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The Spreading Width Calculation of Giant Resonances with a Semi-Microscopic Approach

T. N. Leite1,2 and N. Teruya2
1 Colegiado de Engenharia Civil

Fund. Universidade Federal do Vale do São Francisco
C.P. 309, 48900-000 Juazeiro, BA, Brazil.

2 Departamento de Fı́sica, Universidade Federal da Paraı́ba
C.P. 5008, 58051-970 João Pessoa, PB, Brazil

Received on 26 August, 2006

We have proposed a semi-microscopic approach to calculate the two particles - two holes (2p−2h) spreading
width of giant resonances. Our proposal has been based in a hybrid method that implements the statistical
multistep compound theory of Feshbach, Kerman and Koonin (FKK), widely and successful used in nuclear
reactions mechanisms, in order to include relevant informations about the microscopic structure obtained by the
Random Phase Approximation (RPA) calculations. This method is an approximative calculation to avoid the
intrinsic numerical difficulties of those microscopic calculations that incorporate more complex structure than
one particle - one hole (1p−1h) excitations. Unlike the reaction context, the residual interaction was adjusted
in RPA calculation to reproduce the lowest energy levels of the studied nuclei. The feasibility and the efficiency
of the approach has been tested in giant dipole resonances in 208Pb and neutron-rich calcium isotopes, 48Ca and
60Ca.
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I. INTRODUCTION

The calculation of the decay widths of the giant resonances
(GR) in nuclei supplies a measure of the fragmentation degree
of their decay mechanisms. These mechanisms have taken a
special attention in nuclear physics research [1, 2] since the
discovered of those highly collective nuclear excitations. The
GR’s energy is located above the threshold of particle emis-
sion and its classification in terms of the direct and statisti-
cal decay modes has been a permanent discussion in the lit-
erature. The competition between these decay modes can be
formulated through an evolution chain in a particle-hole ba-
sis, which allows the decomposition of the total width (Γ) in
two components: the escape width (Γ↑), that couples directly
one particle to the continuum, and the spreading width (Γ↓),
due to the coupling to internal degrees of freedom like low-
lying surface modes and 2p− 2h excitations. In this sense,
the total width can be written as Γ = Γ↑ + Γ↓. The study of
the competition between these decay modes has always mo-
tivated the development of methods of calculations of these
widths, bringing new insights to the understanding of the res-
onances microscopic structure. The Random Phase Approx-
imation (RPA) has been reaching a lot of theoretical success
to describe the GR microscopically as a coherent superposi-
tion of particle-hole excitations. Various different versions of
this theory have been developed to treat the escape process by
considering the coupling of 1p−1h excitations to the contin-
uum [3–10]. Beside these efforts the study of the spreading
process also had their improvements by extending the 1p−1h
basis in order to include 2p−2h excitations [11–13] in a RPA-
like treatment, named second RPA. However, in face to the
enormous dimensions of the matrices that describe the second
RPA these calculations become impracticable, mainly when
applied to the heavy nuclei, requiring a long time of numeri-
cal computation. To outline these intrinsic numerical difficul-
ties some approximated methods were developed to calculate

the widths related with more complex structure than 1p− 1h
[14–19].

In Ref. [20], we have analysed the structure of the isovec-
tor dipole resonance in neutron-rich calcium isotope, 60Ca,
by using a previous version of the continuum RPA approach
[10], which was modified to take into account the differences
among the neutron and proton radii in nuclei with neutron ex-
cess. We have observed a small escape width of the giant di-
pole resonance (GDR) in this nucleus, indicating that the more
complicated excitations than 1p− 1h should also be impor-
tant for the description of its microscopic structure. Recently,
we have applied the same method for the analyses of the di-
rect decay mode of isoscalar giant dipole resonances (ISGDR)
in 208Pb [21], whose new studies have been stimulating the
improvements of the structure calculations largely around the
ISGDR [19, 22–27].

The purpose of this paper is to complete the investiga-
tion about the GR decay mechanisms, and to present a fea-
sible scheme to calculate the GR’s spreading width. There-
fore, we present a new formulation of an approximated
semi-microscopic method, based in the statistical Multi-Step
Compound Theory (MSC) of Feshbach, Kerman and Koonin
(FKK) [28] in connection with the RPA calculations. This
procedure overcomes the inherent numerical difficulties in the
second RPA to investigate the 2p− 2h structure, and also al-
lows to include in the FKK approach the same residual in-
teraction used in the RPA calculations. This fact is an impor-
tant point regarding the management of the residual interac-
tion, what in our proposal it is made in consonance with the
RPA calculations, maintaining a cohesion between both the
approaches. This method has been tested in giant dipole reso-
nances in 208Pb and neutron-rich calcium isotopes, 48Ca and
60Ca.

This paper is a more detailed and complete version of the
work: “Description of Decay Mechanisms of the Giant Di-
pole Resonances with a RPA+FKK Approach”; proceedings
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of XXVII Workshop on Nuclear Physics in Brazil (2004),
published in special issue of Brazilian Journal of Physics [29].

In the Sect. II of this paper, we present the semi-
micorscopical approach used in the spreading width calcula-
tion. The results are discussed in the Sect. III.

II. THE SEMI-MICROSCOPIC APPROACH

In order to perform the calculation of the spreading width,
we can use the Statistical Multi-Step Compound Theory
(MSC) of Feshbach, Kerman and Koonin (FKK) [28]. In this
approach, the excitation of the GR takes place in a number
of stages, the particle emission is allowed in anyone of them.
Each stage is represented by a level of complexity, which is
characterized by the number of particle-hole pairs that are ex-
cited by an external field: the first stage has 1p− 1h config-
uration, the second one has 2p− 2h configuration and so on,
until the compound nucleus formation [30].

According to this formalism, the average total width 〈ΓnJ〉
for each stage n (np−nh) with angular momentum J is given
by the sum of the escape contribution 〈Γ↑nJ〉, due to the con-
tinuum coupling, and the spreading contribution 〈Γ↓nJ〉, due to
the transition for more complex stages. The spreading width
for the nth stage, for a excitation energy E, is given by

〈Γ↓n+1
nJ (E)〉= 2π

〈|HJ
n,n+1|2〉

〈Dn+1J〉 (1)

where 〈|HJ
n,n+1|2〉 is the mean square matrix element of inter-

action that couples the n and n + 1 stages with total angular
momentum J, and 〈Dn+1J〉 is the average spacing of levels
in the (n+1)st stage coupling to the total angular momen-
tum J. The average process is performed over initial states
and summed over final states by considering the particle-hole
level density ρph(E,J) with energy E and angular momentum
J.

By assuming an energy and angular momentum factoriza-
tion of the state density ρph(E,J),

ρph(E,J) = ω(p,h,E)Rn(J), (2)

the spreading width is written as [28]:

〈Γ↓n+1
nJ (E)〉= X ↓n+1

nJ Y ↓n+1
n (E) (3)

The X function contains the angular momentum structure in-
cluded in the particle-particle two-body interaction and the
spin distribution of the single particle levels. The Y function
contains all the dependence on excitation energy originating
from the final state density, the particle-hole distinguishabil-
ity, and describes the available phase space for the transition.

In order to calculate the X function we are considering the
diagrammatic representation for the process with the addi-
tional creation of a particle-hole pair (see FIG. 1). By per-
forming the average process with a general two-body interac-
tion, we have obtained
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FIG. 1: Diagram with the angular momentum coupling [30] used
in the X function computation for the process which one particle-
hole pair is created. As we do not considered the distinguishability
between particle (up arrow) and hole (down arrow), the two-body
interaction (dashed line) is particle-particle type.

X↓(n+1)
nJ = 2π ∑

jQ j4 j3

R1( j)R1(Q)RN−1( j4)
RN(J)

(2 j3 +1)
(2Q+1)

∆(QJ j4)

∑
j1 j2

R1( j1)R1( j2)(〈{ j1 j2} j3 |V |{Q j} j3〉)2 (4)

where

RN(J) =
(2J +1)

π
1
2 N

3
2 σ3

exp(− (J + 1
2 )2

Nσ2 ) (5)

is the angular momentum distribution of the single-particle
levels with a spin cut-off parameter

σ =

[√
12

45π
A

5
3

g

] 1
2

, (6)

related to the single-particle spacing g, and

N =
{

p+h = 2n , N even
p+h+1 = 2n+1, N odd (7)

is the number of the excited particle-hole pairs (number of
excitons). The function ∆( ja jb jc) guarantees the angular mo-
mentum conservation, i.e., ∆( ja jb jc) = 1 if |−→j a−−→j b| ≤ jc ≤
|−→j a +

−→
j b| or zero otherwise.

The computation of the Y function is similar to that of the X .
In this case, we have considered the state densities of the ini-
tial and final particle-hole configurations. Due to the particle-
hole distinguishability, there are two spreading process, cor-
responding to a particle or a hole interacting with a bound
nucleon, exciting an additional particle-hole pair (see FIG. 2).
So we have

Y ↓n+1
n (E) = aY ↓n+1

n (E) + bY ↓n+1
n (E) (8)
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FIG. 2: Diagram with the energy conservation [30] in order to calcu-
late the Y function considering the two possible processes to excite a
particle-hole pair, taking account the particle-hole distinguishability.

with

aY ↓n+1
n (E) =

∫ E

0

ω(1,0,E− z)ω(p−1,h,z)
ω(p,h,E)

ω(2,1,E− z)dz

(9)

bY ↓n+1
n (E) =

∫ E

0

ω(0,1,E− z)ω(p,h−1,z)
ω(p,h,E)

ω(1,2,E− z)dz

(10)
where z is the core energy.

The form of the particle-hole state density considered is that
proposed by Oblozinsky [31]:

ω(p,h,E) =
gN

p!h!(N−1)!

p

∑
i=0

h

∑
k=0

(−1)i+k
(

p
i

)(
h
k

)

×Θ(E−αph− iB− kF)

×(
E−Aph− iB− kF

)N−1 (11)

where B and F is the binding and Fermi energy, respectively;
the step function Θ(x) is unity for x > 0 and zero otherwise;
αph is the minimum energy needed to excite p-particles and
h-holes satisfying the Pauli principle and is given by

αph =
1
2

(
p2 + p+h2−h

g

)
, (12)

and the quantity

Aph =
1
4

(
p2 + p+h2−3h

g

)
, (13)

accounts for Pauli blocking. In Ref. [28] the density of single-
particle(hole) states is derived from the equidistant single-
particle model, resulting in a n-stage Yn(E) function with a
direct dependence on E2. Therefore, for resonances at ener-
gies far away from the nucleon binding energy (as in isoscalar
GDR) this outcome is not a good option because the spread-
ing width involves only intermediate bound states. This way,
we use the Yn(E) function proposed by Oblozinsky [31] where

the level density is obtained restricting the nucleons to bound
states, limiting the energy dependence.

After this brief discussion about the FKK approach, we
present some necessary modifications to connect it with the
nuclear structure calculations like RPA. The definition of the
spreading width in Eq.(1) and the form as the density of states
was written in Eq.(2) permits to factor the width in terms of
the product of the functions X and Y in Eq.(3), resulting a
X function that does not depend on the excitation energy E.
Thus, the X and Y functions are calculated separately, result-
ing in a complete uncoupling between the angular momentum
of the excited particle-hole pairs and the energy where they
are considered in the calculation of the width. This way, all
1p−1h pairs are treated in the same foot in any energy, mak-
ing the results to depend strongly on the particle-hole basis
considered. On the other hand, in RPA approach, the excita-
tion probability of a specific particle-hole pair depends on the
excitation energy and its angular momentum coupling. There-
fore, since we have accounted a fairly complete 1p−1h basis
in a RPA calculation, the results do not undergo considerable
alteration by including another more internal (or more exter-
nal) single-particle level in the configuration basis, besides
those already taken into account in the “fairly complete” basis.
Nevertheless, as in the FKK approach the constraint between
the energy and angular momentum of the single-particle level
is broken, the spreading width calculation does not take ac-
count these important microscopic informations about the oc-
currence probability of each pair 1p−1h on the energy of the
GR.

In order to include these microscopic informations calcu-
lated by RPA, to minimize the dependence with the 1p− 1h
basis and the number of possible intermediate couplings, we
have implemented some modifications in the original form
[28] of the X function. The main modification consists in to
take into account the excitation probability of each 1p− 1h
pair that is accessed in the energy in which the calcula-
tions are performed (this proposal is hereafter referred to as
RPA+FKK approach). This reformulated X function is given
by:

X↓(n+1)
nJ (E) = 2π ∑

jQ j4 j3

P J
Q j4

R1( j)R1(Q)RN−1( j4)
RN(J)

× (2 j3 +1)
(2Q+1)

∆(QJ j4) ∑
j1 j2

P j3
j1 j2 R1( j1)R1( j2)

×(〈{ j1 j2} j3 |V |{Q j} j3〉)2 L(E,E2) (14)

where the inclusion of the factor P J
jp jh

controls the probability
of accessing each 1p−1h configuration, and also it minimizes
the dependences with the 1p−1h basis and the number of j3
couplings. We have taken into account only phonons ( j3) with
energy smaller than the energy of particle threshold, as well as
in the calculations based on the second RPA versions [14–18].
The quantity L(E,E2p−2h) is a lorentzian type function,

L(E,E2p−2h) =
η2

(E−E2p−2h)2 +η2 , (15)
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with E2p−2h = ε j +ε j1−ε j4−ε j2 (ε is the energy of the single-
particle level). It simulates the energy denominator of the sec-
ond RPA calculation and gives a measurement of the fragmen-
tation of the RPA solution into 2p−2h space. Thus the acces-
sibility of some single-particle level j may be considered. We
would like to emphasize that now the calculation of X func-
tion is performed in each excitation energy (E) at the GR en-
ergy position, and with the respective P J

jp jh
and L(E,E2p−2h)

factors.
We define the factors P J

jp jh
as function of the 1p− 1h for-

ward RPA amplitudes (xJ
jp jh

):

P J
jp jh =

NP|xJ
jp jh
|2

∑
jp jh(Γp≈0)

|xJ
jp jh
|2 , (16)

where Np is the number of bound (or with single-particle
width too smaller than GR width) 1p−1h configurations cou-
pling to

−→
J . The RPA amplitudes are obtained by a diagonal-

ization of the complex equation:

(
A B
−B −A

)(
xm

ym

)
= ε̂m

(
xm

ym

)
(17)

where

Aphp′h′ = (̂εp− εh)δpp′δhh′ +Vph′hp′ ; Bphp′h′ = Vpp′hh′ (18)

and ε̂p (̂εp = εp − 1
2 iΓp) are the complex energies of the

single-particle resonances [32, 33]. The real part of the com-
plex eigenvalues ε̂m gives the excitation energy (εm), and the
imaginary part gives the escape width (Γ↑m) of the 1p−1h ex-
citation mode (See Refs. [10] and [20] for more details).

The discrete single-particle energies were evaluated by
solving the Schrödinger equation with Woods-Saxon poten-
tial, including the centrifugal and Coulomb (as a uniformly
charged sphere) terms. The positive single-particle energy and
its respective width were calculated in a projection technique
to continuum discretization approach discussed in Refs.[32,
33]. The RPA calculation was done by utilizing the Landau-
Migdal residual interaction:

Vph(−→r1 ,−→r2 ) = C0[ f (r1)+ f ′(r1)
−→τ1 ·−→τ2 +

+−→σ1 ·−→σ2
(
g(r1)+g′(r1)

−→τ1 ·−→τ2
)
]δ(−→r1 −−→r2 ) (19)

where f , f ′, g and g′ are dimensionless and density dependent
parameters:

F(r) = Fex +(F in−Fex)ξ(r) . (20)

The set of the interaction parameters was adjusted to elimi-
nate the spurious state 1− (see TABLE I) and to reproduce
the first 3− excited state for each nucleus under consider-
ation. Since the neutron and proton densities are too dif-
ferent in nuclei with neutron excess, it is more appropri-
ate to separate the nucleon density into neutron and proton
parts, ξ(r) = N

A ξν(r) + Z
A ξπ(r), where each part is given by

ξk(r) = 1
1+e(r−Rk)/ak

, with k = ν(π) for neutron (proton) [20].

In this same sense, the radial single-particle orbits are rep-
resented by harmonic oscillator radial wave functions with
different size parameters for neutrons and protons, b2

k ≈
4

(3)
4
3
〈r2〉k(Xk)−

1
3 [20], where 〈r2〉k ≈ 3

5 R2
k + 7

5 π2a2
k [34].

We have adopted the following criterion in order to choose
the parameter η in Eq.(15):

η = ηm = min(
εm− εm−1

4
,

εm+1− εm

4
) , (21)

where εm are the energies obtained in RPA calculation around
the GR position. We have considered only RPA solutions
(εm) that exhaust at least 1% fraction of the the Energy
Weighted Sum Rule (EWSR). This criterion assure that
we have considered only 2p − 2h poles, E2p−2h, in the
neighborhood of solution εm, i.e., the common area among
the lorentzian L(εm,E2p−2h) and its neighboring lorentzians,
L(εm−1,E2p−2h) and L(εm+1,E2p−2h), is small. Then we have
not taken account the 2p− 2h poles that are lied out of the
neighborhood of εm (energy interval: [εm−1 +2η,εm+1−2η]).

This way, various RPA peaks can be superposing in the en-
ergy interval around GR, and the medium values of the energy
and width are obtained through an average process over the
involved peaks. These medium values are calculated by per-
forming the weighted average:

〈a〉= ∑m Pm am

∑m Pm
, (22)

where am represents the value to be averaged and the weights,
Pm, are the intensities of each peak relative to the fraction of
EWSR that they exhaust in the specific energy interval. For an
arbitrary energy interval [EI ,EF ] we get the definitions:

Pm(%)≡ 100×
∫ EF

EI
Sm

F (E)E dE

EWSR
, (23)

where the strength function SF(E) is written as

SF(E) = ∑
m

Sm
F (E), (24)

and

EWSR =
∫ EF

EI

SF(E)E dE . (25)

In order to calculate the the strength function SF(E) we
have assuned the particle-hole matrix element of the 1-body
dipole operator (F̂λ=1) as

F̂T=1
1M = ekrY1M (26)

for isovector (T = 1) electric dipole transition, where ek is the
nucleon effective charge, i.e., eν(π) =− eZ

A ( eN
A ), and

F̂T=0
1M =

(
r3−ηs r

)
Y1M (27)

for isoscalar (T = 0) dipole transition, where ηs = 5
3 〈r2〉 to

eliminate (reduce) the contribution of the spurious state mix-
ing [35, 36].
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Another point that deserves a special attention is the part
that deals with the residual interaction used in the calculation.
The consistency of the RPA+FKK approach is guaranteed by
using the same Landau-Migdal interaction to diagonalize the
RPA equations and to compute the X function. However, in the
FKK calculations [28, 30, 37, 38], the two-body interaction
was assumed to be the simplest zero-range form

V (−→r 1,
−→r 2) = V0(

4
3

πr3
0)δ(−→r 1−−→r 2) , (28)

where the strength of the interaction, V0, is a free parameter. It
is frequently adjusted in order to reproduce some experimen-
tal data that can be calculated by the formalism. There is no
standard procedure to adjust V0, and it is controlled in each
specific calculation. This makes possible many other differ-
ent forms of getting such adjustments, what could cause great
variations on the V0 values. In this context, the studies per-
formed by R. Bonetti and L. Colombo [37] have showed that
V0 increases when more realistic ingredients are included in
the computation of matrix element of the interaction. In a se-
ries of calculations to reproduce the widths of precompound
and compound nuclear r-stage, extracted from the experimen-
tal data about 27Al(3He, p) reaction, they used different details
concerning the interaction, wave functions and level densities,
and they verified the occurrence of great variations in the V0
values. In another way, distinct procedures were adopted to fit
the experimental data in the Refs.[28, 30, 38] to treat different
nuclear reactions. The varied forms to control the parameters
of the residual interaction, as well as the management of V0,
seem to be a consequence of the difficulty to establish more
general criteria to guide such adjustments.

In our proposal we have been adapting the FKK formalism
to be applied in consonance with the RPA approach. Proceed-
ing this way, the parameters of the residual interaction had
been adjusted at level of the RPA calculation in a standard
way, in order to reproduce the excited states with the lowest
energies and to eliminate the spurious solution at zero energy.
Thus, the results for the GR are obtained as consequence of
this parametrization. Soon after, this same set of parameters
was used to calculate the spreading width. This procedure is
taken to keep the coherence between these two types of calcu-
lations for escape and spreading widths. In this sense, we do
not have total freedom to choose the parameters, and we may
interpret that the adjustments of a free parameter like V0 can
accommodate some details that should be part of the calcula-
tions. This statement becomes more evident when we write
the squared matrix element of Eq.(14) in the following form:

(
〈 j1 j2; j3|Ṽ |Q j; j3〉

)2
= P J

Q j4 P j3
j1 j2 (〈 j1 j2; j3|V |Q j; j3〉)2

×L(εm,E2p−2h) , (29)

with Ṽ in the form given by the expression (28). Thus,
the nuclear structure effects displayed by P J

Q j4
, P j3

j1 j2 and
L(εm,E2p−2h) quantities could be hidden behind the adjust-
ments of V0.

TABLE I: Parameters of Landau-Migdal residual interaction.

Nucl. C0(MeV f m3) f in f ex f ′in f ′ex g g′
208Pb 368.75 0.200 −1.474 1.5 1.5 0.635 0.70
48Ca 300.0 −0.002 −1.282 0.76 2.30 0.05 0.94
60Ca 300.0 −0.002 −2.100 0.76 2.30 0.51 0.70

TABLE II: Parameters of Fermi distribution and harmonic oscillator
radial wavefunctions.

Nucl. Rν( f m) aν( f m) Rπ( f m) aπ( f m) bν( f m) bπ( f m)
208Pb 6.84 0.50 6.60 0.50 2.41 2.51
48Ca 3.34 0.65 3.05 0.65 1.95 1.97
60Ca 4.34 0.60 3.68 0.60 2.09 2.11

III. RESULTS AND DISCUSSIONS

In this section we shall present the results for spreading
widths for giant dipole resonances in 208Pb and 48,60Ca nu-
cleus. The set of parameters of residual interaction and har-
monic oscillator radial wave function are given in TABLES I
and II, respectively.

In the calculation of the spreading width we have taken into
account the contributions of the intermediate phonons with
multipole j3 ≤ 6, natural parity and energy smaller than the
neutron separation energy Sn. The features of these low-lying
modes are obtained by the continuum RPA described in Ref
[20]. This procedure is similar to others microscopic calcu-
lations which considering the coupling to low-lying phonons
[14–18]. Our results for GR widths are summarized in TABLE
III. The comparison with the experimental data was showed a
quite reasonable agreement.

The first application test refers to the spreading width cal-
culation of the isovector GDR in 208Pb. The experimental data
get this resonance located around 13.5 MeV with a total width
of 4.0 MeV [39]. The decay of this resonance in heavy nu-
cleus is broadly dominated by the statistical mechanism, being
compatible with a small direct neutron branching ratio. Our
calculation gets a medium energy around of 10.8 MeV with
a null escape width and a spreading width (

〈
Γ↓

〉
= 4.4 MeV )

that fits the total width, indicating that the decay of isovec-
tor GDR in 208Pb is dominated by more complex mechanisms
than the direct one, as it is expected for heavy nuclei. This
result is in good accordance with the statistical calculations
to analyze the neutron spcetra [40]. The centroid in energy
is slightly shifted in relation to the experimental data, which
might have been caused by the need of going besides 1p−1h
excitations to explain the structure of this resonance and also
by the fittings of Landau-Migdal residual interaction [41, 42].

On the other hand the results for the ISGDR are shown dif-
ferent, presenting a balanced competition between the direct
and more complex decay modes. The experimental data about
the isoscalar GDR are not well defined, and present some dis-
crepancies among them. There are some discussions in the
recent literature in relation to its correct location and their
widths [22–24, 26]. Our calculations predict a considerable
strength in the energy region above 20 MeV , which is com-
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TABLE III: Summarized results.

Nucleus Mode
〈
Γ↑

〉
(MeV )

〈
Γ↓

〉
(MeV )

208Pb IVGDR 0.00 4.4
ISGDR 2.67 3.3

48Ca IVGDR 0.13 4.3
60Ca IVGDR 0.56 0.0
Experimental values

〈E〉(MeV ) 〈Γ〉(MeV )
208Pb IVGDR 13.5 4.0[39]

ISGDR 20−23 2.5−10[22–24, 26]
48Ca IVGDR 19.9 7.0[44]

posed by the presence of various narrow peaks superposing
to exhaust about 82% of the EWSR between 20− 30 MeV .
These peaks are mainly composed by 3hω transitions involv-
ing the neutrons and protons of the externals shells. The en-
ergy and escape width of this resonance were evaluated by
performing a weighted average on the energies and widths of
the peaks that compose it, the weights being the intensities of
each peak relative to the 82% of the EWSR that they exhaust.
The centroid was calculated at 24.4 MeV with an average es-
cape width of 2.7 MeV . Then, making use of these results for
ISGDR in 208Pb, provided by the RPA calculations, we pro-
ceed the calculation of the spreading width and we obtained〈
Γ↓

〉
= 3.3 MeV , resulting a total width 〈Γ〉= 6.0 MeV . The

result of our escape width is larger than the value of 1.9 MeV
encountered by another calculation of continuum RPA [43],
while our calculated spreading width is in agreement with the
fits from Ref.[26], and also, with the value of 3.2 MeV used
in the analysis of the Ref.[43].

The others results refer to the analyses of the decay mecha-
nisms of the isovector giant dipole resonances in neutron-rich
calcium isotopes, 48Ca and 60Ca. Experimentally, the isovec-
tor GDR in 48Ca is localized around 19.5 MeV with width
of 7.0 MeV [44]. We have found about 97% of the EWSR
between 10 and 21 MeV by performing our RPA calculation,
with two peaks exhausting 47% of the EWSR around 20 MeV .
The mean energy is about 15.6 MeV with a very small escape
width:

〈
Γ↑

〉≈ 130 keV , reflecting the narrow single-particles
widths. This result is in disagreement with the Strauch et.
al. estimates [45] which have given about 40% of direct neu-
tron escape for GDR decay in this nucleus. This large fraction
was deduced by comparison of the residual nucleus excitation
spectrum (47Ca), which was measured in 48Ca(e,e′n) reac-
tion, with the statistical model calculations. On the contrary,
our result for spreading width (

〈
Γ↓

〉
= 4.3 MeV ) is in good

agreement with the statistical analysis performed in this ex-
perimental work [45], which is compatible with 60% of the
total width. With relation to 60Ca, the calculated spreading
width in the isovector GDR region, around 15 MeV , for this
nucleus is very small, even considering many low-lying en-
ergy phonons. This fact reinforce the statement which the two
or more neutron escape should be important for GDR decay
in 60Ca [20]. The spreading is small because there are few
accessible intermediaries bound 1p−1h pairs.

The widths summarized in TABLE III can assist us to make

a measure of the competition among the direct and statisti-
cal decay mechanisms, for so much, we define the direct de-
cay branching ratio as b↑ = Γ↑/Γ and the statistical branch-
ing as b↓ = 1−b↑, where Γ = Γ↑+Γ↓ is the total width. The
branching ratios should be understood as reference values that
indicate the degree of fragmentation of the giant resonances.
Thus, the null escape width for IV GDR in 208Pb represents the
largest domain of the statistical decay (b↓ ' 1) as it happens in
heavy nuclei [40]. In a different way, the results for isoscalar
E1 in 208Pb indicate that this excitation mode should have a
strong fragmentation of its microscopic structure in 1p− 1h
and 2p− 2h components. The large direct branching ratio
(b↑ ' 0.45) of the ISGDR in this same nucleus is composed
by one neutron (b↑ν ' 0.32) and one proton (b↑π ' 0.13) direct
decay, being strongly dominated by neutrons emission. This
result reflects the fact that this resonance is located in higher
energy than the isovector GDR and far beyond the neutron
threshold. Thus, the direct decay channel is quite favored by
this high energy and it competes equally with the statistical
mechanism, unlike of what it happens with the isovector one.
In TABLE IV we present the estimates for the partial escape
widths, and their respective branching ratios, for the isoscalar
E1 in 208Pb. To evaluate the partial escape widths Γ↑h we also
weighed the single-particle widths on their occurrence proba-

bilities (
∣∣∣xm

ph

∣∣∣
2
) [20]. With relationship to the 48Ca the results

for spreading width is compatible with a statistical branching
of b↓ = 0.60. This result is in good agreement with the neu-
trons spectra analysis of Ref. [45]. A more delicate analysis
refers to the 60Ca nucleus and there are no experimental data
to compare. In this nucleus the isovector giant E1 resonance
is possibly located above of the threshold of multiple neutrons
emission (the neutron and proton separation energies for 60Ca
are respectively: Sn ≈ 3.5 MeV and Sp ≈ 25 MeV [46, 47]). In
previous calculations [20] we had obtained that this resonance
was composed mainly for some bounded 1p− 1h excitations
of protons, and that the most external neutrons belonging to
the neutron skin had contributed to compose the structure of
the pygmy resonance. Consequently, the microscopic calcula-
tion involving only 1p−1h configurations do not get enough
intensity to the neutrons access the continuum region, result-
ing a very narrow total width.

In this point, it is worthwhile to do a brief comment on the
overtones of monopole (ISGMR2) and quadrupole isoscalar
(ISGQR2) giant resonances discussed in Ref. [19], whose
the high energies peaks were calculated in 32.1 MeV and
30.5 MeV , respectively. Proceeding to show the applicabil-
ity of our proposal we also obtained these high energies peaks
around of 30.0 MeV for both modes, exhausting about 75% of
the EWSR for ISGMR2, and about 40% for ISGQR2. In these
very high excitation energies, the resonances are very wide
because of the complex nature of their np− nh structures, as
well as the multiple nucleons in the continuum region, diffi-
culting the prevision of the widths. However, worthwhile to
present our estimates for the total widths of these resonances
as: 14 MeV for monopole and 6 MeV for quadrupole over-
tones. In the TABLE V , these results are compared with oth-
ers theoretical calculations and experimental data found in the
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TABLE IV: Partial escape widths for one neutron and one proton
direct decay from ISGDR in 208Pb nucleus. The neutron and proton
direct branching ratios are composed by (b↑)ν = 0.32 and (b↑)π =
0.13 , respectively. The partial branching ratios are shown in the
column b↑h for each neutron and proton hole.

hole Γ↑h(MeV ) b↑h = Γ↑h/Γ
(3p3/2)ν 0.01 0.002
(2 f5/2)ν 0.03 0.005
(2 f7/2)ν 0.58 0.097
(1h9/2)ν 0.47 0.078
(2d3/2)ν 0.19 0.032
(2d5/2)ν 0.16 0.027
(1g7/2)ν 0.25 0.042
(1g9/2)ν 0.22 0.037
(2d3/2)π 0.07 0.012
(1h11/2)π 0.19 0.032
(2d5/2)π 0.13 0.022
(1g7/2)π 0.23 0.038
(1g9/2)π 0.09 0.015
(2p1/2)π 0.01 0.002
(1 f5/2)π 0.01 0.002
(2p3/2)π 0.01 0.002
(1 f7/2)π 0.02 0.003

TABLE V: The mean energy and total width (both in MeV ) for
ISGMR2 and ISGQR2 in 208Pb.

Mode This Work Ref.[48] Ref.[19] Exp. [26]
ISGMR2 〈E〉 29.5 33.7 32.1 −

〈Γ〉 14 − − −
ISGQR2 〈E〉 31.5 − 30.5 26.9±0.7

〈Γ〉 6 − − 6.0±1.3

literature.
Concluding, we have presented a theoretical approach that

improves the FKK method to include microscopic ingredi-
ents, in order to calculate the spreading width of giant reso-
nances. A important point is that the spreading width is cal-
culated in connection with the RPA formalism. The residual
interaction used in FKK approach is the same that was ad-
justed in RPA calculation.
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