout it is
attempted to provide a balanced treatment of aspects that are
relevant for chemistry and aspects relevant for physics, but
with a strong bias towards conceptual foundations. The text
is intended to be read before (or in parallel with) one of the
many excellent more technical reviews available in the liter-
ature. The author apologizes to all researchers whose work
has not received proper consideration. The limits of the au-
thor’s knowledge, as well as the limits of the available space
and the nature of the intended audience, have from the outset
prohibited any attempt at comprehensiveness.1

1 A first version of this text was published in 2002 as a chapter in the
proceedings of the VIII’th Summer School on Electronic Structure of the
Brazilian Physical Society [1]. The text was unexpectedly well received,

II. WHAT IS DENSITY-FUNCTIONAL THEORY?

Density-functional theory is one of the most popular and
successful quantum mechanical approaches to matter. It is
nowadays routinely applied for calculating, e.g., the binding
energy of molecules in chemistry and the band structure of
solids in physics. First applications relevant for fields tra-
ditionally considered more distant from quantum mechanics,
such as biology and mineralogy are beginning to appear. Su-
perconductivity, atoms in the focus of strong laser pulses, rel-
ativistic effects in heavy elements and in atomic nuclei, clas-
sical liquids, and magnetic properties of alloys have all been
studied with DFT.

DFT owes this versatility to the generality of its fundamen-
tal concepts and the flexibility one has in implementing them.
In spite of this flexibility and generality, DFT is based on quite
a rigid conceptual framework. This section introduces some
aspects of this framework in general terms. The following two
sections, III and IV, then deal in detail with two core elements
of DFT, the Hohenberg-Kohn theorem and the Kohn-Sham
equations. The final two sections, V and VI, contain a (nec-
essarily less detailed) description of approximations typically
made in practical DFT calculations, and of some extensions

and repeated requests from users prompted the author to electronically
publish revised, updated and extended versions in the preprint archive
http://arxiv.org/archive/cond-mat, where the second (2003), third (2004)
and fourth (2005) versions were deposited under the reference number
cond-mat/0211443. The present fifth (2006) version of this text, published
in the Brazilian Journal of Physics, is approximately 50% longer than
the first. Although during the consecutive revisions many embarrassing
mistakes have been removed, and unclear passages improved upon, many
other doubtlessly remain, and much beautiful and important work has not
been mentioned even in passing. The return from electronic publishing to
printed publishing, however, marks the completion of a cycle, and is in-
tended to also mark the end of the author’s work on the Bird’s-Eye View of
Density-Functional Theory.
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and generalizations of DFT.
To get a first idea of what density-functional theory is about,

it is useful to take a step back and recall some elementary
quantum mechanics. In quantum mechanics we learn that all
information we can possibly have about a given system is con-
tained in the system’s wave function, Ψ. Here we will ex-
clusively be concerned with the electronic structure of atoms,
molecules and solids. The nuclear degrees of freedom (e.g.,
the crystal lattice in a solid) appear only in the form of a poten-
tial v(r) acting on the electrons, so that the wave function de-
pends only on the electronic coordinates.2 Nonrelativistically,
this wave function is calculated from Schrödinger’s equation,
which for a single electron moving in a potential v(r) reads

[
−~

2∇2

2m
+ v(r)

]
Ψ(r) = εΨ(r). (1)

If there is more than one electron (i.e., one has a many-body
problem) Schrödinger’s equation becomes

[
N

∑
i

(
−~

2∇2
i

2m
+ v(ri)

)
+ ∑

i< j
U(ri,r j)

]
Ψ(r1,r2 . . . ,rN)

= EΨ(r1,r2 . . . ,rN), (2)

where N is the number of electrons and U(ri,r j) is the
electron-electron interaction. For a Coulomb system (the only
type of system we consider here) one has

Û = ∑
i< j

U(ri,r j) = ∑
i< j

q2

|ri− r j| . (3)

Note that this is the same operator for any system of particles
interacting via the Coulomb interaction, just as the kinetic en-
ergy operator

T̂ =− ~
2

2m ∑
i

∇2
i (4)

is the same for any nonrelativistic system.3 Whether our sys-
tem is an atom, a molecule, or a solid thus depends only on
the potential v(ri). For an atom, e.g.,

V̂ = ∑
i

v(ri) = ∑
i

Qq
|ri−R| , (5)

where Q is the nuclear charge4 and R the nuclear position.
When dealing with a single atom, R is usually taken to be the

2 This is the so-called Born-Oppenheimer approximation. It is common to
call v(r) a ‘potential’ although it is, strictly speaking, a potential energy.

3 For materials containing atoms with large atomic number Z, accelerating
the electrons to relativistic velocities, one must include relativistic effects
by solving Dirac’s equation or an approximation to it. In this case the
kinetic energy operator takes a different form.

4 In terms of the elementary charge e > 0 and the atomic number Z, the
nuclear charge is Q = Ze and the charge on the electron is q =−e.

zero of the coordinate system. For a molecule or a solid one
has

V̂ = ∑
i

v(ri) = ∑
ik

Qkq
|ri−Rk| , (6)

where the sum on k extends over all nuclei in the system,
each with charge Qk = Zke and position Rk. It is only the
spatial arrangement of the Rk (together with the correspond-
ing boundary conditions) that distinguishes, fundamentally, a
molecule from a solid.5 Similarly, it is only through the term
Û that the (essentially simple) single-body quantum mechan-
ics of Eq. (1) differs from the extremely complex many-body
problem posed by Eq. (2). These properties are built into DFT
in a very fundamental way.

The usual quantum-mechanical approach to Schrödinger’s
equation (SE) can be summarized by the following sequence

v(r) SE=⇒Ψ(r1,r2 . . . ,rN)
〈Ψ|...|Ψ〉
=⇒ observables, (7)

i.e., one specifies the system by choosing v(r), plugs it into
Schrödinger’s equation, solves that equation for the wave
function Ψ, and then calculates observables by taking expec-
tation values of operators with this wave function. One among
the observables that are calculated in this way is the particle
density

n(r) = N
∫

d3r2

∫
d3r3 . . .

∫
d3rNΨ∗(r,r2 . . . ,rN)Ψ(r,r2 . . . ,rN).

(8)
Many powerful methods for solving Schrödinger’s equation

have been developed during decades of struggling with the
many-body problem. In physics, for example, one has dia-
grammatic perturbation theory (based on Feynman diagrams
and Green’s functions), while in chemistry one often uses con-
figuration interaction (CI) methods, which are based on sys-
tematic expansion in Slater determinants. A host of more spe-
cial techniques also exists. The problem with these methods
is the great demand they place on one’s computational re-
sources: it is simply impossible to apply them efficiently to
large and complex systems. Nobody has ever calculated the
chemical properties of a 100-atom molecule with full CI, or
the electronic structure of a real semiconductor using nothing
but Green’s functions.6

5 One sometimes says that T̂ and Û are ‘universal’, while V̂ is system-
dependent, or ‘nonuniversal’. We will come back to this terminology.

6 A simple estimate of the computational complexity of this task is to imag-
ine a real-space representation of Ψ on a mesh, in which each coordinate is
discretized by using 20 mesh points (which is not very much). For N elec-
trons, Ψ becomes a function of 3N coordinates (ignoring spin, and taking
Ψ to be real), and 203N values are required to describe Ψ on the mesh. The
density n(r) is a function of three coordinates, and requires 203 values on
the same mesh. CI and the Kohn-Sham formulation of DFT additionally
employ sets of single-particle orbitals. N such orbitals, used to build the
density, require 203N values on the same mesh. (A CI calculation employs
also unoccupied orbitals, and requires more values.) For N = 10 electrons,
the many-body wave function thus requires 2030/203 ≈ 1035 times more
storage space than the density, and 2030/(10× 203) ≈ 1034 times more
than sets of single-particle orbitals. Clever use of symmetries can reduce
these ratios, but the full many-body wave function remains unaccessible
for real systems with more than a few electrons.
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It is here where DFT provides a viable alternative, less ac-
curate perhaps,7 but much more versatile. DFT explicitly
recognizes that nonrelativistic Coulomb systems differ only
by their potential v(r), and supplies a prescription for deal-
ing with the universal operators T̂ and Û once and for all.8

Furthermore, DFT provides a way to systematically map the
many-body problem, with Û , onto a single-body problem,
without Û . All this is done by promoting the particle density
n(r) from just one among many observables to the status of
key variable, on which the calculation of all other observables
can be based. This approach forms the basis of the large ma-
jority of electronic-structure calculations in physics and chem-
istry. Much of what we know about the electrical, magnetic,
and structural properties of materials has been calculated us-
ing DFT, and the extent to which DFT has contributed to the
science of molecules is reflected by the 1998 Nobel Prize in
Chemistry, which was awarded to Walter Kohn [3], the found-
ing father of DFT, and John Pople [4], who was instrumental
in implementing DFT in computational chemistry.

The density-functional approach can be summarized by the
sequence

n(r) =⇒Ψ(r1, . . . ,rN) =⇒ v(r), (9)

i.e., knowledge of n(r) implies knowledge of the wave func-
tion and the potential, and hence of all other observables.
Although this sequence describes the conceptual structure of
DFT, it does not really represent what is done in actual ap-
plications of it, which typically proceed along rather different
lines, and do not make explicit use of many-body wave func-
tions. The following chapters attempt to explain both the con-
ceptual structure and some of the many possible shapes and
disguises under which this structure appears in applications.

The literature on DFT is large, and rich in excellent reviews
and overviews. Some representative examples of full reviews
and systematic collections of research papers are Refs. [5-19].
The present overview of DFT is much less detailed and ad-
vanced than these treatments. Introductions to DFT that are
more similar in spirit to the present one (but differ in em-
phasis and selection of topics) are the contribution of Levy
in Ref. [9], the one of Kurth and Perdew in Refs. [15] and
[16], and Ref. [20] by Makov and Argaman. My aim in the

7 Accuracy is a relative term. As a theory, DFT is formally exact. Its per-
formance in actual applications depends on the quality of the approximate
density functionals employed. For small numbers of particles, or systems
with special symmetries, essentially exact solutions of Schrödinger’s equa-
tion can be obtained, and no approximate functional can compete with ex-
act solutions. For more realistic systems, modern (2005) sophisticated den-
sity functionals attain rather high accuracy. Data on atoms are collected in
Table I in Sec. V B. Bond-lengths of molecules can be predicted with an
average error of less than 0.001nm, lattice constants of solids with an aver-
age error of less than 0.005nm, and molecular energies to within less than
0.2eV [2]. (For comparison: already a small molecule, such as water, has
a total energy of 2081.1eV). On the other hand, energy gaps in solids can
be wrong by 100%!

8 We will see that in practice this prescription can be implemented only ap-
proximately. Still, these approximations retain a high degree of universality
in the sense that they often work well for more than one type of system.

present text is to give a bird’s-eye view of DFT in a language
that should be accessible to an advanced undergraduate stu-
dent who has completed a first course in quantum mechan-
ics, in either chemistry or physics. Many interesting details,
proofs of theorems, illustrative applications, and exciting de-
velopments had to be left out, just as any discussion of issues
that are specific to only certain subfields of either physics or
chemistry. All of this, and much more, can be found in the
references cited above, to which the present little text may
perhaps serve as a prelude.

III. DFT AS A MANY-BODY THEORY

A. Functionals and their derivatives

Before we discuss density-functional theory more carefully,
let us introduce a useful mathematical tool. Since according
to the above sequence the wave function is determined by the
density, we can write it as Ψ = Ψ[n](r1,r2, . . .rN), which in-
dicates that Ψ is a function of its N spatial variables, but a
functional of n(r).

Functionals. More generally, a functional F [n] can be de-
fined (in an admittedly mathematically sloppy way) as a rule
for going from a function to a number, just as a function
y = f (x) is a rule ( f ) for going from a number (x) to a number
(y). A simple example of a functional is the particle number,

N =
∫

d3r n(r) = N[n], (10)

which is a rule for obtaining the number N, given the function
n(r). Note that the name given to the argument of n is com-
pletely irrelevant, since the functional depends on the function
itself, not on its variable. Hence we do not need to distinguish
F [n(r)] from, e.g., F [n(r′)]. Another important case is that in
which the functional depends on a parameter, such as in

vH [n](r) = q2
∫

d3r′
n(r′)
|r− r′| , (11)

which is a rule that for any value of the parameter r associates
a value vH [n](r) with the function n(r′). This term is the so-
called Hartree potential, which we will repeatedly encounter
below.

Functional variation. Given a function of one variable,
y = f (x), one can think of two types of variations of y, one
associated with x, the other with f . For a fixed functional de-
pendence f (x), the ordinary differential dy measures how y
changes as a result of a variation x → x + dx of the variable
x. This is the variation studied in ordinary calculus. Simi-
larly, for a fixed point x, the functional variation δy measures
how the value y at this point changes as a result of a variation
in the functional form f (x). This is the variation studied in
variational calculus.

Functional derivative. The derivative formed in terms
of the ordinary differential, d f /dx, measures the first-order
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change of y = f (x) upon changes of x, i.e., the slope of the
function f (x) at x:

f (x+dx) = f (x)+
d f
dx

dx+O(dx2). (12)

The functional derivative measures, similarly, the first-order
change in a functional upon a functional variation of its argu-
ment:

F [ f (x)+δ f (x)] = F [ f (x)]+
∫

s(x)δ f (x)dx+O(δ f 2), (13)

where the integral arises because the variation in the func-
tional F is determined by variations in the function at
all points in space. The first-order coefficient (or ‘func-
tional slope’) s(x) is defined to be the functional derivative
δF [ f ]/δ f (x).

The functional derivative allows us to study how a func-
tional changes upon changes in the form of the function it de-
pends on. Detailed rules for calculating functional derivatives
are described in Appendix A of Ref. [6]. A general expres-
sion for obtaining functional derivatives with respect to n(x)
of a functional F [n] =

∫
f (n,n′,n′′,n′′′, ...;x)dx, where primes

indicate ordinary derivatives of n(x) with respect to x, is [6]

δF [n]
δn(x)

=
∂ f
∂n
− d

dx
∂ f
∂n′

+
d2

dx2
∂ f
∂n′′

− d3

dx3
∂ f

∂n′′′
+ ... (14)

This expression is frequently used in DFT to obtain xc poten-
tials from xc energies.9

B. The Hohenberg-Kohn theorem

At the heart of DFT is the Hohenberg-Kohn (HK) theorem.
This theorem states that for ground states Eq. (8) can be in-
verted: given a ground-state density n0(r) it is possible, in
principle, to calculate the corresponding ground-state wave
function Ψ0(r1,r2 . . . ,rN). This means that Ψ0 is a functional
of n0. Consequently, all ground-state observables are func-
tionals of n0, too. If Ψ0 can be calculated from n0 and vice
versa, both functions are equivalent and contain exactly the
same information. At first sight this seems impossible: how
can a function of one (vectorial) variable r be equivalent to
a function of N (vectorial) variables r1 . . .rN? How can one
arbitrary variable contain the same information as N arbitrary
variables?

The crucial fact which makes this possible is that knowl-
edge of n0(r) implies implicit knowledge of much more than

9 The use of functionals and their derivatives is not limited to density-
functional theory, or even to quantum mechanics. In classical mechanics,
e.g., one expresses the Lagrangian L in terms of of generalized coordinates
q(x, t) and their temporal derivatives q̇(x, t), and obtains the equations of
motion from extremizing the action functional A [q] =

∫
L(q, q̇; t)dt. The

resulting equations of motion are the well-known Euler-Lagrange equa-
tions 0 = δA [q]

δq(t) = ∂L
∂q − d

dt
∂L
∂q̇ , which are a special case of Eq. (14).

that of an arbitrary function f (r). The ground-state wave
function Ψ0 must not only reproduce the ground-state den-
sity, but also minimize the energy. For a given ground-state
density n0(r), we can write this requirement as

Ev,0 = min
Ψ→n0

〈Ψ|T̂ +Û +V̂ |Ψ〉, (15)

where Ev,0 denotes the ground-state energy in potential v(r).
The preceding equation tells us that for a given density n0(r)
the ground-state wave function Ψ0 is that which reproduces
this n0(r) and minimizes the energy.

For an arbitrary density n(r), we define the functional

Ev[n] = min
Ψ→n

〈Ψ|T̂ +Û +V̂ |Ψ〉. (16)

If n is a density different from the ground-state density n0 in
potential v(r), then the Ψ that produce this n are different from
the ground-state wave function Ψ0, and according to the vari-
ational principle the minimum obtained from Ev[n] is higher
than (or equal to) the ground-state energy Ev,0 = Ev[n0]. Thus,
the functional Ev[n] is minimized by the ground-state density
n0, and its value at the minimum is Ev,0.

The total-energy functional can be written as

Ev[n] = minΨ→n〈Ψ|T̂ +Û |Ψ〉+ ∫
d3r n(r)v(r) =: F [n]+V [n],

(17)
where the internal-energy functional F [n] = minΨ→n〈Ψ|T̂ +

Û |Ψ〉 is independent of the potential v(r), and thus deter-
mined only by the structure of the operators Û and T̂ . This
universality of the internal-energy functional allows us to de-
fine the ground-state wave function Ψ0 as that antisymmet-
ric N-particle function that delivers the minimum of F [n] and
reproduces n0. If the ground state is nondegenerate (for the
case of degeneracy see footnote 12), this double requirement
uniquely determines Ψ0 in terms of n0(r), without having to
specify v(r) explicitly.10

Equations (15) to (17) constitute the constrained-search
proof of the Hohenberg-Kohn theorem, given independently
by M. Levy [22] and E. Lieb [23]. The original proof by Ho-
henberg and Kohn [24] proceeded by assuming that Ψ0 was
not determined uniquely by n0 and showed that this produced
a contradiction to the variational principle. Both proofs, by
constrained search and by contradiction, are elegant and sim-
ple. In fact, it is a bit surprising that it took 38 years from
Schrödinger’s first papers on quantum mechanics [25] to Ho-
henberg and Kohn’s 1964 paper containing their famous the-
orem [24].

Since 1964, the HK theorem has been thoroughly scruti-
nized, and several alternative proofs have been found. One
of these is the so-called ‘strong form of the Hohenberg-Kohn
theorem’, based on the inequality [26–28]

∫
d3r∆n(r)∆v(r) < 0. (18)

10 Note that this is exactly the opposite of the conventional prescrip-
tion to specify the Hamiltonian via v(r), and obtain Ψ0 from solving
Schrödinger’s equation, without having to specify n(r) explicitly.
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Here ∆v(r) is a change in the potential, and ∆n(r) is the result-
ing change in the density. We see immediately that if ∆v 6= 0
we cannot have ∆n(r)≡ 0, i.e., a change in the potential must
also change the density. This observation implies again the
HK theorem for a single density variable: there cannot be
two local potentials with the same ground-state charge den-
sity. A given N-particle ground-state density thus determines
uniquely the corresponding potential, and hence also the wave
function. Moreover, (18) establishes a relation between the
signs of ∆n(r) and ∆v(r): if ∆v is mostly positive, ∆n(r) must
be mostly negative, so that their integral over all space is neg-
ative. This additional information is not immediately avail-
able from the two classic proofs, and is the reason why this is
called the ‘strong’ form of the HK theorem. Equation (18) can
be obtained along the lines of the standard HK proof [26, 27],
but it can be turned into an independent proof of the HK theo-
rem because it can also be derived perturbatively (see section
10.10 of Ref. [28]).

Another alternative argument is valid only for Coulomb po-
tentials. It is based on Kato’s theorem, which states [29, 30]
that for such potentials the electron density has a cusp at the
position of the nuclei, where it satisfies

Zk = − a0

2n(r)
dn(r)

dr

∣∣∣∣
r→Rk

. (19)

Here Rk denotes the positions of the nuclei, Zk their atomic
number, and a0 = ~2/me2 is the Bohr radius. For a Coulomb
system one can thus, in principle, read off all information
necessary for completely specifying the Hamiltonian directly
from examining the density distribution: the integral over n(r)
yields N, the total particle number; the position of the cusps
of n(r) are the positions of the nuclei, Rk; and the deriva-
tive of n(r) at these positions yields Zk by means of Eq. (19).
This is all one needs to specify the complete Hamiltonian of
Eq. (2) (and thus implicitly all its eigenstates). In practice one
almost never knows the density distribution sufficiently well
to implement the search for the cusps and calculate the local
derivatives. Still, Kato’s theorem provides a vivid illustration
of how the density can indeed contain sufficient information
to completely specify a nontrivial Hamiltonian.11

For future reference we now provide a commented sum-
mary of the content of the HK theorem. This summary con-
sists of four statements:

(1) The nondegenerate ground-state (GS) wave function is
a unique functional of the GS density:12

Ψ0(r1,r2 . . . ,rN) = Ψ[n0(r)]. (20)

11 Note that, unlike the full Hohenberg-Kohn theorem, Kato’s theorem does
apply only to superpositions of Coulomb potentials, and can therefore not
be applied directly to the effective Kohn-Sham potential.

12 If the ground state is degenerate, several of the degenerate ground-state
wave functions may produce the same density, so that a unique functional
Ψ[n] does not exist, but by definition these wave functions all yield the
same energy, so that the functional Ev[n] continues to exist and to be mini-
mized by n0. A universal functional F [n] can also still be defined [5].

This is the essence of the HK theorem. As a consequence, the
GS expectation value of any observable Ô is a functional of
n0(r), too:

O0 = O[n0] = 〈Ψ[n0]|Ô|Ψ[n0]〉. (21)

(2) Perhaps the most important observable is the GS energy.
This energy

Ev,0 = Ev[n0] = 〈Ψ[n0]|Ĥ|Ψ[n0]〉, (22)

where Ĥ = T̂ +Û +V̂ , has the variational property13

Ev[n0]≤ Ev[n′], (23)

where n0 is GS density in potential V̂ and n′ is some other
density. This is very similar to the usual variational principle
for wave functions. ¿From a calculation of the expectation
value of a Hamiltonian with a trial wave function Ψ′ that is
not its GS wave function Ψ0 one can never obtain an energy
below the true GS energy,

Ev,0 = Ev[Ψ0] = 〈Ψ0|Ĥ|Ψ0〉 ≤ 〈Ψ′|Ĥ|Ψ′〉= Ev[Ψ′]. (24)

Similarly, in exact DFT, if E[n] for fixed vext is evaluated for
a density that is not the GS density of the system in poten-
tial vext , one never finds a result below the true GS energy.
This is what Eq. (23) says, and it is so important for practi-
cal applications of DFT that it is sometimes called the second
Hohenberg-Kohn theorem (Eq. (21) is the first one, then).

In performing the minimization of Ev[n] the constraint that
the total particle number N is an integer is taken into account
by means of a Lagrange multiplier, replacing the constrained
minimization of Ev[n] by an unconstrained one of Ev[n]−µN.
Since N =

∫
d3rn(r), this leads to

δEv[n]
δn(r)

= µ =
∂E
∂N

, (25)

where µ is the chemical potential.
(3) Recalling that the kinetic and interaction energies of a

nonrelativistic Coulomb system are described by universal op-
erators, we can also write Ev as

Ev[n] = T [n]+U [n]+V [n] = F [n]+V [n], (26)

where T [n] and U [n] are universal functionals [defined as ex-
pectation values of the type (21) of T̂ and Û], independent
of v(r). On the other hand, the potential energy in a given
potential v(r) is the expectation value of Eq. (6),

V [n] =
∫

d3r n(r)v(r), (27)

13 The minimum of E[n] is thus attained for the ground-state density. All
other extrema of this functional correspond to densities of excited states,
but the excited states obtained in this way do not necessarily cover the
entire spectrum of the many-body Hamiltonian [31].
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and obviously nonuniversal (it depends on v(r), i.e., on the
system under study), but very simple: once the system is spec-
ified, i.e., v(r) is known, the functional V [n] is known explic-
itly.

(4) There is a fourth substatement to the HK theorem,
which shows that if v(r) is not hold fixed, the functional V [n]
becomes universal: the GS density determines not only the
GS wave function Ψ0, but, up to an additive constant, also
the potential V = V [n0]. This is simply proven by writing
Schrödinger’s equation as

V̂ = ∑
i

v(ri) = Ek− (T̂ +Û)Ψk

Ψk
, (28)

which shows that any eigenstate Ψk (and thus in particular the
ground state Ψ0 = Ψ[n0]) determines the potential operator V̂
up to an additive constant, the corresponding eigenenergy. As
a consequence, the explicit reference to the potential v in the
energy functional Ev[n] is not necessary, and one can rewrite
the ground-state energy as

E0 = E[n0] = 〈Ψ[n0]|T̂ +Û +V̂ [n0]|Ψ[n0]〉. (29)

Another consequence is that n0 now does determine not only
the GS wave function but the complete Hamiltonian (the op-
erators T̂ and Û are fixed), and thus all excited states, too:

Ψk(r1,r2 . . . ,rN) = Ψk[n0], (30)

where k labels the entire spectrum of the many-body Hamil-
tonian Ĥ.

C. Complications: N and v-representability of densities, and
nonuniqueness of potentials

Originally the fourth statement was considered to be as
sound as the other three. However, it has become clear very
recently, as a consequence of work of H. Eschrig and W. Pick-
ett [32] and, independently, of the author with G. Vignale
[33, 34], that there are significant exceptions to it. In fact,
the fourth substatement holds only when one formulates DFT
exclusively in terms of the charge density, as we have done
up to this point. It does not hold when one works with spin
densities (spin-DFT) or current densities (current-DFT).14 In
these (and some other) cases the densities still determine the
wave function, but they do not uniquely determine the corre-
sponding potentials. This so-called nonuniqueness problem
has been discovered only recently, and its consequences are
now beginning to be explored [27, 32–38]. It is clear, how-
ever, that the fourth substatement is, from a practical point of
view, the least important of the four, and most applications of
DFT do not have to be reconsidered as a consequence of its
eventual failure. (But some do: see Refs. [33, 34] for exam-
ples.)

14 In Section VI we will briefly discuss these formulations of DFT.

Another conceptual problem with the HK theorem, much
better known and more studied than nonuniqueness, is repre-
sentability. To understand what representability is about, con-
sider the following two questions: (i) How does one know,
given an arbitrary function n(r), that this function can be
represented in the form (8), i.e., that it is a density arising
from an antisymmetric N-body wave function Ψ(r1 . . .rN)?
(ii) How does one know, given a function that can be writ-
ten in the form (8), that this density is a ground-state den-
sity of a local potential v(r)? The first of these questions is
known as the N-representability problem, the second is called
v-representability. Note that these are quite important ques-
tions: if one should find, for example, in a numerical calcu-
lation, a minimum of Ev[n] that is not N-representable, then
this minimum is not the physically acceptable solution to the
problem at hand. Luckily, the N-representability problem
of the single-particle density has been solved: any nonneg-
ative function can be written in terms of some antisymmetric
Ψ(r1,r2 . . . ,rN) in the form (8) [39, 40].

No similarly general solution is known for the v-
representability problem. (The HK theorem only guarantees
that there cannot be more than one potential for each den-
sity, but does not exclude the possibility that there is less than
one, i.e., zero, potentials capable of producing that density.)
It is known that in discretized systems every density is en-
semble v-representable, which means that a local potential
with a degenerate ground state can always be found, such
that the density n(r) can be written as linear combination
of the densities arising from each of the degenerate ground
states [41–43]. It is not known if one of the two restrictions
(‘discretized systems’, and ‘ensemble’) can be relaxed in gen-
eral (yielding ‘in continuum systems’ and ‘pure-state’ respec-
tively), but it is known that one may not relax both: there are
densities in continuum systems that are not representable by
a single nondegenerate antisymmetric function that is ground
state of a local potential v(r) [5, 41–43]. In any case, the
constrained search algorithm of Levy and Lieb shows that v-
representability in an interacting system is not required for the
proof of the HK theorem. For the related question of simul-
taneous v-representability in a noninteracting system, which
appears in the context of the Kohn-Sham formulation of DFT,
see footnotes 34 and 35.

D. A preview of practical DFT

After these abstract considerations let us now consider one
way in which one can make practical use of DFT. Assume
we have specified our system (i.e., v(r) is known). Assume
further that we have reliable approximations for U [n] and T [n].
In principle, all one has to do then is to minimize the sum of
kinetic, interaction and potential energies

Ev[n] = T [n]+U [n]+V [n] = T [n]+U [n]+
∫

d3r n(r)v(r)
(31)

with respect to n(r). The minimizing function n0(r) is the sys-
tem’s GS charge density and the value Ev,0 = Ev[n0] is the GS
energy. Assume now that v(r) depends on a parameter a. This
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can be, for example, the lattice constant in a solid or the an-
gle between two atoms in a molecule. Calculation of Ev,0 for
many values of a allows one to plot the curve Ev,0(a) and to
find the value of a that minimizes it. This value, a0, is the GS
lattice constant or angle. In this way one can calculate quan-
tities like molecular geometries and sizes, lattice constants,
unit cell volumes, charge distributions, total energies, etc. By
looking at the change of Ev,0(a) with a one can, moreover,
calculate compressibilities, phonon spectra and bulk moduli
(in solids) and vibrational frequencies (in molecules). By
comparing the total energy of a composite system (e.g., a
molecule) with that of its constituent systems (e.g., individ-
ual atoms) one obtains dissociation energies. By calculating
the total energy for systems with one electron more or less
one obtains electron affinities and ionization energies.15 By
appealing to the Hellman-Feynman theorem one can calculate
forces on atoms from the derivative of the total energy with
respect to the nuclear coordinates. All this follows from DFT
without having to solve the many-body Schrödinger equation
and without having to make a single-particle approximation.
For brief comments on the most useful additional possibility
to also calculate single-particle band structures see Secs. IV B
and IV B 3.

In theory it should be possible to calculate all observables,
since the HK theorem guarantees that they are all functionals
of n0(r). In practice, one does not know how to do this ex-
plicitly. Another problem is that the minimization of Ev[n] is,
in general, a tough numerical problem on its own. And, more-
over, one needs reliable approximations for T [n] and U [n] to
begin with. In the next section, on the Kohn-Sham equations,
we will see one widely used method for solving these prob-
lems. Before looking at that, however, it is worthwhile to
recall an older, but still occasionally useful, alternative: the
Thomas-Fermi approximation.

In this approximation one sets

U [n]≈UH [n] =
q2

2

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′| , (32)

i.e., approximates the full interaction energy by the Hartree
energy, the electrostatic interaction energy of the charge dis-
tribution n(r). One further approximates, initially,

T [n]≈ T LDA[n] =
∫

d3r thom(n(r)), (33)

where thom(n) is the kinetic-energy density of a homogeneous
interacting system with (constant) density n. Since it refers to
interacting electrons thom(n) is not known explicitly, and fur-
ther approximations are called for. As it stands, however, this

15 Electron affinities are typically harder to obtain than ionization energies,
because within the local-density and generalized-gradient approximations
the N + 1’st electron is too weakly bound or even unbound: the asymp-
totic effective potential obtained from these approximations decays expo-
nentially, and not as 1/r, i.e., it approaches zero so fast that binding of
negative ions is strongly suppressed. Self-interaction corrections or other
fully nonlocal functionals are needed to improve this behaviour.

formula is already a first example of a local-density approx-
imation (LDA). In this type of approximation one imagines
the real inhomogeneous system (with density n(r) in poten-
tial v(r)) to be decomposed in small cells in each of which
n(r) and v(r) are approximately constant. In each cell (i.e.,
locally) one can then use the per-volume energy of a homo-
geneous system to approximate the contribution of the cell to
the real inhomogeneous one. Making the cells infinitesimally
small and summing over all of them yields Eq. (33).

For a noninteracting system (specified by subscript s, for
‘single-particle’) the function thom

s (n) is known explicitly,
thom
s (n) = 3~2(3π2)2/3n5/3/(10m) (see also Sec. V A). This

is exploited to further approximate

T [n]≈ T LDA[n]≈ T LDA
s [n] =

∫
d3r thom

s (n(r)), (34)

where T LDA
s [n] is the local-density approximation to Ts[n],

the kinetic energy of noninteracting electrons of density n.
Equivalently, it may be considered the noninteracting version
of T LDA[n]. (The quantity Ts[n] will reappear below, in dis-
cussing the Kohn-Sham equations.) The Thomas-Fermi ap-
proximation16 then consists in combining (32) and (34) and
writing

E[n] = T [n]+U [n]+V [n]≈ET F [n] = T LDA
s [n]+UH [n]+V [n].

(35)
A major defect of the Thomas-Fermi approximation is that
within it molecules are unstable: the energy of a set of isolated
atoms is lower than that of the bound molecule. This funda-
mental deficiency, and the lack of accuracy resulting from ne-
glect of correlations in (32) and from using the local approxi-
mation (34) for the kinetic energy, limit the practical use of the
Thomas-Fermi approximation in its own right. However, it is
found a most useful starting point for a large body of work on
improved approximations in chemistry and physics [12, 30].
More recent approximations for T [n] can be found, e.g., in
Refs. [45–47], in the context of orbital-free DFT. The exten-
sion of the local-density concept to the exchange-correlation
energy is at the heart of many modern density functionals (see
Sec. V A).

E. From wave functions to density functionals via Green’s
functions and density matrices

It is a fundamental postulate of quantum mechanics that the
wave function contains all possible information about a sys-
tem in a pure state at zero temperature, whereas at nonzero

16 The Thomas-Fermi approximation for screening, discussed in many books
on solid-state physics, is obtained by minimizing ET F [n] with respect to n
and linearizing the resulting relation between v(r) and n(r). It thus in-
volves one more approximation (the linearization) compared to what is
called the Thomas-Fermi approximation in DFT [44]. In two dimensions
no linearization is required and both become equivalent [44].
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temperature this information is contained in the density ma-
trix of quantum statistical mechanics. Normally, this is much
more information that one can handle: for a system with
N = 100 particles the many-body wave function is an ex-
tremely complicated function of 300 spatial and 100 spin17

variables that would be impossible to manipulate algebraically
or to extract any information from, even if it were possible to
calculate it in the first place. For this reason one searches for
less complicated objects to formulate the theory. Such ob-
jects should contain the experimentally relevant information,
such as energies, densities, etc., but do not need to contain
explicit information about the coordinates of every single par-
ticle. One class of such objects are Green’s functions, which
are described in the next subsection, and another are reduced
density matrices, described in the subsection III E 2. Their re-
lation to the wave function and the density is summarized in
Fig. 1.

1. Green’s functions

Readers with no prior knowledge of (or no interest in)
Green’s functions should skip this subsection, which is not
necessary for understanding the following sections.

In mathematics one usually defines the Green’s function of
a linear operator L via [z−L(r)]G(x,x′;z) = δ(x− x′), where
δ(x−x′) is Dirac’s delta function. For a single quantum parti-
cle in potential v(r) one has, for example,

[
E +

~2∇2

2m
− v(r)

]
G(0)(r,r′;E) = ~δ(r− r′). (36)

Many applications of such single-particle Green’s functions
are discussed in Ref. [21]. In many-body physics it is useful
to also introduce more complicated Green’s functions. In an
interacting system the single-particle Green’s function is mod-
ified by the presence of the interaction between the particles.18

In general it now satisfies the equation19

[
i~

∂
∂t

+
~2∇2

2m
− v(r)

]
G(r, t;r′, t ′) = ~δ(r− r′)δ(t− t ′)

−i
∫

d3xU(r−x)G(2)(rt,xt;r′t ′,xt+),(37)

where G(2)(rt,xt;r′t ′,xt+) is the two-particle Green’s func-
tion [21, 48]. Only for noninteracting systems (U = 0) is

17 To keep the notation simple, spin labels are either ignored or condensed
into a common variable x := (rs) in most of this text. They will only be put
back explicitly in discussing spin-density-functional theory, in Sec. VI.

18 Note that expressions like ‘two-particle operator’ and ‘single-particle
Green’s function’ refer to the number of particles involved in the defini-
tion of the operator (two in the case of an interaction, one for a potential
energy, etc.), not to the total number of particles present in the system.

19 When energy is conserved, i.e., the Hamiltonian does not depend on time,
G(r, t;r′, t ′) depends on time only via the difference t− t ′ and can be writ-
ten as G(r,r′; t− t ′). By Fourier transformation with respect to t− t ′ one
then passes from G(r,r′; t− t ′) to G(r,r′;E) of Eq. (36).

G(r, t;r′, t ′) a Green’s function in the mathematical sense of
the word. In terms of G(r, t;r′, t ′) one can explicitly express
the expectation value of any single-body operator (such as the
potential, the kinetic energy, the particle density, etc.), and
also that of certain two-particle operators, such as the Hamil-
tonian in the presence of particle-particle interactions.20

One way to obtain the single-particle Green’s function is
via solution of what is called Dyson’s equation [21, 48, 49],

G(r, t;r′, t ′) = G(0)(r, t;r′, t ′)

+
∫

d3x
∫

d3x′
∫

d3τ
∫

d3τ′G(0)(r, t;x,τ)

Σ(x,τ,x′,τ′)G(x′,τ′;r′, t ′), (38)

where Σ is known as the irreducible self energy [21, 48, 49]
and G(0) is the Green’s function in the absence of any interac-
tion. This equation (which we will not attempt to solve here)
has a characteristic property that we will meet again when we
study the (much simpler) Kohn-Sham and Hartree-Fock equa-
tions, in Sec. IV: the integral on the right-hand side, which
determines G on the left-hand side, depends on G itself. The
mathematical problem posed by this equation is thus nonlin-
ear. We will return to such nonlinearity when we discuss self-
consistent solution of the Kohn-Sham equation. The quantity
Σ will appear again in Sec. IV B 3 when we discuss the mean-
ing of the eigenvalues of the Kohn-Sham equation.

The single-particle Green’s function is related to the irre-
ducible self energy by Dyson’s equation (38) and to the two-
particle Green’s function by the equation of motion (37). It
can also be related to the xc potential of DFT by the Sham-
Schlüter equation [50]

∫
d3r′vxc(r)

∫
ωGs(r,r′;ω)G(r′,r;ω) =

∫
d3r′

∫
d3r′′

∫
ωGs(r,r′;ω)Σxc(r′,r′′;ω)G(yr′′,r;ω), (39)

where Gs is the Green’s function of noninteracting particles
with density n(r) (i.e., the Green’s function of the Kohn-Sham
equation, see Sec. IV B), and Σxc(r′,r′′;ω) = Σ(r′,r′′;ω)−
δ(r′ − r′′)vH(r′) represents all contributions to the full irre-
ducible self energy beyond the Hartree potential.

A proper discussion of Σ and G requires a formalism known
as second quantization [21, 48] and usually proceeds via in-
troduction of Feynman diagrams. These developments are be-
yond the scope of the present overview. A related concept,
density matrices, on the other hand, can be discussed easily.
The next section is devoted to a brief description of some im-
portant density matrices.

20 For arbitrary two-particle operators one needs the full two-particle Green’s
function G(2).
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2. Density matrices

For a general quantum system at temperature T , the density
operator in a canonical ensemble is defined as

γ̂ =
exp−βĤ

Tr[exp−βĤ ]
, (40)

where Tr[·] is the trace and β = 1/(kBT ). Standard textbooks
on statistical physics show how this operator is obtained in
other ensembles, and how it is used to calculate thermal and
quantum expectation values. Here we focus on the relation to
density-functional theory. To this end we write γ̂ in the energy
representation as

γ̂ = ∑i exp−βEi |Ψi〉〈Ψi|
∑i exp−βEi

, (41)

where |Ψi〉 is eigenfunction of Ĥ, and the sum is over the
entire spectrum of the system, each state being weighted by
its Boltzmann weight exp−βEi . At zero temperature only the
ground-state contributes to the sums, so that

γ̂ = |Ψi〉〈Ψi|. (42)

The coordinate-space matrix element of this operator for an
N-particle system is

〈x1,x2, ..xN |γ̂|x′1,x′2, ..x′N〉 = Ψ(x1,x2, ..xN)∗Ψ(x′1,x
′
2, ..x

′
N)

=: γ(x1,x2, ..xN ;x′1,x
′
2, ..x

′
N), (43)

which shows the connection between the density matrix and
the wave function. (We use the usual abbreviation x = rs
for space and spin coordinates.) The expectation value of a
general N-particle operator Ô is obtained from O = 〈Ô〉 =∫

dx1
∫

dx2...
∫

dxNΨ(x1,x2, ..xN)∗ÔΨ(x1,x2, ..xN), which for
multiplicative operators becomes

〈Ô〉=
∫

dx1

∫
dx2...

∫
dxN Ôγ(x1,x2, ..xN ;x1,x2, ..xN) (44)

and involves only the function γ(x1,x2, ..xN ;x1,x2, ..xN),
which is the diagonal element of the matrix γ. Most operators
we encounter in quantum mechanics are one or two-particle
operators and can be calculated from reduced density matri-
ces, that depend on less than 2N variables.21 The reduced
two-particle density matrix is defined as

γ2(x1,x2;x′1,x
′
2) =

N(N−1)
2

∫
dx3

∫
dx4...

∫
dxNγ(x1,x2,x3,x4, ..xN ;x′1,x

′
2,x3,x4, ..xN), (45)

21 Just as for Green’s functions, expressions like ‘two-particle operator’ and
‘two-particle density matrix’ refer to the number of particles involved in
the definition of the operator (two in the case of an interaction, one for a
potential energy, etc.), not to the total number of particles present in the
system.

where N(N − 1)/2 is a convenient normalization factor.
This density matrix determines the expectation value of
the particle-particle interaction, of static correlation and re-
sponse functions, of the xc hole, and some related quanti-
ties. The pair-correlation function g(x,x′), e.g., is obtained
from the diagonal element of γ2(x1,x2;x′1,x

′
2) according to

γ2(x1,x2;x1,x2) =: n(x1)n(x2)g(x,x′).
Similarly, the single-particle density matrix is defined as

γ(x1,x′1) = N
∫

dx2

∫
dx3

∫
dx4...

∫
dxNγ(x1,x2,x3,x4, ..xN ;x′1,x2,x3,x4, ..xN)

= N
∫

dx2

∫
dx3

∫
dx4...

∫
dxNΨ∗(x1,x2,x3, ..,xN)Ψ(x′1,x2,x3, ..,xN). (46)

The structure of reduced density matrices is quite simple: all
coordinates that γ does not depend upon are set equal in Ψ
and Ψ∗, and integrated over. The single-particle density ma-
trix can also be considered the time-independent form of the
single-particle Green’s function, since it can alternatively be
obtained from

γ(x,x′) =−i lim
t ′→t

G(x,x′; t− t ′). (47)

In the special case that the wave function Ψ is a Slater deter-
minant, i.e., the wave function of N noninteracting fermions,
the single-particle density matrix can be written in terms of
the orbitals comprising the determinant, as

γ(x,x′) = ∑
j

φ∗j(x)φ j(x′), (48)

which is known as the Dirac (or Dirac-Fock) density matrix.
The usefulness of the single-particle density matrix be-

comes apparent when we consider how one would calculate
the expectation value of a multiplicative single-particle oper-
ator Â = ∑N

i a(ri) (such as the potential V̂ = ∑N
i v(ri)):

〈Â〉 =
∫

dx1 . . .
∫

dxN Ψ∗(x1,x2, ..,xN)
[

N

∑
i

a(xi)

]
Ψ(x1,x2, ..,xN) (49)

= N
∫

dx1 . . .
∫

dxN Ψ∗(x1,x2, ..,xN)

a(x1)Ψ(x1,x2, ..,xN) (50)

=
∫

dxa(x)γ(x,x), (51)

which is a special case of Eq. (44). The second line follows
from the first by exploiting that the fermionic wave function
Ψ changes sign upon interchange of two of its arguments. The
last equation implies that if one knows γ(x,x) one can calcu-
late the expectation value of any multiplicative single-particle
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operator in terms of it, regardless of the number of particles
present in the system.22 The simplification is enormous, and
reduced density matrices are very popular in, e.g., computa-
tional chemistry for precisely this reason. More details are
given in, e.g., Ref. [6]. The full density operator, Eq. (40), on
the other hand, is the central quantity of quantum statistical
mechanics.

It is not possible to express expectation values of two-
particle operators, such as the interaction itself, or the full
Hamiltonian (i.e., the total energy), explicitly in terms of the
single-particle density matrix γ(r,r′). For this purpose one
requires the two-particle density matrix. This situation is to
be contrasted with that of the single-particle Green’s function,
for which one knows how to express the expectation values of
Û and Ĥ [21, 48]. Apparently, some information has gotten
lost in passing from G to γ. This can also be seen very clearly
from Eq. (47), which shows that information on the dynamics
of the system, which is contained in G, is erased in the defini-
tion of γ(r,r′). Explicit information on the static properties of
the system is contained in the N-particle density matrix, but as
seen from (45) and (46), a large part of this information is also
lost (’integrated out’) in passing from the N-particle density
matrix to the reduced two- or one-particle density matrices.

Apparently even less information is contained in the parti-
cle density23 n(r), which is obtained by summing the diagonal
element of γ(x,x′) over the spin variable,

n(r) = ∑
s

γ(rs,rs). (52)

This equation follows immediately from comparing (8) with
(46). We can define an alternative density operator, n̂, by re-
quiring that the same equation must also be obtained by sub-
stituting n̂(r) into Eq. (51), which holds for any single-particle
operator. This requirement implies that n̂(r) = ∑N

i δ(r−ri).24

The particle density is an even simpler function than
γ(x,x′): it depends on one set of coordinates x only, it can
easily be visualized as a three-dimensional charge distribu-
tion, and it is directly accessible in experiments. These advan-
tages, however, seem to be more than compensated by the fact
that one has integrated out an enormous amount of specific
information about the system in going from wave functions to
Green’s functions, and on to density matrices and finally the
density itself. This process is illustrated in Fig. 1.

The great surprise of density-functional theory is that in
fact no information has been lost at all, at least as long as
one considers the system only in its ground state: accord-
ing to the Hohenberg-Kohn theorem the ground-state density

22 For nonmultiplicative single-particle operators (such as the kinetic energy,
which contains a derivative) one requires the full single-particle matrix
γ(x,x′) and not only γ(x,x).

23 A quantitative estimate of how much less information is apparently con-
tained in the density than in the wave function is given in footnote 6.

24 The expectation value of n̂ is the particle density, and therefore n̂ is often
also called the density operator. This concept must not be confused with
any of the various density matrices or the density operator of statistical
physics, Eq. (40).

FIG. 1: Information on the time-and-space dependent wave func-
tion Ψ(x1,x2 . . . ,xN , t) is built into Green’s functions, and on the
time-independent wave function into density matrices. Integrating
out degrees of freedom reduces the N-particle Green’s function and
N-particle density matrix to the one-particle quantities G(x1,x2; t)
and γ(x1,x2) described in the main text. The diagonal element of
the one-particle density matrix is the ordinary charge density — the
central quantity in DFT. The Hohenberg-Kohn theorem and its time-
dependent generalization (the Runge-Gross theorem) guarantee that
the densities contain exactly the same information as the wave func-
tions.

n0(x) completely determines the ground-state wave function
Ψ0(x1,x2 . . . ,xN).25

Hence, in the ground state, a function of one variable is
equivalent to a function of N variables! This property shows
that we have only integrated out explicit information on our
way from wave functions via Green’s functions and density
matrices to densities. Implicitly all the information that was
contained in the ground-state wave function is still contained
in the ground-state density. Part of the art of practical DFT is
how to get this implicit information out, once one has obtained
the density!

IV. DFT AS AN EFFECTIVE SINGLE-BODY THEORY:
THE KOHN-SHAM EQUATIONS

Density-functional theory can be implemented in many
ways. The minimization of an explicit energy functional, dis-
cussed up to this point, is not normally the most efficient
among them. Much more widely used is the Kohn-Sham
approach. Interestingly, this approach owes its success and
popularity partly to the fact that it does not exclusively work
in terms of the particle (or charge) density, but brings a spe-
cial kind of wave functions (single-particle orbitals) back into

25 The Runge-Gross theorem, which forms the basis of time-dependent DFT
[51], similarly guarantees that the time-dependent density contains the
same information as the time-dependent wave function.
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the game. As a consequence DFT then looks formally like a
single-particle theory, although many-body effects are still in-
cluded via the so-called exchange-correlation functional. We
will now see in some detail how this is done.

A. Exchange-correlation energy: definition, interpretation and
exact properties

1. Exchange-correlation energy

The Thomas-Fermi approximation (34) for T [n] is not very
good. A more accurate scheme for treating the kinetic-energy
functional of interacting electrons, T [n], is based on decom-
posing it into one part that represents the kinetic energy of
noninteracting particles of density n, i.e., the quantity called
above Ts[n], and one that represents the remainder, denoted
Tc[n] (the subscripts s and c stand for ‘single-particle’ and
‘correlation’, respectively).26

T [n] = Ts[n]+Tc[n]. (53)

Ts[n] is not known exactly as a functional of n [and using the
LDA to approximate it leads one back to the Thomas-Fermi
approximation (34)], but it is easily expressed in terms of the
single-particle orbitals φi(r) of a noninteracting system with
density n, as

Ts[n] =− ~
2

2m

N

∑
i

∫
d3r φ∗i (r)∇

2φi(r), (54)

because for noninteracting particles the total kinetic energy
is just the sum of the individual kinetic energies. Since all
φi(r) are functionals of n, this expression for Ts is an explicit
orbital functional but an implicit density functional, Ts[n] =
Ts[{φi[n]}], where the notation indicates that Ts depends on the
full set of occupied orbitals φi, each of which is a functional of
n. Other such orbital functionals will be discussed in Sec. V.

We now rewrite the exact energy functional as

E[n] = T [n]+U [n]+V [n] = Ts[{φi[n]}]+UH [n]+Exc[n]+V [n],
(55)

where by definition Exc contains the differences T −Ts (i.e.
Tc) and U −UH . This definition shows that a significant part
of the correlation energy Ec is due to the difference Tc be-
tween the noninteracting and the interacting kinetic energies.
Unlike Eq. (35), Eq. (55) is formally exact, but of course Exc
is unknown — although the HK theorem guarantees that it
is a density functional. This functional, Exc[n], is called the
exchange-correlation (xc) energy. It is often decomposed as
Exc = Ex +Ec, where Ex is due to the Pauli principle (exchange

26 Ts is defined as the expectation value of the kinetic-energy operator T̂ with
the Slater determinant arising from density n, i.e., Ts[n] = 〈Φ[n]|T̂ |Φ[n]〉.
Similarly, the full kinetic energy is defined as T [n] = 〈Ψ[n]|T̂ |Ψ[n]〉. All
consequences of antisymmetrization (i.e., exchange) are described by em-
ploying a determinantal wave function in defining Ts. Hence, Tc, the dif-
ference between Ts and T is a pure correlation effect.

energy) and Ec is due to correlations. (Tc is then a part of Ec.)
The exchange energy can be written explicitly in terms of the
single-particle orbitals as27

Ex[{φi[n]}] =− q2

2 ∑ jk
∫

d3r
∫

d3r′
φ∗j (r)φ∗k(r′)φ j(r′)φk(r)

|r−r′| , (56)

which is known as the Fock term, but no general exact expres-
sion in terms of the density is known.

2. Different perspectives on the correlation energy

For the correlation energy no general explicit expression is
known, neither in terms of orbitals nor densities. Different
ways to understand correlations are described below.

Correlation energy: variational approach. A simple way to
understand the origin of correlation is to recall that the Hartree
energy is obtained in a variational calculation in which the
many-body wave function is approximated as a product of
single-particle orbitals. Use of an antisymmetrized product
(a Slater determinant) produces the Hartree and the exchange
energy [48, 49]. The correlation energy is then defined as the
difference between the full ground-state energy (obtained with
the correct many-body wave function) and the one obtained
from the (Hartree-Fock or Kohn-Sham28) Slater determinant.
Since it arises from a more general trial wave function than a
single Slater determinant, correlation cannot raise the total en-
ergy, and Ec[n] ≤ 0. Since a Slater determinant is itself more
general than a simple product we also have Ex ≤ 0, and thus
the upper bound29 Exc[n]≤ 0.

Correlation energy: probabilistic approach. Recalling the
quantum mechanical interpretation of the wave function as
a probability amplitude, we see that a product form of the
many-body wave function corresponds to treating the prob-
ability amplitude of the many-electron system as a product
of the probability amplitudes of individual electrons (the or-
bitals). Mathematically, the probability of a composed event
is only equal to the probability of the individual events if the
individual events are independent (i.e., uncorrelated). Physi-
cally, this means that the electrons described by the product
wave function are independent.30 Such wave functions thus
neglect the fact that, as a consequence of the Coulomb inter-
action, the electrons try to avoid each other. The correlation

27 This differs from the exchange energy used in Hartree-Fock theory only
in the substitution of Hartree-Fock orbitals φHF

i (r) by Kohn-Sham orbitals
φi(r).

28 The Hartree-Fock and the Kohn-Sham Slater determinants are not identical,
since they are composed of different single-particle orbitals, and thus the
definition of exchange and correlation energy in DFT and in conventional
quantum chemistry is slightly different [52].

29 A lower bound is provided by the Lieb-Oxford formula, given in Eq. (64).
30 Correlation is a mathematical concept describing the fact that certain events

are not independent. It can be defined also in classical physics, and in
applications of statistics to other fields than physics. Exchange is due to the
indistinguishability of particles, and a true quantum phenomenon, without
any analogue in classical physics.
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energy is simply the additional energy lowering obtained in
a real system due to the mutual avoidance of the interacting
electrons. One way to characterize a strongly correlated sys-
tem is to define correlations as strong when Ec is comparable
in magnitude to, or larger than, other energy contributions,
such as EH or Ts. (In weakly correlated systems Ec normally
is several orders of magnitude smaller.)31

Correlation energy: beyond mean-field approach. A rather
different (but equivalent) way to understand correlation is to
consider the following alternative form of the operator repre-
senting the Coulomb interaction, equivalent to Eq. (3),

Û =
q2

2

∫
d3r

∫
d3r′

n̂(r)n̂(r′)− n̂(r)δ(r− r′)
|r− r′| , (57)

in which the operator character is carried only by the den-
sity operators n̂ (in occupation number representation), and
the term with the delta function subtracts out the interaction
of a charge with itself (cf., e.g., the appendix of Ref. [53]
for a simple derivation of this form of Û). The expectation
value of this operator, U = 〈Ψ|Û |Ψ〉, involves the expecta-
tion value of a product of density operators, 〈Ψ|n̂(r)n̂(r′)|Ψ〉.
In the Hartree term (32), on the other hand, this expectation
value of a product is replaced by a product of expectation val-
ues, each of the form n(r) = 〈Ψ|n̂(r)|Ψ〉. This replacement
amounts to a mean-field approximation, which neglects quan-
tum fluctuations32 about the expectation values: by writing
n̂ = n+δn̂ f luc and substituting in Eq. (57) we see that the dif-
ference between 〈Ψ|Û |Ψ〉 and the Hartree term (32) is entirely
due to the fluctuations δn̂ f luc and the self-interaction correc-
tion to the Hartree term. Quantum fluctuations about the ex-
pectation value are thus at the origin of quantum correlations
between interacting particles.

Correlation energy: holes. The fact that both exchange
and correlation tend to keep electrons apart, has given rise
to the concept of an xc hole, nxc(r,r′), describing the reduc-
tion of probability for encountering an electron at r′, given
one at r. The xc energy can be written as a Hartree-like in-
teraction between the charge distribution n(r) and the xc hole
nxc(r,r′) = nx(r,r′)+nc(r,r′),

Exc[n] =
q2

2

∫
d3r

∫
d3r′

n(r)nxc(r,r′)
|r− r′| , (58)

which defines nxc. The exchange component Ex[n] of the exact
exchange-correlation functional describes the energy lower-

31 Other characterizations of strongly correlated systems are to compare the
width of the conduction band in a solid with the kinetic energy (if the
band width is smaller, correlations are strong), or the quasiparticle ener-
gies ε̃i with the Kohn-Sham eigenvalues εi (if both are similar, correlations
are weak, see footnote 37), or the derivative discontinuity ∆xc, defined in
Eq. (65), with the Kohn-Sham energy gap (if the former is comparable to
or larger than the latter, correlations are strong). (The meaning of ε̃i, εi and
∆xc is explained below.) No universally applicable definition of ‘strong
correlations’ seems to exist.

32 At finite temperature there are also thermal fluctuations. To properly in-
clude these one must use a finite-temperature formulation of DFT [54]. See
also the contribution of B. L. Gyorffy et al. in Ref. [19] for DFT treatment
of various types of fluctuations.

ing due to antisymmetrization (i.e., the tendency of like-spin
electrons to avoid each other). It gives rise to the exchange
hole nx(r,r′), which obeys the sum rule

∫
d3r′ nx(r,r′) =

−1. The correlation component Ec[n] accounts for the ad-
ditional energy lowering arising because electrons with op-
posite spins also avoid each other. The resulting correla-
tion hole integrates to zero, so that the total xc hole satis-
fies

∫
d3r′ nxc(r,r′) = −1. The xc hole can also be writ-

ten as nxc(r,r′) = n(r′)(ḡ[n](r,r′)− 1), where ḡ is the av-
erage of the pair-correlation function g(r,r′), mentioned in
Sec. III E 2, over all values of the particle-particle interaction,
from zero (KS system) to 〈Û〉 (interacting system). This av-
erage is simply expressed in terms of the coupling constant
α as ḡ(r,r′) =

∫ 1
0 gα(r,r′)dα. For the Coulomb interaction,

α = e2, i.e., the square of the electron charge [5, 6].

3. Exact properties

Clearly Ec is an enormously complex object, and DFT
would be of little use if one had to know it exactly for mak-
ing calculations. The practical advantage of writing E[n] in
the form Eq. (55) is that the unknown functional Exc[n] is
typically much smaller than the known terms Ts, UH and V .
One can thus hope that reasonably simple approximations for
Exc[n] provide useful results for E[n]. Some successful ap-
proximations are discussed in Sec. V. Exact properties, such
as the sum rule

∫
d3r′nxc(r,r′) =−1, described in the preced-

ing section, are most valuable guides in the construction of
approximations to Exc[n].

Among the known properties of this functional are the co-
ordinate scaling conditions first obtained by Levy and Perdew
[55]

Ex[nλ] = λEx[n] (59)
Ec[nλ] > λEc[n] forλ > 1 (60)
Ec[nλ] < λEc[n] forλ < 1, (61)

where nλ(r) = λ3n(λr) is a scaled density integrating to total
particle number N.

Another important property of the exact functional is the
one-electron limit

Ec[n(1)] ≡ 0 (62)

Ex[n(1)] ≡ −EH [n(1)], (63)

where n(1) is a one-electron density. These latter two condi-
tions, which are satisfied within the Hartree-Fock approxima-
tion, but not by standard local-density and gradient-dependent
functionals, ensure that there is no artificial self-interaction of
one electron with itself.

The Lieb-Oxford bound [56, 57],

Ex[n]≥ Exc[n]≥−1.68e2
∫

d3r n(r)4/3, (64)

establishes a lower bound on the xc energy, and is satisfied by
LDA and many (but not all) GGAs.
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One of the most intriguing properties of the exact func-
tional, which has resisted all attempts of describing it in lo-
cal or semilocal approximations, is the derivative discontinu-
ity of the xc functional with respect to the total particle number
[50, 58, 59],

δExc[n]
δn(r)

∣∣∣∣
N+δ

− δExc[n]
δn(r)

∣∣∣∣
N−δ

= v+
xc(r)− v−xc(r) = ∆xc, (65)

where δ is an infinitesimal shift of the electron number N,
and ∆xc is a system-dependent, but r-independent shift of the
xc potential vxc(r) as it passes from the electron-poor to the
electron-rich side of integer N. The noninteracting kinetic-
energy functional has a similar discontinuity, given by

δTs[n]
δn(r)

∣∣∣∣
N+δ

− δTs[n]
δn(r)

∣∣∣∣
N−δ

= εN+1− εN = ∆KS, (66)

where εN and εN+1 are the Kohn-Sham (KS) single-particle
energies of the highest occupied and lowest unoccupied eigen-
state. The meaning of these KS eigenvalues is discussed in the
paragraphs following Eq. (75) and illustrated in Fig. 2. In the
chemistry literature these are called the HOMO (highest occu-
pied molecular orbital) and LUMO (lowest unoccupied mole-
cular orbital), respectively. The kinetic-energy discontinuity
is thus simply the KS single-particle gap ∆KS, or HOMO-
LUMO gap, whereas the xc discontinuity ∆xc is a many-body
effect. The true fundamental gap ∆ = E(N +1)+E(N−1)−
2E(N) is the discontinuity of the total ground-state energy
functional [5, 50, 58, 59],

∆ = δE[n]
δn(r)

∣∣∣
N+δ

− δE[n]
δn(r)

∣∣∣
N−δ

= ∆KS +∆xc. (67)

Since all terms in E other than Exc and Ts are continuous func-
tionals of n(r), the fundamental gap is the sum of the KS gap
and the xc discontinuity. Standard density functionals (LDA
and GGA) predict ∆xc = 0, and thus often underestimate the
fundamental gap. The fundamental and KS gaps are also il-
lustrated in Fig. 2.

All these properties serve as constraints or guides in the
construction of approximations for the functionals Ex[n] and
Ec[n]. Many other similar properties are known. A useful
overview of scaling properties is the contribution of M. Levy
in Ref. [19].

B. Kohn-Sham equations

1. Derivation of the Kohn-Sham equations

Since Ts is now written as an orbital functional one can-
not directly minimize Eq. (55) with respect to n. Instead, one
commonly employs a scheme suggested by Kohn and Sham
[60] for performing the minimization indirectly. This scheme
starts by writing the minimization as

0 =
δE[n]
δn(r)

=
δTs[n]
δn(r)

+
δV [n]
δn(r)

+
δUH [n]
δn(r)

+
δExc[n]
δn(r)

=
δTs[n]
δn(r)

+ v(r)+ vH(r)+ vxc(r). (68)

As a consequence of Eq. (27), δV/δn = v(r), the ‘external’
potential the electrons move in.33 The term δUH/δn simply
yields the Hartree potential, introduced in Eq. (11). For the
term δExc/δn, which can only be calculated explicitly once an
approximation for Exc has been chosen, one commonly writes
vxc. By means of the Sham-Schlüter equation (39), vxc is re-
lated to the irreducible self energy Σ, introduced in Eq. (38)
[50].

Consider now a system of noninteracting particles moving
in the potential vs(r). For this system the minimization condi-
tion is simply

0 =
δEs[n]
δn(r)

=
δTs[n]
δn(r)

+
δVs[n]
δn(r)

=
δTs[n]
δn(r)

+ vs(r), (69)

since there are no Hartree and xc terms in the absence of in-
teractions. The density solving this Euler equation is ns(r).
Comparing this with Eq. (68) we find that both minimizations
have the same solution ns(r)≡ n(r), if vs is chosen to be

vs(r) = v(r)+ vH(r)+ vxc(r). (70)

Consequently, one can calculate the density of the interacting
(many-body) system in potential v(r), described by a many-
body Schrödinger equation of the form (2), by solving the
equations of a noninteracting (single-body) system in poten-
tial vs(r).34

In particular, the Schrödinger equation of this auxiliary sys-
tem,

[
−~2∇2

2m + vs(r)
]

φi(r) = εiφi(r), (71)

yields orbitals that reproduce the density n(r) of the original
system (these are the same orbitals employed in Eq. (54)),

n(r)≡ ns(r) = ∑N
i fi |φi(r)|2, (72)

where fi is the occupation of the i’th orbital.35 Eqs. (70) to
(72) are the celebrated Kohn-Sham (KS) equations. They re-
place the problem of minimizing E[n] by that of solving a

33 This potential is called ‘external’ because it is external to the electron sys-
tem and not generated self-consistently from the electron-electron interac-
tion, as vH and vxc. It comprises the lattice potential and any additional
truly external field applied to the system as a whole.

34 The question whether such a potential vs(r) always exists in the mathe-
matical sense is called the noninteracting v-representability problem. It
is known that every interacting ensemble v-representable density is also
noninteracting ensemble v-representable, but, as mentioned in Sec. III B,
only in discretized systems has it been proven that all densities are inter-
acting ensemble v-representable. It is not known if interacting ensemble-
representable densities may be noninteracting pure-state representable (i.e,
by a single determinant), which would be convenient (but is not necessary)
for Kohn-Sham calculations.

35 Normally, the occupation numbers fi follows an Aufbau principle (Fermi
statistics) with fi = 1 for i < N, fi = 0 for i > N, and 0 ≤ fi ≤ 1 for
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noninteracting Schrödinger equation. (Recall that the mini-
mization of E[n] originally replaced the problem of solving
the many-body Schrödinger equation!)

Since both vH and vxc depend on n, which depends on the
φi, which in turn depend on vs, the problem of solving the
KS equations is a nonlinear one, just as is the one of solving
the (much more complicated) Dyson equation (38). The usual
way of solving such problems is to start with an initial guess
for n(r), calculate the corresponding vs(r), and then solve the
differential equation (71) for the φi. ¿From these one calcu-
lates a new density, using (72), and starts again. The process
is repeated until it converges. The technical name for this pro-
cedure is ‘self-consistency cycle’. Different convergence cri-
teria (such as convergence in the energy, the density, or some
observable calculated from these) and various convergence-
accelerating algorithms (such as mixing of old and new ef-
fective potentials) are in common use. Only rarely it requires
more than a few dozen iterations to achieve convergence, and
even rarer are cases where convergence seems unattainable,
i.e., a self-consistent solution of the KS equation cannot be
found.

Once one has a converged solution n0, one can calculate
the total energy from Eq. (55) or, equivalently and more con-
veniently, from36

E0 = ∑N
i εi− q2

2
∫

d3r
∫

d3r′ n0(r)n0(r′)
|r−r′| − ∫

d3r vxc(r)n0(r)+Exc[n0].

(73)
Equation (73) follows from writing V [n] in (55) by means of

(70) as

V [n] =
∫

d3r v(r)n(r) =
∫

d3r [vs(r)− vH(r)− vxc(r)]n(r) (74)

= Vs[n]−
∫

d3r [vH(r)+ vxc(r)]n(r), (75)

and identifying the energy of the noninteracting (Kohn-Sham)
system as Es = ∑N

i εi = Ts +Vs.

i = N (i.e., at most the highest occupied orbital can have fractional oc-
cupation). Some densities that are not noninteracting v-representable by a
single ground-state Slater determinant, may still be obtained from a sin-
gle determinant if one uses occupation numbers fi that leave holes below
the HOMO (the Fermi energy in a metal), so that fi 6= 1 even for some
i < N [31], but this is not guaranteed to describe all possible densities. Al-
ternatively (see Sec. III B and footnote 34) a Kohn-Sham equation may
be set up in terms of ensembles of determinants. This guarantees nonin-
teracting v-representability for all densities that are interacting ensemble
v-representable. For practical KS calculations, the most important conse-
quence of the fact that not every arbitrary density is guaranteed to be non-
interacting v-representable is that the Kohn-Sham selfconsistency cycle is
not guaranteed to converge.

36 All terms on the right-hand side of (73) except for the first, involving
the sum of the single-particle energies, are sometimes known as double-
counting corrections, in analogy to a similar equation valid within Hartree-
Fock theory.

2. The eigenvalues of the Kohn-Sham equation

Equation (73) shows that E0 is not simply the sum37 of all
εi. In fact, it should be clear from our derivation of Eq. (71)
that the εi are introduced as completely artificial objects:
they are the eigenvalues of an auxiliary single-body equation
whose eigenfunctions (orbitals) yield the correct density. It
is only this density that has strict physical meaning in the KS
equations. The KS eigenvalues, on the other hand, in general
bear only a semiquantitative resemblance with the true energy
spectrum [61], but are not to be trusted quantitatively.

The main exception to this rule is the highest occupied
KS eigenvalue. Denoting by εN(M) the N’th eigenvalue of
a system with M electrons, one can show rigorously that
εN(N) = −I, the negative of the first ionization energy of
the N-body system, and εN+1(N + 1) = −A, the negative of
the electron affinity of the same N-body system [58, 62, 63].
These relations hold for the exact functional only. When cal-
culated with an approximate functional of the LDA or GGA
type, the highest eigenvalues usually do not provide good ap-
proximations to the experimental I and A. Better results for
these observables are obtained by calculating them as total-
energy differences, according to I = E0(N− 1)−E0(N) and
A = E0(N)−E0(N + 1), where E0(N) is the ground-state en-
ergy of the N-body system. Alternatively, self-interaction cor-
rections can be used to obtain improved ionization energies
and electron affinities from Kohn-Sham eigenvalues [64].

Figure 2 illustrates the role played by the highest occu-
pied and lowest unoccupied KS eigenvalues, and their re-
lation to observables. For molecules, HOMO(N) is the
highest-occupied molecular orbital of the N-electron sys-
tem, HOMO(N+1) that of the N + 1-electron system, and
LUMO(N) the lowest unoccupied orbital of the N-electron
system. In solids with a gap, the HOMO and LUMO become
the top of the valence band and the bottom of the conduc-
tion band, respectively, whereas in metals they are both iden-
tical to the Fermi level. The vertical lines indicate the Kohn-
Sham (single-particle) gap ∆KS, the fundamental (many-body)
gap ∆, the derivative discontinuity of the xc functional, ∆xc,
the ionization energy of the interacting N-electron system
I(N) = −εN(N) (which is also the ionization energy of the
Kohn-Sham system IKS(N)), the electron affinity of the in-
teracting N-electron system A(N) = −εN+1(N + 1) and the
Kohn-Sham electron affinity AKS(N) =−εN+1(N).

Given the auxiliary nature of the other Kohn-Sham eigen-
values, it comes as a great (and welcome) surprise that in
many situations (typically characterized by the presence of
fermionic quasiparticles and absence of strong correlations)

37 The difference between E0 and ∑N
i εi is due to particle-particle interac-

tions. The additional terms on the right-hand side of (73) give mathemati-
cal meaning to the common statement that the whole is more than the sum
of its parts. If E0 can be written approximately as ∑N

i ε̃i (where the ε̃i are
not the same as the KS eigenvalues εi) the system can be described in terms
of N weakly interacting quasiparticles, each with energy ε̃i. Fermi-liquid
theory in metals and effective-mass theory in semiconductors are examples
of this type of approach.
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FIG. 2: Schematic description of some important Kohn-Sham eigen-
values relative to the vacuum level, denoted by 0, and their relation
to observables. See main text for explanations.

the Kohn-Sham eigenvalues εi do, empirically, provide a rea-
sonable first approximation to the actual energy levels of ex-
tended systems. This approximation is behind most band-
structure calculations in solid-state physics, and often gives
results that agree well with experimental photoemission and
inverse photoemission data [65], but much research remains
to be done before it is clear to what extent such conclusions
can be generalized, and how situations in which the KS eigen-
values are good starting points for approximating the true
excitation spectrum are to be characterized microscopically
[66, 67].38

Most band-structure calculations in solid-state physics are
actually calculations of the KS eigenvalues εi.39 This simpli-
fication has proved enormously successful, but when one uses
it one must be aware of the fact that one is taking the auxil-
iary single-body equation (71) literally as an approximation
to the many-body Schrödinger equation. DFT, practiced in
this mode, is not a rigorous many-body theory anymore, but a
mean-field theory (albeit one with a very sophisticated mean
field vs(r)).

The energy gap obtained in such band-structure calcula-
tions is the one called HOMO-LUMO gap in molecular calcu-
lations, i.e., the difference between the energies of the highest
occupied and the lowest unoccupied single-particle states. Ne-
glect of the derivative discontinuity ∆xc, defined in Eq. (65),
by standard local and semilocal xc functionals leads to an un-
derestimate of the gap (the so-called ‘band-gap problem’),
which is most severe in transition-metal oxides and other
strongly correlated systems. Self-interaction corrections pro-
vide a partial remedy for this problem [71–74].

38 Several more rigorous approaches to excited states in DFT, which do not
require the KS eigenvalues to have physical meaning, are mentioned in
Sec. VI.

39 A computationally more expensive, but more reliable, alternative is pro-
vided by the GW approximation [68–70].

3. Hartree, Hartree-Fock and Dyson equations

A partial justification for the interpretation of the KS eigen-
values as starting point for approximations to quasi-particle
energies, common in band-structure calculations, can be given
by comparing the KS equation with other self-consistent equa-
tions of many-body physics. Among the simplest such equa-
tions are the Hartree equation

[
−~

2∇2

2m
+ v(r)+ vH(r)

]
φH

i (r) = εH
i φH

i (r), (76)

and the Hartree-Fock (HF) equation
[
−~

2∇2

2m
+ v(r)+ vH(r)

]
φHF

i (r)−q2

∫
d3r′

γ(r,r′)
|r− r′|φ

HF
i (r′) = εHF

i φHF
i (r), (77)

where γ(r,r′) is the density matrix of Eq. (46). It is a fact
known as Koopman’s theorem [49] that the HF eigenvalues
εHF

i can be interpreted as unrelaxed electron-removal ener-
gies (i.e., ionization energies of the i’th electron, neglecting
reorganization of the remaining electrons after removal). As
mentioned above, in DFT only the highest occupied eigen-
value corresponds to an ionization energy, but unlike in HF
this energy includes relaxation effects.

The KS equation (71) includes both exchange and correla-
tion via the multiplicative operator vxc. Both exchange and
correlation are normally approximated in DFT,40 whereas HF
accounts for exchange exactly, through the integral operator
containing γ(r,r′), but neglects correlation completely. In
practise DFT results are typically at least as good as HF ones
and often comparable to much more sophisticated correlated
methods — and the KS equations are much easier to solve
than the HF equations.41

All three single-particle equations, Hartree, Hartree-Fock
and Kohn-Sham can also be interpreted as approximations to
Dyson’s equation (38), which can be rewritten as [48]
(
−~

2∇2

2m
+ v(r)

)
ψk(r)+

∫
d3r′Σ(r,r′,Ek)ψk(r′)= Ekψk(r),

(78)
where Σ is the irreducible self energy introduced in Eq. (38).
The Ek appearing in this equation are the true (quasi-)electron
addition and removal energies of the many-body system.
Needless to say, it is much more complicated to solve this
equation than the HF or KS equations. It is also much harder
to find useful approximations for Σ than for vxc.42 Obviously,

40 A possibility to treat exchange exactly in DFT is offered by the OEP
method discussed in Sec. V C.

41 This is due to the integral operator in the HF equations.
42 The GW approximation [68–70], mentioned in footnote 39, is one such

approximation for Σ, but in actual implementations of it one usually takes
DFT-KS results as an input.
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the KS equation employs a local, energy-independent poten-
tial vs in place of the nonlocal, energy-dependent operator Σ.
Whenever this is a good approximation, the εi are also a good
approximation to the Ek.

The interpretation of the KS equation (71) as an approxi-
mation to Eq. (78) is suggestive and useful, but certainly not
necessary for DFT to work: if the KS equations are only used
to obtain the density, and all other observables, such as total
energies, are calculated from this density, then the KS equa-
tions in themselves are not an approximation at all, but simply
a very useful mathematical tool.

C. Basis functions

In practice, numerical solution of the KS differential equa-
tion (71) typically proceeds by expanding the KS orbitals in a
suitable set of basis functions and solving the resulting secu-
lar equation for the coefficients in this expansion and/or for
the eigenvalues for which it has a solution. The construc-
tion of suitable basis functions is a major enterprise within
electronic-structure theory (with relevance far beyond DFT),
and the following lines do little more than explaining some
acronyms often used in this field.

In physics much is known about the construction of basis
functions for solids due to decades of experience with band-
structure calculations. This includes many calculations that
predate the widespread use of DFT in physics. There is a fun-
damental dichotomy between methods that work with fixed
basis functions that do not depend on energy, and methods that
employ energy-dependent basis functions. Fixed basis func-
tions are used e.g., in plane-wave expansions, tight-binding
or LCAO (linear combination of atomic orbitals) approxi-
mations, or the OPW (orthogonalized plane wave) method.
Examples for methods using energy-dependent functions are
the APW (augmented plane wave) or KKR (Korringa-Kohn-
Rostoker) approaches. This distinction became less clear-
cut with the introduction of ‘linear methods’ [75], in which
energy-dependent basis functions are linearized (Taylor ex-
panded) around some fixed reference energy. The most widely
used methods for solving the Kohn-Sham equation in solid-
state physics, LMTO (linear muffin tin orbitals) and LAPW
(linear augmented plane waves), are of this latter type [76].
Development of better basis functions is an ongoing enterprise
[77, 78].

The situation is quite similar in chemistry. Due to decades
of experience with Hartree-Fock and CI calculations much is
known about the construction of basis functions that are suit-
able for molecules. Almost all of this continues to hold in
DFT — a fact that has greatly contributed to the recent popu-
larity of DFT in chemistry. Chemical basis functions are clas-
sified with respect to their behaviour as a function of the ra-
dial coordinate into Slater type orbitals (STOs), which decay
exponentially far from the origin, and Gaussian type orbitals
(GTOs), which have a gaussian behaviour. STOs more closely
resemble the true behaviour of atomic wave functions [in par-
ticular the cusp condition of Eq. (19)], but GTOs are easier to
handle numerically because the product of two GTOs located

at different atoms is another GTO located in between, whereas
the product of two STOs is not an STO. The so-called ‘con-
tracted basis functions’, in which STO basis functions are re-
expanded in a small number of GTOs, represent a compromise
between the accuracy of STOs and the convenience of GTOs.
The most common methods for solving the Kohn-Sham equa-
tions in quantum chemistry are of this type [4, 49]. Very ac-
curate basis functions for chemical purposes have been con-
structed by Dunning [79] and, more recently, by da Silva and
collaborators [80, 81]. More details on the development of
suitable basis functions can be found, e.g., in these references
and Ref. [49].

A very popular approach to larger systems in DFT, in partic-
ular solids, is based on the concept of a pseudopotential (PP).
The idea behind the PP is that chemical binding in molecules
and solids is dominated by the outer (valence) electrons of
each atom. The inner (core) electrons retain, to a good ap-
proximation, an atomic-like configuration, and their orbitals
do not change much if the atom is put in a different environ-
ment. Hence, it is possible to approximately account for the
core electrons in a solid or a large molecule by means of an
atomic calculation, leaving only the valence density to be de-
termined self-consistently for the system of interest.

In the original Kohn-Sham equation the effective poten-
tial vs[n] = vext + vH [n] + vxc[n] is determined by the full
electronic density n(r), and the self-consistent solutions are
single-particle orbitals reproducing this density. In the PP ap-
proach the Hartree and xc terms in vs[n] are evaluated only for
the valence density nv, and the core electrons are accounted
for by replacing the external potential vext by a pseudopoten-
tial vPP

ext . Hence vPP
s [nv] = vPP

ext +vH [nv]+vxc[nv].43 The PP vPP
ext

is determined in two steps. First, one determines, in an aux-
iliary atomic calculation, an effective PP, vPP

s , such that for
a suitably chosen atomic reference configuration the single-
particle orbitals resulting from vPP

s agree — outside a cut-off
radius rc separating the core from the valence region — with
the valence orbitals obtained from the all-electron KS equa-
tion for the same atom. As a consequence, the valence densi-
ties nat

v obtained from the atomic KS and the atomic PP equa-
tion are the same. Next, one subtracts the atomic valence con-
tributions vH [nat

v ] and vxc[nat
v ] from vPP

s [nat
v ] to obtain the ex-

ternal PP vPP
ext ,

44 which is then used in the molecular or solid-
state calculation, together with vH [nv] and vxc[nv] taken at the
proper valence densities for these systems.

The way vPP
s is generated from the atomic calculation is

not unique. Common pseudopotentials are generated follow-
ing the prescription of, e.g., Bachelet, Hamann and Schlüter

43 Note that the effective potential vs is a way to deal with the electron-electron
interaction. The pseudopotential is a way to deal with the density of the
core electrons. Both potentials can be profitably used together, but are
conceptually different.

44 This external PP is also called the unscreened PP, and the subtraction of
vH [nat

v ] and vxc[nat
v ] from vPP

s [nat
v ] is called the ’unscreening of the atomic

PP’. It can only be done exactly for the Hartree term, because the contri-
butions of valence and core densities are not additive in the xc potential
(which is a nonlinear functional of the total density).
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FIG. 3: Some of the choices made in a Kohn-Sham calculation. The
treatment can be nonrelativistic (based on Schrödinger’s equation),
scalar relativistic (using the relativistic kinetic-energy operator and
other simple relativistic corrections, but no spin-orbit coupling) or
relativistic (using Dirac’s equation, which includes also spin-orbit
coupling). The core electrons can be treated explicitly (all elec-
tron calculation) or incorporated, together with vext , in a pseudopo-
tential. The Hartree potential can be obtained from integrating the
charge density or from solving Poisson’s differential equation. Many
choices are available for the xc potential. The eigenvalues can be con-
sidered mere Lagrange multipliers or interpreted as zero-order ap-
proximations to the actual energy spectrum. The eigenfunctions can
similarly be considered auxiliary functions generating the density, or
interpreted as zero-order approximations to quasi-particle wave func-
tions. Solution of the KS equation can proceed on a numerical mesh,
or by expansion of the eigenfunctions in basis functions. Many types
of suitable basis functions exist. For every new problem a suitable
combination of choices must be made, and all possibilities continue
to be useful and to be actively explored in physics and chemistry.

[82], Kleinman and Bylander [83], Vanderbilt [84] or Troul-
lier and Martins [85]. Useful reviews are Refs. [86–88]. The
pseudopotential approach is very convenient because it re-
duces the number of electrons treated explicitly, making it
possible to perform density-functional calculations on sys-
tems with tens of thousands of electrons. Moreover, the
pseudopotentials vPP

ext are much smoother than the bare nuclear
potentials vext . The remaining valence electrons are thus well
described by plane-wave basis sets.

Some of the choices one has to make in a practical Kohn-
Sham calculation are illustrated schematically in Fig. 3.

V. MAKING DFT PRACTICAL: APPROXIMATIONS

There are basically three distinct types of approximations
involved in a DFT calculation. One is conceptual, and con-
cerns the interpretation of KS eigenvalues and orbitals as
physical energies and wave functions. This approximation is
optional — if one does not want to make it one simply does
not attach meaning to the eigenvalues of Eq. (71). The pros

and cons of this procedure were discussed in Secs. IV B 2 and
IV B 3. The second type of approximation is numerical, and
concerns methods for actually solving the differential equa-
tion (71). A main aspect here is the selection of suitable ba-
sis functions, briefly discussed in Sec. IV C. The third type
of approximation involves constructing an expression for the
unknown xc functional Exc[n], which contains all many-body
aspects of the problem [cf. Eq. (55)]. It is with this type of
approximation that we are concerned in the present section.

This chapter is intended to give the reader an idea of what
types of functionals exist, and to describe what their main
features are, separately for local functionals (TF, LDA and
Xα; Sec. V A), semilocal, or gradient-dependent, function-
als (GEA and GGA; Sec. V B), and nonlocal functionals (hy-
brids, orbital functionals such as meta-GGAs, EXX and SIC,
and integral-dependent functionals such as ADA; Sec. V C).
This chapter does deal only most superficially with the actual
construction of these functionals. For more details on func-
tional construction and testing the reader is referred to the re-
views [5-19] or to the original papers cited below. Sticking
to the bird’s-eye philosophy of this overview I have also re-
frained from including numerical data on the performance of
each functional — extensive comparisons of a wide variety of
functionals can be found in Refs. [5-19] and in the original
literature cited below.

A. Local functionals: LDA

Historically (and in many applications also practically) the
most important type of approximation is the local-density ap-
proximation (LDA). To understand the concept of an LDA re-
call first how the noninteracting kinetic energy Ts[n] is treated
in the Thomas-Fermi approximation: In a homogeneous sys-
tem one knows that, per volume45

thom
s (n) =

3~2

10m
(3π2)2/3n5/3 (79)

where n = const. In an inhomogeneous system, with n = n(r),
one approximates locally

ts(r)≈ thom
s (n(r)) =

3~2

10m
(3π2)2/3n(r)5/3 (80)

and obtains the full kinetic energy by integration over all space

T LDA
s [n] =

∫
d3r thom

s (n(r)) =
3~2

10m
(3π2)2/3

∫
d3r n(r)5/3.

(81)
For the kinetic energy the approximation Ts[n] ≈ T LDA

s [n] is
much inferior to the exact treatment of Ts in terms of orbitals,
offered by the Kohn-Sham equations, but the LDA concept
turned out to be highly useful for another component of the

45 The change from a capital T to a lower-case t is commonly used to indicate
quantities per volume.
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total energy (55), the exchange-correlation energy Exc[n]. For
the exchange energy Ex[n] the procedure is very simple, since
the per-volume exchange energy of the homogeneous electron
liquid is known exactly [5, 6],

ehom
x (n) =−3q2

4

(
3
π

)1/3

n4/3, (82)

so that

ELDA
x [n] =− 3q2

4

( 3
π
)1/3 ∫

d3r n(r)4/3. (83)

This is the LDA for Ex.46

For the correlation energy Ec[n] the situation is more com-
plicated since ehom

c (n) is not known exactly: the determination
of the correlation energy of a homogeneous interacting elec-
tron system (an electron liquid) is already a difficult many-
body problem on its own! Early approximate expressions
for ehom

c (n) were based on applying perturbation theory (e.g.
the random-phase approximation) to this problem [89, 90].
These approximations became outdated with the advent of
highly precise Quantum Monte Carlo (QMC) calculations for
the electron liquid, by Ceperley and Alder [91]. Modern ex-
pressions for ehom

c (n) [92–94] are parametrizations of these
data. These expressions are implemented in most standard
DFT program packages and in typical applications give almost
identical results. On the other hand, the earlier parametriza-
tions of the LDA, based on perturbation theory [89, 90], can
occasionally deviate substantially from the QMC ones, and
are better avoided.

Independently of the parametrization, the LDA for Exc[n]
formally consists in47

Exc[n]≈ ELDA
xc [n] =

∫
d3r ehom

xc (n)|n→n(r) =
∫

d3r ehom
xc (n(r)),

(84)
where ehom

xc = ehom
x + ehom

c . The corresponding xc potential is
simply

vLDA
xc [n](r) =

∂ehom
xc (n)
∂n

∣∣∣∣
n→n(r)

. (85)

This approximation for Exc[n] has proved amazingly success-
ful, even when applied to systems that are quite different from
the electron liquid that forms the reference system for the
LDA. A partial explanation for this success of the LDA is sys-
tematic error cancellation: typically, LDA underestimates Ec
but overestimates Ex, resulting in unexpectedly good values

46 If one adds this term to the Thomas-Fermi expression (35) one obtains the
so-called Thomas-Fermi-Dirac approximation to E[n]. It one multiplies it
with an adjustable parameter α one obtains the so-called Xα approximation
to Exc[n]. These approximations are not much used today in DFT.

47 Sometimes one uses the per-particle instead of the per-volume energy of
the homogeneous system in writing the LDA. Since the conversion factor
between both is the number of particles per volume, i.e., the density, an
additional n(r) then appears under the integrals in (84) and also contributes
to (85).

of Exc. This error cancellation is not accidental, but system-
atic, and caused by the fact that for any density the LDA xc
hole satisfies the correct sum rule

∫
d3r′nLDA

xc (r,r′) =−1 (see
Sec. IV A 2), which is only possible if integrated errors in
nLDA

x cancel with those of nLDA
c .

For many decades the LDA has been applied in, e.g., cal-
culations of band structures and total energies in solid-state
physics. In quantum chemistry it is much less popular, be-
cause it fails to provide results that are accurate enough to
permit a quantitative discussion of the chemical bond in mole-
cules (so-called ‘chemical accuracy’ requires calculations
with an error of not more than about 1 kcal/mol = 0.04336
eV/particle).

At this stage it may be worthwhile to recapitulate what
practical DFT does, and where the LDA enters its conceptual
structure: What real systems, such as atoms, molecules, clus-
ters and solids, have in common, is that they are simultane-
ously inhomogeneous (the electrons are exposed to spatially
varying electric fields produced by the nuclei) and interact-
ing (the electrons interact via the Coulomb interaction). The
way density-functional theory, in the local-density approxi-
mation, deals with this inhomogeneous many-body problem
is by decomposing it into two simpler (but still highly non-
trivial) problems: the solution of a spatially homogeneous in-
teracting problem (the homogeneous electron liquid) yields
the uniform xc energy ehom

xc (n), and the solution of a spatially
inhomogeneous noninteracting problem (the inhomogeneous
electron gas described by the KS equations) yields the par-
ticle density. Both steps are connected by the local-density
potential (85), which shows how the xc energy of the uniform
interacting system enters the equations for the inhomogeneous
noninteracting system.

The particular way in which the inhomogeneous many-
body problem is decomposed, and the various possible im-
provements on the LDA, are behind the success of DFT in
practical applications of quantum mechanics to real materi-
als. Some such improvements on the LDA are discussed in
the next two sections.

B. Semilocal functionals: GEA, GGA and beyond

In the LDA one exploits knowledge of the density at point
r. Any real system is spatially inhomogeneous, i.e., it has a
spatially varying density n(r), and it would clearly be useful
to also include information on the rate of this variation in the
functional. A first attempt at doing this were the so-called
‘gradient-expansion approximations’ (GEA). In this class of
approximation one tries to systematically calculate gradient-
corrections of the form |∇n(r)|, |∇n(r)|2, ∇2n(r), etc., to the
LDA. A famous example is the lowest-order gradient correc-
tion to the Thomas-Fermi approximation for Ts[n],

Ts[n]≈ TW
s [n] = T LDA

s [n]+
~2

8m

∫
d3r

|∇n(r)|2
n(r)

. (86)
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This second term on the right-hand side is called the
Weizsäcker term.48 Similarly, in

Ex[n]≈EGEA(2)
x [n] = ELDA

x [n]− 10q2

432π(3π2)1/3

∫
d3r

|∇n(r)|2
n(r)4/3

(87)
the second term on the right-hand side is the lowest-order gra-
dient correction49 to ELDA

x [n]. In practice, the inclusion of
low-order gradient corrections almost never improves on the
LDA, and often even worsens it. Higher-order corrections
(e.g., ∝ |∇n(r)|α or ∝ ∇βn(r) with α,β > 2), on the other
hand, are exceedingly difficult to calculate, and little is known
about them.

In this situation it was a major breakthrough when it was
realized, in the early eighties, that instead of power-series-like
systematic gradient expansions one could experiment with
more general functions of n(r) and ∇n(r), which need not
proceed order by order. Such functionals, of the general form

EGGA
xc [n] =

∫
d3r f (n(r),∇n(r)), (88)

have become known as generalized-gradient approximations
(GGAs) [95].

Different GGAs differ in the choice of the function
f (n,∇n). Note that this makes different GGAs much more
different from each other than the different parametrizations
of the LDA: essentially there is only one correct expression
for ehom

xc (n), and the various parametrizations of the LDA
[89, 90, 92–94] are merely different ways of writing it. On
the other hand, depending on the method of construction em-
ployed for obtaining f (n,∇n) one can obtain very different
GGAs. In particular, GGAs used in quantum chemistry typ-
ically proceed by fitting parameters to test sets of selected
molecules. On the other hand, GGAs used in physics tend
to emphasize exact constraints. Nowadays the most popu-
lar (and most reliable) GGAs are PBE (denoting the func-
tional proposed in 1996 by Perdew, Burke and Ernzerhof [96])
in physics, and BLYP (denoting the combination of Becke’s
1988 exchange functional [97] with the 1988 correlation func-
tional of Lee, Yang and Parr [98]) in chemistry. Many other
GGA-type functionals are also available, and new ones con-
tinue to appear.

Quite generally, current GGAs seem to give reliable results
for all main types of chemical bonds (covalent, ionic, metallic
and hydrogen bridge). For van der Waals interactions, how-
ever, common GGAs and LDA fail.50 To describe these very

48 If one adds this term to the Thomas-Fermi expression (35) one obtains the
so-called Thomas-Fermi-Weizsäcker approximation to E[n]. In a system-
atic gradient expansion the 8 in the denominator is replaced by a 72 [5, 6].

49 Remarkably, the form of this term is fully determined already by dimen-
sional analysis: In EGEA(2)

x = q2 ∫
d3r f (n, |∇n|2) the function f must

have dimensions (length)−4. Since the dimensions of n and |∇n|2 are
(length)−3 and (length)−8, respectively, and to second order no higher pow-
ers or higher derivatives of n are allowed, the only possible combination is
f ∝ |∇n(r)|2/n4/3.

50 The PBE GGA [96] and the TPSS MGGA [2] (see below) may be partial

method -E/a.u.
Thomas-Fermi 625.7
Hartree-Fock 526.818
OEP (exchange only) 526.812
LDA (exchange only) 524.517
LDA (VWN) 525.946
LDA (PW92) 525.940
LDA-SIC(PZ) 528.393
ADA 527.322
WDA 528.957
GGA (B88LYP) 527.551
experiment 527.6

TABLE I: Ground-state energy in atomic units (1 a.u. = 1 Hartree =
2 Rydberg = 27.21eV =̂627.5kcal/mol) of the Ar atom (Z = 18), ob-
tained with some representative density functionals and related meth-
ods. The Hartree-Fock and OEP(exchange only) values are from
Krieger et al. (third of Ref. [120]), ADA and WDA values are from
Gunnarsson et al., Ref. [129], as reported in Ref. [5], and the LDA-
SIC(PZ) value is from Perdew and Zunger, Ref. [93]. The experi-
mental value is based on Veillard and Clementi, J. Chem. Phys. 49,
2415 (1968), and given to less significant digits than the calculated
values, because of relativistic and quantum electrodynamical effects
(e.g., the Lamb shift) that are automatically included in the experi-
mental result but not in the calculated values.

weak interactions several more specialized approaches have
been developed within DFT [101–105]. Both in physics and in
chemistry the widespread use of GGAs has lead to major im-
provements as compared to LDA. ‘Chemical accuracy’, as de-
fined above, has not yet been attained, but is not too far away
either. A useful collection of explicit expressions for some
GGAs can be found in the appendix of Ref. [106], and more
detailed discussion of some selected GGAs and their perfor-
mance is given in Ref. [107] and in the chapter of Kurth and
Perdew in Refs. [15, 16].

No systematic attempt at comparing explicit functionals can
be made here, but many detailed comparisons are available in
the literature. For pure illustrative purposes only, Table I con-
tains ground-state energies of the Ar atom, obtained with sev-
eral of the methods discussed previously in this chapter. Foot-
note 7 contains additional information on the performance of
DFT for larger systems.

C. Orbital functionals and other nonlocal approximations:
hybrids, Meta-GGA, SIC, OEP, etc.

In spite of these advances, the quest for more accurate func-
tionals goes ever on, and both in chemistry and physics var-
ious beyond-GGA functionals have appeared. Perhaps the

exceptions [99, 100] because they work reasonably well near the equilib-
rium distance of the van der Waals bond, but they recover only the short-
range behaviour and do not describe correctly the long-range asymptotic
regime of the van der Waals interaction.
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most popular functional in quantum chemistry51 is B3LYP.
This is a combination of the LYP GGA for correlation [98]
with Becke’s three-parameter hybrid functional B3 for ex-
change [108]. Common hybrid functionals, such as B3, mix
a fraction of Hartree-Fock exchange into the DFT exchange
functional (other mixtures are also possible). The construction
of hybrid functional involves a certain amount of empiricism
in the choice of functionals that are mixed and in the optimiza-
tion of the weight factors given to the HF and DFT terms.
Formally, this might be considered a drawback, but in prac-
tice B3 has proven to be the most successful exchange func-
tional for chemical applications, in particular when combined
with the LYP GGA functional for Ec. More extreme exam-
ples of this semiempirical mode of construction of functionals
are Becke’s 1997 hybrid functional [109], which contains 10
adjustable parameters, and the functionals of Refs. [110] and
[111], each of which contains 21 parameters.

Another recent beyond-GGA development is the emer-
gence of so-called Meta-GGAs, which depend, in addition to
the density and its derivatives, also on the Kohn-Sham kinetic-
energy density τ(r) [2, 112, 113]

τ(r) =
~2

2m ∑
i
|∇φi(r)|2, (89)

so that Exc can be written as Exc[n(r),∇n(r),τ(r)]. The addi-
tional degree of freedom provided by τ is used to satisfy addi-
tional constraints on Exc, such as a self-interaction-corrected
correlation functional, recovery of the fourth-order gradient
expansion for exchange in the limit of slowly varying den-
sities, and a finite exchange potential at the nucleus [2]. In
several recent tests [2, 100, 114–116] Meta-GGAs have given
favorable results, even when compared to the best GGAs, but
the full potential of this type of approximation is only begin-
ning to be explored systematically.

As we have seen in the case of Ts, it can be much easier to
represent a functional in terms of single-particle orbitals than
directly in terms of the density. Such functionals are known
as orbital functionals, and Eq. (54) constitutes a simple exam-
ple. Another important orbital-dependent functional is the ex-
change energy (Fock term) of Eq. (56). The Meta-GGAs and
hybrid functionals mentioned above are also orbital function-
als, because they depend on the kinetic energy density (89),
and on a combination of the orbital functional (56) with ordi-
nary GGAs, respectively.

Still another type of orbital functional is the self-interaction
correction (SIC). Most implementations of SIC make use of
the expressions proposed in Ref. [93] (PZ-SIC),

Eapprox,SIC
xc [n↑,n↓] = Eapprox

xc [n↑,n↓]−∑
i,σ

(EH [niσ]−Eapprox
xc [niσ,0]) ,

(90)
which subtracts, orbital by orbital, the contribution the

Hartree and the xc functionals would make if there was

51 This was written in early 2002, but at the time of revision of this text in
2006 it is still correct.

only one electron in the system. This correction can
be applied on top of any approximate density functional,
and ensures that the resulting corrected functional satisfies
Eapprox,SIC

xc [n(1),0] = −EH [n(1)] for a one-electron system.
The LDA is exact for a completely uniform system, and thus
is self-interaction free in this limit, but neither it nor com-
mon GGAs satisfy the requirement of freedom from self-
interaction in general, and even Meta-GGAs have a remaining
self-interaction error in their exchange part [2, 112]. This self-
interaction is particularly critical for localized states, such as
the d states in transition-metal oxides. For such systems PZ-
SIC has been shown to greatly improve the uncorrected LDA
[71, 72], but for thermochemistry PZ-SIC does not seem to be
significant [117].

Unfortunately the PZ-SIC approach, which minimizes the
corrected energy functional with respect to the orbitals, does
not lead to Kohn-Sham equations of the usual form, because
the resulting effective potential is different for each orbital.
As a consequence, various specialized algorithms for mini-
mizing the PZ-SIC energy functional have been developed.
For more details on these algorithms and some interesting ap-
plications in solid-state physics see Refs. [71–73]. For finite
systems, PZ-SIC has also been implemented by means of the
OEP [64, 74], which produces a common local potential for
all orbitals, and is discussed in the next paragraph. A detailed
review of implementations and applications of PZ-SIC can be
found in the contribution of Temmerman et al. in Ref. [17].
Alternatives to the PZ-SIC formulation of Ref. [93] have re-
cently been analysed in [118, 119], with a view on either im-
proving results obtained with PZ-SIC, or simplifying the im-
plementation of the correction.

Since hybrid functionals, Meta-GGAs, SIC, the Fock term
and all other orbital functionals depend on the density only
implicitly, via the orbitals φi[n], it is not possible to directly
calculate the functional derivative vxc = δExc/δn. Instead one
must use indirect approaches to minimize E[n] and obtain vxc.
In the case of the kinetic-energy functional Ts[{φi[n]}] this in-
direct approach is simply the Kohn-Sham scheme, described
in Sec. IV. In the case of orbital expressions for Exc the corre-
sponding indirect scheme is known as the optimized effective
potential (OEP) [120] or, equivalently, the optimized-potential
model (OPM) [121]. The minimization of the orbital func-
tional with respect to the density is achieved by repeated ap-
plication of the chain rule for functional derivatives,

vxc[n](r) =
δEorb

xc [{φi}]
δn(r)

=

∫
d3r′

∫
d3r′′∑

i

[
δEorb

xc [{φi}]
δφi(r′)

δφi(r′)
δvs(r′′)

δvs(r′′)
δn(r)

+ c.c.
]
,

(91)
where Eorb

xc is the orbital functional (e.g., the Fock term) and vs
the KS effective potential. Further evaluation of Eq. (91) gives
rise to an integral equation that determines the vxc[n] belong-
ing to the chosen orbital functional Exc[{φi[n]}] [120, 122].
As an alternative to solving the full OEP integral equation,
Krieger, Li and Iafrate (KLI) have proposed a simple but sur-
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prisingly accurate approximation that greatly facilitates im-
plementation of the OEP [120].

The application of the OEP methodology to the Fock term
(56), either with or without the KLI approximation, is also
known as the exact-exchange method (EXX). The OEP-EXX
equations have been solved for atoms [120, 121, 123] and
solids [124, 125], with very encouraging results. Other
orbital-dependent functionals that have been treated within the
OEP scheme are the PZ self-interaction correction [64, 74]
and the Colle-Salvetti functional [123]. A detailed review of
the OEP and its KLI approximation is Ref. [122].

The high accuracy attained by complex orbital functionals
implemented via the OEP, and the fact that it is easier to devise
orbital functionals than explicit density functionals, makes the
OEP concept attractive, but the computational cost of solv-
ing the OEP integral equation is a major drawback. However,
this computational cost is significantly reduced by the KLI ap-
proximation [120] and other recently proposed simplifications
[126–128]. In the context of the EXX method (i.e., using the
Fock exchange term as orbital functional) the OEP is a viable
way to proceed. For more complex orbital functionals, addi-
tional simplifications may be necessary [120, 126–128].

A further reduction of computational complexity is
achieved by not evaluating the orbital functional self-
consistently, via Eq. (91), but only once, using the orbitals
and densities of a converged self-consistent LDA or GGA cal-
culation. This ‘post-GGA’ or ‘post-LDA’ strategy completely
avoids the OEP and has been used both for hybrid function-
als and Meta-GGAs [108, 109, 112, 113]. A drawback of
post methods is that they provide only approximations to the
selfconsistent total energies, not to eigenvalues, effective po-
tentials, orbitals or densities.

In the case of hybrid functionals, still another mode of im-
plementation has become popular. This alternative, which
also avoids solution of Eq. (91), is to calculate the derivative
of the hybrid functional with respect to the single-particle or-
bitals, and not with respect to the density as in (91). The re-
sulting single-particle equation is of Hartree-Fock form, with

a nonlocal potential, and with a weight factor in front of the
Fock term. Strictly speaking, the orbital derivative is not what
the HK theorem demands, but rather a Hartree-Fock like pro-
cedure, but in practice it is a convenient and successful ap-
proach. This scheme, in which self-consistency is obtained
with respect to the single-particle orbitals, can be considered
an evolution of the Hartree-Fock Kohn-Sham method [6], and
is how hybrids are commonly implemented. Recently, it has
also been used for Meta-GGAs [2]. For occupied orbitals, re-
sults obtained from orbital selfconsistency differ little from
those obtained from the OEP.

Apart from orbital functionals, which are implicit nonlocal
density functionals because the orbitals depend on the density
in a nonlocal way, there is also a class of explicit nonlocal
density functionals. Such nonlocal density functionals take
into account, at any point r, not only the density at that point,
n(r), and its derivatives, ∇n(r) etc., but also the behaviour of
the density at different points r′ 6= r, by means of integration
over physically relevant regions of space. A typical example
is

EADA
xc [n] =

∫
d3r n(r)εhom

xc (n̄(r)), (92)

where εhom
xc is the per-particle xc energy of the homogeneous

electron liquid (see footnote 47). In the LDA one would have
n̄(r)≡ n(r), but in the average-density approximation (ADA)
one takes [129]

n̄(r) =
∫

d3r′ n(r′)w[n](|r− r′|), (93)

where w[n](|r−r′|) is a weight function that samples the den-
sity not only semilocally, as do the GGAs, but over a volume
determined by the range of w. Conceptually similar to the
ADA is the weighted-density approximation (WDA) [129]. In
terms of the pair-correlation function (see Secs. III E 2 and
IV A 2) the LDA, ADA and WDA functionals can be written
as

ELDA
xc [n] =

e2

2

∫
d3r

∫
d3r′

n(r)n(r)
|r− r′|

(
ḡhom[n(r)](r− r′)−1

)
(94)

EADA
xc [n] =

e2

2

∫
d3r

∫
d3r′

n(r)n̄(r)
|r− r′|

(
ḡhom[n̄(r)](r− r′)−1

)
(95)

EWDA
xc [n] =

e2

2

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′|

(
ḡhom[n̄(r)](r− r′)−1

)
, (96)

where in each case ḡhom(r− r′) is the pair-correlation func-
tion of the homogeneous electron liquid, averaged over the
coupling constant e2 [5, 6].

The dependence of these functionals on n̄(r), the integral
over n(r), instead of on derivatives, as in the GGAs, is the
reason why such functionals are called nonlocal. In practice,

this integral turns the functionals computationally expensive,
and in spite of their great promise they are much less used than
GGAs. However, recent comparisons of ADA and WDA with
LDA and GGAs for low-dimensional systems [114, 130] and
for bulk silicon [131] show that nonlocal integral-dependent
density functionals can outperform local and semilocal ap-
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proximations.

VI. EXTENSIONS OF DFT: NEW FRONTIERS AND OLD
PROBLEMS

Up to this point we have discussed DFT in terms of the
charge (or particle) density n(r) as fundamental variable. In
order to reproduce the correct charge density of the interacting
system in the noninteracting (Kohn-Sham) system, one must
apply to the latter the effective KS potential vs = v+vH +vxc,
in which the last two terms simulate the effect of the electron-
electron interaction on the charge density. This form of DFT,
which is the one proposed originally [24], could also be called
‘charge-only’ DFT. It is not the most widely used DFT in prac-
tical applications. Much more common is a formulation that
employs one density for each spin, n↑(r) and n↓(r), i.e, works
with two fundamental variables. In order to reproduce both
of these in the noninteracting system one must now apply two
effective potentials, vs,↑(r) and vs,↓(r).52 This formulation of
DFT is known as spin-DFT (SDFT) [89, 90]. Its fundamental
variables n↑(r) and n↓(r) can be used to calculate the charge
density n(r) and the spin-magnetization density m(r) from

n(r) = n↑(r)+n↓(r) (97)
m(r) = µ0(n↑(r)−n↓(r)), (98)

where µ0 = q~/2mc is the Bohr magneton. More generally,
the Hohenberg-Kohn theorem of SDFT states that in the pres-
ence of a magnetic field B(r) that couples only to the elec-
tron spin [via the familiar Zeeman term

∫
d3r m(r)B(r)] the

ground-state wave function and all ground-state observables
are unique functionals of n and m or, equivalently, of n↑ and
n↓.53 Almost the entire further development of the HK theo-
rem and the KS equations can be immediately rephrased for
SDFT, just by attaching a suitable spin index to the densities.
For this reason we could afford the luxury of exclusively dis-
cussing ‘charge-only’ DFT in the preceding sections, without
missing any essential aspects of SDFT.

There are, however, some exceptions to this simple rule.
One is the fourth statement of the HK theorem, as discussed
in Sec. III B. Another is the construction of functionals. For
the exchange energy it is known, e.g., that [132]

ESDFT
x [n↑,n↓] =

1
2

(
EDFT

x [2n↑]+EDFT
x [2n↓]

)
. (99)

In analogy to the coordinate scaling of Eqs. (59) - (61), this
property is often called ‘spin-scaling’, and it can be used to

52 More generally, one requires one effective potential for each density-like
quantity to be reproduced in the KS system. Such potentials and corre-
sponding densities are called conjugate variables.

53 In the particular case B = 0 the SDFT HK theorem still holds and continues
to be useful, e.g., for systems with spontaneous polarization. In principle
one could also use ‘charge-only’ DFT to study such systems, but then n↑(r)
and n↓(r) become functionals of n(r) and nobody knows how to determine
these functionals.

construct an SDFT exchange functional from a given DFT ex-
change functional. In the context of the LSDA, von Barth and
Hedin [89] wrote the exchange functional in terms of an inter-
polation between the unpolarized and fully polarized electron
gas which by construction satisfies Eq. (99). Alternative inter-
polation procedures can be found in Ref. [92]. GGA exchange
functionals also satisfy Eq. (99) by construction. For the cor-
relation energy no scaling relation of the type (99) holds, so
that in practice correlation functionals are either directly con-
structed in terms of the spin densities or written by using,
without formal justification, the same interpolation already
used in the exchange functional. In the case of the LSDA
this latter procedure was introduced in Ref. [89], and further
analysed and improved in Ref. [92].

The Kohn-Sham equations of SDFT are
[
−~

2∇2

2m
+ vsσ(r)

]
φiσ(r) = εiσφiσ(r), (100)

where vsσ(r) = vσ(r)+ vH(r)+ vxc,σ(r). In a nonrelativistic
calculation the Hartree term does not depend on the spin la-
bel,54 but in the presence of an externally applied magnetic
field vσ(r) = v(r)−σµ0B (where σ =±1). Finally,

vxc,σ(r) =
δESDFT

xc [n↑,n↓]
δnσ(r)

. (101)

In the presence of an internal magnetic field Bxc (i.e., in spin-
polarized systems) vxc,↓−vxc,↑ = µ0Bxc. This field is the origin
of, e.g., ferromagnetism in transition metals. References to
recent work with SDFT include almost all practical DFT cal-
culation: SDFT is by far the most widely used form of DFT.55

Some recent work on SDFT is described in Ref. [133]. A more
detailed discussion of SDFT can be found in Refs. [5, 6, 90],
and a particularly clear exposition of the construction of xc
functionals for SDFT is the contribution of Kurth and Perdew
in Refs. [15, 16].

If the direction of the spins is not uniform in space56 one
requires a formulation of SDFT in which the spin magneti-
zation is not a scalar, as above, but a three-component vector
m(r). Different proposals for extending SDFT to this situa-
tion are available [134–136]. One mechanism that can give
rise to noncollinear magnetism is spin-orbit coupling. This
is another relativistic effect [28], and as such it is not consis-
tently treated in either DFT or SDFT. A generalization of DFT
that does account for spin-orbit coupling and other relativis-
tic effects is relativistic DFT (RDFT) [137, 138]. Here the
fundamental variable is the relativistic four-component cur-
rent jµ. RDFT requires a more drastic reformulation of DFT
than does SDFT. In particular, the KS equation of RDFT is

54 Spin-spin dipolar interactions are a relativistic effect of order (1/c)2, as are
current-current interactions.

55 SDFT has become synonymous with DFT to such an extent that often no
distinction is made between the two, i.e., a calculation referred to as a DFT
one is most of the time really an SDFT one.

56 Such ‘noncollinear magnetism’ appears, e.g., as canted or helical spin con-
figurations in rare-earth compounds, or as domain walls in ferromagnets.
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now of the form of the single-particle Dirac equation, instead
of the Schrödinger equation. There are also many subtle ques-
tions involving renormalizability and the use of the variational
principle in the presence of negative energy states. For de-
tails on these problems and their eventual solution the reader
is referred to the chapters by Engel et al. in Refs. [10] and
[19], and to the book by Eschrig [18]. A didactical exposition
of RDFT, together with representative applications in atomic
and condensed-matter physics, can be found in the book by
Strange [28], and a recent numerical implementation is pre-
sented in Ref. [139].

To study the magnetic properties of matter one would of-
ten like to be able to obtain information on the currents in
the system and their coupling to possible external magnetic
fields. Important classes of experiments for which this in-
formation is relevant are nuclear magnetic resonance and the
quantum Hall effects. SDFT does not provide explicit infor-
mation on the currents. RDFT in principle does, but standard
implementations of it are formulated in a spin-only version,
which prohibits extraction of information on the currents.
Furthermore, the formalism of RDFT is considerably more
complicated than that of SDFT. In this situation the formu-
lation of nonrelativistic current-DFT (CDFT), accomplished
by Vignale and Rasolt [140, 141], was a major step forward.
CDFT is formulated explicitly in terms of the (spin) density
and the nonrelativistic paramagnetic current density vector
jp(r). Some recent applications of CDFT are Refs. [142–145].
E. K. U. Gross and the author have shown that the existence
of spin currents implies the existence of a link between the xc
functionals of SDFT and those of CDFT [146]. Conceptually,
this link is similar to the one of Eq. (99) between functionals
of DFT and SDFT, but the details are quite different. Some
approximations for xc functionals of CDFT are discussed in
Refs. [146–148].

In addition to SDFT, RDFT and CDFT, there exist many
other generalizations of DFT that were designed for one or
other special purpose. As examples we mention superconduc-
tivity [149–152] and spin-density waves [136, 153], but there
are many more [5-19]. For reasons of space we cannot dis-
cuss these extensions here. Instead, let us take a brief look at a
problem that requires more radical departures from the frame-
work of conventional DFT: excited states. DFT is formulated
in terms of ground-state densities, and it is not immediately
obvious how one could extract information on excited states
from them (although at least in the case of ‘charge-only’ DFT
the fourth substatement of the HK theorem guarantees that
this must be possible).

Apart from the ad hoc identification of the KS eigenval-
ues with true excitation energies, there exists a considerable
variety of more sound approaches to excited states in DFT
that have met with some success. The early suggestion of
Gunnarsson and Lundqvist [90] to use a symmetry-dependent
xc functional to calculate the lowest-energy excited state of
each symmetry class has been implemented approximately by
von Barth [154], but suffers from lack of knowledge on the
symmetry dependence of the functional. More recent work on
this dependence is Ref. [155]. An alternative approach to ex-
cited states, not restricted to the lowest energy state of a given

symmetry, is ensemble DFT, developed by Theophilou [26]
and further elaborated by Oliveira, Gross and Kohn [156]. In
this formalism the functional depends on the particular choice
for the ensemble, and a simple approximation for this depen-
dence is available [156]. Some applications of this method
have been worked out by Nagy [157].

Other DFT approaches to excited states can be found in
Refs. [158], [159], [160] and [31], but the most widely used
method today is time-dependent DFT (TD-DFT). The time-
dependent generalization of the HK theorem, the Runge-
Gross theorem, cannot be proven along the lines of the origi-
nal HK theorem, but requires a different approach [51, 161].
For recent reviews of TD-DFT see Ref. [162]. Excited states
have first been extracted from TD-DFT in Refs. [163, 164].
This approach is now implemented in standard quantum-
chemical DFT program packages [165, 166] and is increas-
ingly applied also in solid-state physics [70]. Another im-
portant application of TD-DFT is to systems in external
time-dependent fields, such as atoms in strong laser fields
[167, 168]. First steps towards studying dynamical magnetic
phenomena with TD-SDFT have been taken very recently
[169].

All these extensions of DFT to time-dependent, magnetic,
relativistic and a multitude of other situations involve more
complicated Hamiltonians than the basic ab initio many-
electron Hamiltonian defined by Eqs. (2) to (6). Instead of at-
tempting to achieve a more complete description of the many-
body system under study by adding additional terms to the
Hamiltonian, it is often advantageous to employ the opposite
strategy, and reduce the complexity of the ab initio Hamil-
tonian by replacing it by simpler models, which focalize on
specific aspects of the full many-body problem. Density-
functional theory can be applied to such model Hamiltonians,
too, once a suitable density-like quantity has been identified as
basic variable. Following pioneering work by Gunnarsson and
Schönhammer [170], LDA-type approximations have, e.g., re-
cently been formulated and exploited for the Hubbard [171],
the delta-interaction [172] and the Heisenberg [173] models.
Common aspects and potential uses of DFT for model Hamil-
tonians are described in [174].

Still another way of using DFT, which does not depend
directly on approximate solution of Kohn-Sham equations,
is the quantification and clarification of traditional chemical
concepts, such as electronegativity [6], hardness, softness,
Fukui functions, and other reactivity indices [6, 175], or aro-
maticity [176]. The true potential of DFT for this kind of in-
vestigation is only beginning to be explored, but holds much
promise.

All extensions of DFT face the same formal questions (e.g.,
simultaneous interacting and noninteracting v-representability
of the densities, nonuniqueness of the KS potentials, mean-
ing of the KS eigenvalues) and practical problems (e.g., how
to efficiently solve the KS equations, how to construct accu-
rate approximations to Exc, how to treat systems with very
strong correlations) as do the more widely used formulations
‘charge-only’ DFT and SDFT. These questions and problems,
however, have never stopped DFT from advancing, and at
present DFT emerges as the method of choice for solving a
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wide variety of quantum mechanical problems in chemistry
and physics — and in many situations, such as large and inho-
mogeneous systems, it is the only applicable first-principles
method at all.

The future of DFT is bright [3, 61, 177] — but to be able
to contribute to it, the reader must now leave the present
superficial overview behind, and turn to the more advanced
treatments available in the literature [5-19].

Acknowledgments The author has learned density-

functional theory from E. K. U. Gross, and then practiced
it in collaborations with B. L. Györffy, L. N. Oliveira, and
G. Vignale. These scholars are in no way responsible for
the content of this work, but the author’s intellectual debt
to them is enormous. Useful comments by J. Quintanilla,
H. J. P. Freire, T. Marcasso, E. Orestes, N. A. Lima, N. Arga-
man, V. L. Lı́bero, V. V. França, M. Odashima, J. M. Morbec,
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