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Non-Riemannian Geometry of Twisted Flux Tubes
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New examples of the theory recently proposed by Ricca [PRA(1991)] on the generalization of Da Rios-
Betchov intrinsic equations on curvature and torsion of classical non-Riemannian vortex higher-dimensional
string are given. In particular we consider applications to 3-dimesional fluid dynamics, including the case of
a twisted flux tube and the fluid rotation. In this case use is made of Da Rios equation to constrain the fluid.
Integrals on the Cartan connection are shown to be related to the integrals which represent the total Frenet
torsion and total curvature. By analogy with the blue phases twisted tubes in liquid crystals, non-Riemannian
geometrical formulation of the twisted flux tube in fluid dynamics is obtained. A theorem by Ricca and Moffatt
on invariant integrals for the Frenet curvature is used to place limits on the Cartan integrals. The stationary
incompressible flow case is also addressed in the non-Riemannian case where Cartan torsion scalars are shown
to correspond to abnormalities of the congruence. Geodesic motion is shown to be torsionless. Vorticity is shown
to be expressed in terms of abnormalities of the congruence, which is analogous to the result recenly obtained
[Garcia de Andrade,PRD(2004)], where the vorticity of the superfluid plays the role of Cartan contortion vector
in the context of analog gravity.
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I. INTRODUCTION

Differential geometry of curves and surfaces has appeared
in several areas of physics, ranging from liquid crystals [1]
to plasma physics [2], and from solitons [3] to general rela-
tivity [4], or even in high energy strings [5] and thermody-
namics [6]. In all these applications one important common
feature arises, which is the application of the Serret-Frenet
frame to the motion of curves. Da Rios equation [7] on the
other hand derived equations of motion of filaments based
on the Frenet frame. These equations constraints the motion
of curves, for example, in magnetohydrostatic [8] problems
of nested toroidal flux surfaces. More recently, Rogers and
Schief [3] have demonstrated that in steady hydrodynamic,
geodesic motions constrained the curvature and torsion of the
sreamlines necessarily implying the existence of travelling
wave solutions of Da Rios equations. Da Rios equation have
been recently revisited by Ricca [9]. Yet more recently, Gar-
cia de Andrade [10] has applied another Ricca’s paper [11]
result on twisted magnetic flux tubes to electron fluids, fol-
lowed by some work [11] on Riemannian geometry of vor-
tex filaments in plasma physics. Ricca has also [12] general-
ized the Da Rios-Betchov equation to higher dimensional vor-
tex string. Also recently Garcia de Andrade [13] has shown
that it is possible to apply non-Riemannian geometry to vor-
tex acoustics, to solve some problems with vorticity fluids in
the analogue models for general relativity. Non-holonomic
geometry in fluid mechanics has been first appeared in the lit-
erature on a paper of 1983 by Littlejohn paper [3] on the geo-
metrical formulation of plasmas based on the Serret-Frenet
frame, where use was made of asymmetric connection. This
very same Cartan torsion is used here in the form of torsion
scalars, which we apply to another example in fluid dynamics,
which is a vortex tube. Another interesting way of computing
the Cartan torsion in the flux tube is through teleparallelism,
which is a version of non-Riemannian geometry where the to-

tal, so-called Riemann-Cartan curvature, vanishes. This can
be obtained by a special choice of Cartan connection form.
Another way of computing the non-Riemannian geometry of
the twisted tubes is by considering the case where the con-
nection one-form does not vanish. The paper is organised
as follows: Section 2 presents the fundamental form of the
Serret-Frenet equation based on the Gauss equations. Sec-
tion 3 presents the non-Riemannian geometry of twisted flux
tubes along the teleparallel geometry. In section 4 the exam-
ple of Cartan torsion scalars in stationary incompressible flu-
ids is given. In section 5 solitonic Heisenberg spin equations
are used to constraints magnetic fluids equations. Discussions
and conclusions are presented in section 6.

II. NON-RIEMANNIAN GEOMETRY FROM GAUSS
EQUATIONS IN SERRET-FRENET FRAME

We start by writing the Serret-Frenet frame, composed of
the vector triad X = (~t,~n,~b) in the more compact matrix form
by

∂
∂s

XT = AXT (1)

where A corresponds to the following array



0 κ 0
−κ 0 τ
0 −τ 0




while the other equations for~n and~b direction are given

∂
∂n

XT = BXT (2)

∂
∂b

XT = CXT (3)
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where T represents the transpose of the line matrix X and B
and C are the respective skew-symmetric matrices




0 θns Ωb + τ
−θns 0 −div~b

−(Ωb + τ) div~b 0




and



0 −(Ωn + τ) θbs
(Ωn + τ) 0 κ+div~n
−θbs −(κ+div~n) 0




where θns and θbs are respectively

θns =~n.
∂
∂n

~t (4)

and

θbs =~b.
∂

∂b
~t (5)

The gradient operator is

∇ =~t
∂
∂s

+~n
∂
∂n

+~b
∂

∂b
(6)

The other vector analysis formulas read [14]

div~t = θns +θbs (7)

div~n =−κ+~b.
∂

∂b
~n (8)

div~b =−~b.
∂

∂n
~n (9)

∇×~t = Ωs~t +κ~b (10)

Similarly the results for~n and~b are given by

∇×~n =−(div~b)~t +Ωn~n+θns~b (11)

Ωn =~n.∇×~n =~t.
∂

∂b
~n− τ (12)

and

∇×~b = (κ+div~n)~t−θbs~n+Ωb~b (13)

Ωb =~b.∇×~b =−~t. ∂
∂n

~b− τ (14)

where

Ωs =~b.
∂

∂n
~t−~n.

∂
∂b

~t (15)

which is called abnormality of the~t − f ield. Most of these
formulas were derived in Marris and Passman [14]. In what
follows we apply some of those formulas to vortex and plasma
filaments from the point of view of non-Riemannian geome-
try. Let us now consider Littlejohn idea of considering the
expression

Γi
jk = [~t.∇×~t]i jk (16)

or

~t.∇×~t = εi jkti∂ jtk = εi jkΓi
jk (17)

as definitions of asymmetric affine connections. Here εi jk is
the totally skew Levi-Civita symbol and ti represents the co-
variant components of vector~t, while ∂ j := ∂

∂x j is the usual
partial derivative operator in general coordinates x j. Note that
expression (17) defines a Cartan scalar due to the total skew-
symmetric part of Levi-Civita symbol which kills the symmet-
ric part of affine connection. From expression (10) the torsion
scalar is easily computed as

~t.∇×~t = Ωs (18)

Thus the Cartan torsion scalar is equivalent to the abnormality
of the~t-field. Let us now consider the relation between the
Frenet and Cartan scalar torsions. The frame ~X := ~ei here
represents the Frenet frame. This allows us to write down the
expressions for the Gauss equations of a surface (see p.18 of
second reference in [3]) in the form

∂~ei

∂x j = Γ∗l
i j~el (19)

where

d
ds

~ei = ∂k~ei
dxk

ds
(20)

It is clear that use has been made of the vanishing of the co-
variant derivative of the frame so that

D~ei

Ds
= ∇ j~ei

dx j

ds
(21)

where D
Ds is the absolute derivative operator while ∇ j rep-

resents the covariant derivative operator and ∇ j~ei := ∇~e j~ei.
From equation (21) we obtain

εpki~ep.∇k~ei = εpkiΓl
ik~ep.~el = εpkiΓl

ikgpl (22)

where the dot represents the scalar product of vetors and εi jk is
the Levi-Civita totally skew-symmetric symbol and covariant
and partial derivatives of the frame ~ei are proportional to the
full non-Riemannian connection Γi

jk. The expression D~ei
Ds = 0

is very commom in the psedo-Riemannian Lorentz geometry
of Einstein’s general relativity ,representing the Fermi trans-
port of particles along curves. Note also that here the metric
g(~el ,~ek) does not coincide with the Krönecker delta δlk unless
the frame is orthogonal. By expressing the left-hand side of
(22) as

(εpki∇k~ei).~ep = εpkiΓl
ikgpl (23)
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In vector notation

εpki∇k~ei = ∇×~X (24)

where we have used the definition ~X = ~ei. Yet in vectorial
notation equation (22) finally reads

~X .∇×~X = εpkiΓl
[ik]gl p (25)

where gl p is the manifold metric. Here Γl
[ik] is Cartan connec-

tion, obtained from the skew-symmetric affine connection

Γl
ik = Γ∗l

ik−Kl
ik (26)

Γ∗l
ik is the Christoffel symmetric connection and Kl

ik repre-
sents the Elie Cartan contortion [15]. The Cartan connection
in elastic materials represents the defects in crystals [16] for
example. In the case we consider that ~X is the Frenet-Serret
frame the LHS of (25) are the abnormalities Ω~X defined in
equations (13) and (15). This can be easily seen from equa-
tions (16) and (17). Therefore we have shown that the tor-
sion scalars coincide with the abnormalities of the congru-
ence. Note that in the case of geodesic congruence Ωs = 0
the torsion scalar vanishes, as happens in the torsionless Rie-
mannian geometry. From the expressions (20) and (21) one
obtains

Γn
ks

dxk

ds
= κ (27)

which yields the integral

I1 =
∫

Γn
ksdxk =

∫
κds (28)

This expression shows that the Frenet curvature is linked with
the contortion. The integral on the RHS of (28) is called total
Frenet curvature. The other integrals for i = s and i = b yields

I2 =
∫

Γs
kndxk =−

∫
κds (29)

I3 =
∫

Γb
kndxk =

∫
τds (30)

where the last integral is the total Frenet torsion. In the fol-
lowing sections we notice that similar torsion integrals appear
again. The Cartan torsion invariants discussed in this sec-
tion can be used together with two theorems, one by Fuku-
moto (1987) [17] and its subsequent generalization by Mof-
fatt and Ricca (1991) [18] to provide us with a generalization
of their contents to Cartan torsion. See also reference [19]
for a concise discussion and presentation of both theorems.
Moffatt-Ricca theorem states that for a knotted filament, the
total Frenet curvature is bounded above and below by

4π <

∫
κds < constant (31)

Therefore by expressions (29) and (30) we could may that
these same bounds are valid for total Cartan torsion.

III. TELEPARALLEL TWISTED FLUX TUBES

Let us now very briefly consider the twisted topology and
the metric of flux tubes represented by T := S×C , where S is
the circular cross section of area A = πR2 , R being the radius
of the circular section which is by construction small with re-
spect to the radius of curvature R of the tube axis curve C .
The orthogonal curvilinear coordinates (r,θR,s) are centered
on C . Points on S are given by the vector

~x = ~X(s)+ rcosθ(s)~n(s)+ rsinθ(s)~b(s) (32)

where θ(s) is the polar angle refereed to the unit normal vec-
tor~n in the Frenet frame composed by the triad (~t,~n,~b), where
~t = d~x

ds is directed along to the curve C and ~n and ~b are the
normal and binormal to the tube axis C. Angle θ(s) varies ac-
cording to the tube geometry. Polar angle θR is an independent
coordinate obeying the following relation

θ(s) = θR + γ(s) (33)

γ(s) is responsible for the contribution from Frenet torsion
τ(s) of C is

γ(s) =−
∫

τ(ε)dε (34)

where the integral ranges from 0 to s. The metric is

d~x.d~x = dr2 + r2(dθR)2 +K2ds2 (35)

which is orthogonal. The factor K(s) is

K(s) = 1− rκ(s)cosθ(s)(s) (36)

In Ricca’s geometrical model for the twisted flux tube the or-
thogonal basis (~er,~eθ,~t) is expressed as

~er =~ncosθ+~bsinθ (37)

~eθ =−~nsinθ+ cosθ~b (38)

The tubes here are twisted with the magnetic field lines wind-
ing about the magnetic flux-tube along the longitudinal direc-
tion~t. The total twist of the tube is

T ω =
1

2π

∮
τds+

1
2π

[θ∗]C (39)

By making use of the Cartan calculus of differential forms we
are able to expressed the twisted flux tube metric as

dl2 = (ωr)2 +(ωθ)2 +(ωs)2 (40)

where the basis one-forms are

ωr = dr (41)

ωθ = rdθ (42)
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ωs = K(s)ds (43)

From the Poincare lemma: d2 = 0 for the differential operator
d, we obtain

dωr = 0 (44)

dωθ = dr∧dθ (45)

dωs =−κ(s)cos(θ+ γ)dr∧ds+ rκ(s)sin(θ+ γ)dθ∧ds (46)

where ∧ is the exterior product sign between differential
forms. From the torsion Cartan equation

T i = dωi +ωi
k∧ωk (47)

where ωi
k is the connection one-form and T i is the torsion

two-form and T i = T i
jkω j∧ωk, where T i

jk are the compo-
nents of the Cartan torsion tensor. To simplify matters in this
section we shall consider the special orthonormal frame where
the connection form vanishes and from the Cartan curvature
equation

Ri
j :=

1
2

Ri
jklωk∧ωl = dωi

j +ωi
k∧ωk

j (48)

which implies that the Riemann-Cartan curvature two-forms
Ri

j vanishes, which is the teleparallel condition. The torsion
forms are easily computed as

T r = 0 (49)

T θ
rθ =

1
r

(50)

T s
θs =

κ
K

[θ−
∫

τds] (51)

Here we have used the approximation of small torsion which
yields

sin[θ−
∫

τds] = θ−
∫

τds (52)

One notes from expression (51), that the Cartan torsion com-
ponent is proportional to the total torsion integral.

IV. NON-RIEMANNIAN GEOMETRY OF VORTEX
FILAMENTS UNDER DA RIOS CONSTRAINTS

In this section we show that torsion scalars or abnormalities,
and Da Rios system play a fundamental role in the solution
of stationary fluid equations by finding a solution where both
Frenet curvature and torsion are not constants. The vortex
filament has the following velocity equation

~v = κ~b (53)

where the vortex filament rotation is given by

∇×~v = ~Ω (54)

Here

∇ =~t
∂
∂s

+
~b
κ

∂
∂b

(55)

where ∇ is the gradient operator. To investigate the relation
between this hydrodynamics and torsion scalars, or abnormal-
ities, we compute the term

~v.∇×~v =~v.~Ω (56)

The first term on the LHS of this equation yields

~v.∇×~v = κ2Ωb (57)

Comparison between the last two equations yields

~b.~Ω = κΩb (58)

which clearly shows that the torsion scalar or abnormality Ωb
is proportional to rotation of the vortex tube. Before we com-
pute explicitly the vorticity expression, we consider the in-
compressibility of the fluid

∇.~v = 0 (59)

Considering in principle that κ = κ(s,b) we obtain

∇.~v =
κb

κ
= 0 (60)

shows that the Frenet curvature does not depend on the vari-
able b and can be expressed in the form by κ(s). Let us now
compute the vorticity ~Ω as

~Ω = [(~t
∂
∂s

+
~b
κ

∂
∂b

)×κ~b] = κ(κ+div~n)~t +κs~n+κτ~b (61)

On the other hand ~Ω can also be written as

~Ω = ∇×(κ~b) = ∇κ×~b+κ∇×~b (62)

Scalarly multiplying both sides of the equation (62) by the
filament velocity ~v = κ~b and making use of expression (14)
above yields

Ωb =
~b.Ω

κ
(63)

From expressions (61) and (63) we obtain Ωb = τ , which
shows once more that abnormality, or Cartan torsion scalar, is
proportional to the vortex filament Frenet torsion. Let us now
consider Da Rios equation

κb =−2τκs−κτs (64)

τb = [−τ2 +
1
κ

κss +
1
2

κ2]
s

(65)
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Since κb = 0, the Da Rios system reduce to

2τκs =−κτs (66)

and

[−τ2 +
1
κ

κss +
1
2

κ2] = c (67)

Since in the case of helical flows torsion is proportional to
curvature, we considered τb = 0 to simplify matters. Here
c is an integration constant. Da Rios equation (67) yields a
relation between torsion and Frenet curvature given by κ2 =
τ. Substitution of this expression into the remaining Da Rios
equation (67) yields

κss− cκ+
1
2

κ3−κ5 = 0 (68)

which is a solitonic-like equation. This equation can be eas-
ily solved if we kept only terms up to first order on Frenet
curvature. Integration of this equations yields

κ = κ0exp(−√cs) (69)

which by the relation between τ and κ yields

τ = κ2
0exp(−2

√
cs) (70)

From the expression Ωb = τ one may now compute the rela-
tion between vorticity and speed of the flow as

τκ2 =~v.~Ω (71)

Using the relation obtained from Da Rios equation between
torsion and curvature into (71) yields

τ2 =~v.~Ω (72)

This relation leads us to conclude that, for planar curves,
where τ vanishes, the vorticity is orthogonal to the direction
of fluid flow. Besides, substitution of expression (69) into (70)
yields

~v.~Ω = κ4
0exp(−4

√
cs) (73)

which shows that as s → ∞, even for nonplanar curves, the
effect of orthogonality betwen the vorticity and the flow di-
rection cannot be recovered, unless we are very far from the
center of the filament. Therefore the investigation of nonpla-
nar curves in plasmas seems to be very of utmost importance
for example, to the electron drift in solar loops, as has been
recently demonstrated by the Garcia de Andrade [20].

V. HEISENBERG SPIN EQUATIONS CONSTRAINTS IN
MAGNETIC FLUIDS

In this section we shall address the demonstration of the
following simple theorem: THEOREM: The Heisenberg spin
equations

~tb =~t×~tss (74)

and Da Rios equations, allow us to show that the magnetic
field obeying the conserved current along the b-line

~Jb = 0 (75)

implies that momentum along the n-line Ωn = −τ, as long
as the form of the field is ~B = B(s)~t. The absence of mag-
netic monopoles along the filaments imply that the modulus of
the magnetic field is constant along the filament. This shows
once more that the abnormality in direction-n is proportional
to Frenet torsion and consequently to non-Riemannian torsion
in the flow. Proof: Let us first consider the Ampere law in the
form

~J = ∇×~B = B(
Ωn + τ

κ
~t +κ~b) (76)

taking the partial derivative of this plasma current along the
b-line yields

~Jb = B[
Ωn + τ

κ
~tb +κb~b] (77)

which by making use of Heisenberg equation reduces to

~Jb = B[[
Ωn + τ

κ
]~t×~tss +κb~b] (78)

Finally the absence of magnetic monopoles along the filament
implies

∇.~B = (~t
∂
∂s

+
~b
κ

∂
∂b

).(B~t) = 0 (79)

After some algebra this yields ∇.~B = Bs = 0 proves the last
part of the theorem. In the second equality on the RHS of the
equation (78) we used the solitonic Heisenberg spin equations.

VI. CONCLUSIONS

We have investigate a simple connection between the
Serret-Frenet and Gauss equations which naturally leads to
the non-Riemannian formulation in 3D manifold and applied
to fluid flows. Several examples of the application of this idea
are presented and its connection to soliton surfaces hierarchy
is discussed. Despite of the great success Riemannian geom-
etry had in describing fluid motion [21] it seems interesting
to investigate the role of non-Riemannian geometry in fluid
dynamics as done here. Physical interpretation of contortion
here is analogous to the interpretation it has in gravitation and
electrodynamics in non-Riemannian spacetime recently dis-
cussed by Hehl and Obukhov [22] where spiral staircases are
used. This would be analogous to the twisted tubes consid-
ered in this paper. Also here, the relation between the Cartan
and Frenet torsions reminds the Cartan idea [15] where tor-
sion was connected to the translation and rotation of space.
Note that the analogy between the vorticity in superfluids [13]
and the Cartan contortion can be used as a further motivation
to investigate the role of Cartan torsion on the relation be-
tween Frenet and Cartan torsions in the dynamics of fluids.
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Besides in defect theory and even in gravitation, theorie such
as Einstein-Cartan like the contortion are also called defect
torsion. Though some material in this paper is a revision of
previous work, the material on teleparallel geometry of tubes,
theorem for Cartan torsion integral invariants compared with
theorems by Fukumoto, Moffatt and Ricca and soliton equa-
tion for Frenet curvature seems to be new.
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