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Upper Bounds for Fusion Processes in Collisions of Weakly Bound Nuclei
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We obtain upper limits for the contributions of the incomplete fusion and sequential complete fusion processes
to the total fusion cross section. Through those upper bounds we find that these processes are negligible in
reactions induced by projectiles such as6He and11Li, which break up into neutrons and one fragment containing
the full projectile charge.

The effects of channel coupling in fusion reactions induced
by weakly bound projectiles have attracted great interest over
the last decade [1]. Some theoretical studies predict strong in-
fluence of the breakup channel over the complete fusion (CF)
cross section [2–7]. When one tries to compare these predic-
tions with experimental data [8–14], one finds a serious pro-
blem. Sorting out complete and incomplete fusion (IF) events
in an experiment may be a very difficult task, specially when
uncharged fragments are produced in the breakup of the wea-
kly bound collision partner. For this reason, most experiments
measure the total fusion cross section,σTF = σCF + σIF .
These results could not, in principle, be used to check theo-
retical predictions forσCF. However, the situation would be
different whenσIF << σCF. In this case one can approximate
σTF ' σCF and the measured cross section could be directly
compared with theoretical predictions forσCF. In the present
work, we present a method to find upper limits forσIF in colli-
sions induced by weakly bound projectiles. With this method,
we show that the incomplete fusion cross sections may be ne-
glected when the projectile breakup produces uncharged frag-
ments.

The appropriate theoretical tool to handle this problem is
the coupled-channels method. However, its implementation
becomes very complicated for the breakup channel, since it
involves an infinite number of states in the continuum. For
practical purposes, it is necessary to approximate the conti-
nuum by a finite set of states as in the Continuum Discreti-
zed Coupled-Channels method (CDCC) [15]. This procedure
has been extended to the case of fusion reactions in refs. [5–
7]. Recently, a semiclassical alternative based on the classical
trajectory approximation of Alder and Winther (AW) [16] has
been proposed [17]. This approximation was used to calculate
breakup cross sections and the results were compared with
those of the CDCC method. The agreement between these
calculations was very good. Since this semiclassical version
of the CDCC method is much simpler, it may be a very useful
tool to calculate cross sections for other channels in reactions
with weakly bound nuclei. Although the AW method has been
extensively used for several nuclear reaction processes, only
very recently it was applied to the estimate of the fusion cross
section [18]. For this application it was considered a simpli-
fied two-channel problem for which the fusion cross section
obtained with the AW method was compared with results of

a full coupled-channels calculation. In spite of the large sim-
plification in the calculation the agreement between these two
calculations was again very good. Although such calculations
may not be reliable for quantitative predictions, they lead to a
very useful qualitative conclusion. At above-barrier energies,
the fusion probability through channel-α at the partial-wave
l can be written as a product of two factors. The first is the

population of channelα, P̄(α)
l , at the point of closest appro-

ach. The second is the tunneling probability,T(α)
l , through

the effective (l -dependent) potential barrier. When dealing
with the breakup channel, one should have in mind that dif-
ferent tunneling factors should be used for incomplete fusion
of each breakup fragment. This point is not considered when
one treats the breakup channel as a bound state. A quantita-
tive semiclassical calculation of the fusion cross sections in
reactions with weakly bound projectiles requires the inclusion
of the continuum states associated with the breakup channel,
as in ref. [17]. However, some simple upper bounds can be
easily obtained.

As this work is devoted to reactions induced by weakly
bound projectiles, the variables employed to describe the col-
lision are the projectile-target separation vector,r , and the re-
levant intrinsic degrees of freedom of the projectile,ξ. For
simplicity, we neglect the internal structure of the target. The
Hamiltonian is then given by

h = h0(ξ)+V(r ,ξ), (1)

whereh0(ξ) is the intrinsic Hamiltonian andV(r ,ξ) repre-
sents the projectile-target interaction. The eigenvectors of
h0(ξ) are given by the equation

h0 |φα〉= εα |φα〉 . (2)

The AW method [16] is implemented in two-steps. First, one
employs classical mechanics for the time evolution of the vari-
abler . The ensuing trajectory depends on the collision energy,
E, and the angular momentum,l . In its original version, an
energy symmetrized Rutherford trajectoryr l (t) was used. In
our case, the trajectory is the solution of the classical equa-
tions of motion with the potentialV(r) = 〈φ0|V(r ,ξ) |φ0〉 ,
where|φ0〉 is the ground state of the projectile. In this way,
the coupling interaction becomes a time-dependent interac-
tion in theξ-space,Vl (ξ, t)≡V(r l (t),ξ). The second step con-
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sists of treating the dynamics in the intrinsic space as a time-
dependent quantum mechanics problem. Expanding the wave
function in the basis of intrinsic eigenstates,

ψ(ξ, t) = ∑
α

aα(l , t) φα(ξ) e−iεαt/~, (3)

and inserting this expansion in the Schrödinger equation for
ψ(ξ, t), one obtains the AW’s equations

i~ ȧα(l , t) = ∑
β
〈φα|Vl (ξ, t)

∣∣φβ
〉

ei(εα−εβ)t/~ aβ(l , t). (4)

These equations are solved with the initial conditions
aα(l , t → −∞) = δα0, which means that before the collision
(t →−∞) the projectile was in its ground state. The final po-
pulation of channelα in a collision with angular momentuml

is P(α)
l = |aα(l , t →+∞)|2 and the angle-integrated cross sec-

tion is

σα =
π
k2 ∑

l

(2l +1) P(α)
l . (5)

To extend this method to fusion reactions, we start with the
quantum mechanical calculation of the fusion cross section in
a coupled channel problem. For simplicity, we assume that
all channels are bound and have spin zero. The fusion cross
section is a sum of contributions from each channel. Carrying
out partial-wave expansions we get

σTF = ∑
α

[
π
k2 ∑

l

(2l +1) PF
l (α)

]
, (6)

with

PF
l (α) =

4k
E

Z
dr |uαl (kα, r)|2 WF

α (r). (7)

Above, uαl (kα, r) represents the radial wave function for the
l th-partial-wave in channelα andWF

α is the absolute value of
the imaginary part of the optical potential associated to fusion.

To use the AW method to evaluate the complete fusion cross
section, we make the approximation

PF
l (α)' P̄(α)

l T(α)
l (Eα). (8)

Above, T(α)
l (Eα) is the probability that a particle with redu-

ced massµα = m0APAT/(AP +AT) and energyEα = E− εα

tunnels through the potential barrier in channelα, andP̄(α)
l is

the probability that the system is in channel-α at the point of
closest approach on the classical trajectory.

We now proceed to study the complete and incomplete fu-
sion cross sections in reactions induced by weakly bound pro-
jectiles. For simplicity, we assume that the GS is the only
bound state of the projectile (as is the case of11Li projecti-
les) and that the breakup process produces only two projectile
fragments,F1 andF2. In this way, the labelsα = 0 andα 6= 0

correspond respectively to the GS and the breakup states re-
presented by two unbound fragments. Neglecting any sequen-
tial contribution, the complete fusion can only arise from the
elastic channel. In this way, the cross sectionσCF can be ob-
tained from eq.(6), dropping the sum over channels and using
in the single term

P̄(0)
l ≡ PSurv

l = |a0(l , tca)|2 . (9)

This probability is usually called survival (to breakup) proba-
bility. We get

σCF =
π
k2 ∑

l

(2l +1) PSurv
l T(0)

l (E). (10)

The accuracy of the semiclassical fusion cross section has
recently been checked in a preliminary two-channel calcula-
tion in the scattering of6He projectiles on a238U target, at
near barrier energies [18]. The weakly bound6He nucleus
dissociates into4He and two neutrons, with threshold energy
B = 0.975 MeV. The elastic channel is strongly coupled to
the breakup channel and the influence of this coupling on the
fusion cross section is very important. In this model, the brea-
kup channel is represented by a single effective state [19]. For
simplicity, the effective channel is treated as a bound state but
it is assumed to contribute only to incomplete fusion. The
complete fusion cross section is therefore given by eq.(10)
and the incomplete fusion cross section by considering only
theα = 1 term in eqs.(6) and (8). In [18] the threshold energy
was neglected and the same potential barrier was used for both
channels. That work showed that above the Coulomb barrier
the semiclassical cross sections (bothσCF and σTF) are in
very good agreement with those calculated with the coupled-
channels method. Further evidences of this fact will be pre-
sented in a forthcoming paper [20].

These calculations are rather schematic, since the conti-
nuum is represented by a single bound effective channel. In

this wayT(1)
l (E1) is the tunneling probability of the projec-

tile through the projectile-target potential barrier. However,
incomplete fusion does not correspond to this process. It cor-
responds to the tunneling of a projectile’s fragment through
its barrier with respect to the target. In the particular colli-
sion studied in [18], that is6He - 238U, incomplete fusion cor-
responds to the fusion of4He with 238U. The 4He fragment
carries about 2/3 of the incident energy while the4He-238U
potential barrier is slightly higher then that for the entrance
channel. Thus it is clear that the incomplete fusion cross sec-
tion is overestimated in our previous work [18]. To illustrate
this situation, in Fig. 1 we show the total fusion cross section
(solid squares) of [18] where inσTF the incomplete fusion

contribution was obtained from eq.(6) withT(1)
l (E1) repre-

senting the projectile-target tunneling probability. We then
re-calculateσTF modifying the contribution from incomplete

fusion. We use the samēP(1)
l but replace the tunneling fac-

tor by that for the4He fragment. That is, we use the4He -
238U potential barrier and the energy and angular momentum
corresponding to the shares of4He in the6He projectile. For
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FIG. 1: Total fusion cross section of ref. [18] (solid squares) compa-
red with that of the present work (stars). The present calculation uses
the same potential, channel coupling and simplifying assumptions of
[18]. The basic difference is that here the contribution from incom-
plete fusion uses the tunneling of the4He fragment, rather than the
full 6He projectile. For comparison, the complete fusion cross sec-
tion of [18] is also shown (open squares).

simplicity, we neglect the relative motion of the fragments of
6He. The resultingσTF is shown in Fig. 1 as stars. It is clear
that a proper treatment of the tunneling factor leads to a subs-
tantial reduction ofσTF. The new cross section now is close
to the complete fusion cross sectionσCF also obtained in [18]
(open squares). This indicates that the incomplete fusion cross
sectionσIF is very small.

As we mentioned before, the above results cannot be con-
sidered as a realistic prediction of the total fusion cross sec-
tion, since the model does not use a realistic description of the
continuum states corresponding to the breakup channel. Ne-
vertheless we will show that such simple calculations are ca-
pable of yielding relevant information on the fusion process:
more precisely, upper bounds for the incomplete fusion and
the sequential complete fusion cross sections,σIF andσSCF,

respectively, can be obtained from eq.(6) settingP̄(1)
l = 1 and

evaluating the tunneling probability in a proper way, as dis-
cussed below.

To illustrate the application of this procedure, we show two
examples. We employ the Akyüz-Winther parametrization
for the interaction potentials for all the systems considered.
Furthermore, the ingoing wave boundary condition is used in
all these calculations. Note that in the schematic model of
Fig. 1 we neglected the breakup threshold energy. However,
in the following estimates of upper limits for the fusion cross
sections, we do take it into account.

In the first case, shown in Fig. 2, we consider different fu-
sion processes that appear for the case of a7Li projectile in-
cident on a209Bi target, at energies just above the Coulomb
barrier. Only energies above the barrier are shown, as this is
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FIG. 2: Upper bounds of the contributions to the incomplete fu-
sion cross section for the7Li + 209Bi system, employing the Akÿuz-
Winther parametrization for the interaction potentials.

the region of applicability of the present version of the method
employed here [18]. The cross section for the incomplete fu-
sion induced by the3H fragment is much larger than that for
4He, which is negligible. This situation should be expected
because of the lower Coulomb barrier energy for3H. Also
shown is the single barrier penetration model cross section,
σBPM, for 7Li. We note that the upper bound for the incom-
plete fusion cross section induced by the3H fragment is large,
exceedingσBPM in the low energy region. The experimental
findings for this system [8] yield a value of the incomplete
fusion cross section of about 30% of the total fusion cross
section. Thus, although our upper bound is compatible with
the data, not much is learnt in this case. Also shown in this
figure is the upper bound for the cross section for sequential
complete fusion,σSCF. Although negligible at low energies,
it becomes appreciable forEc.m./VB≈ 1.5. We should remark
that to neglect the relative motion between the fragments tends
to overestimate the sequential complete fusion cross section,
and to decrease our estimate of the incomplete fusion cross
sections. A quantitative investigation of these effects is under
way [20].

In the case of6He incident on238U shown in Fig. 3, only
the contribution from4He to the incomplete fusion cross sec-
tion must be included, as the capture of one or both of the
neutrons produced in the breakup of6He cannot be experi-
mentally distinguished from the transfer process. In this case
the upper bound for both the incomplete fusion cross section,
and the sequential complete fusion cross sections are much
smaller than the BPM estimate for the complete fusion cross
section. This shows that, although it is difficult in this case to
distinguish between the complete and total fusion cross sec-
tions, their difference is expected to be small, as the value of
the incomplete fusion contributions to the total fusion cross
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FIG. 3: Same as Fig. 2 for the6He + 209Bi system. Note that only
the 4He contribution to the incomplete fusion has been shown. See
text for details and further discussion.

section is not important.

In summary, we have illustrated how the application of the
upper bounds to the incomplete fusion cross sections may be
applied to the estimate of their contribution to the total fusion
cross section. In cases where the unstable nucleus breaks into
charged fragments, these upper bounds are consistent with the
values measured. When one of the fragment posseses all of
the charge of the unstable nucleus, we have shown that the
complete fusion cross section, which is easy to evaluate theo-
retically, is a good estimate of the measured total fusion cross
section. The calculations presented here are limited to ener-
gies above the Coulomb barrier. An extended version of the
method exploring the classically forbidden region and inclu-
ding the relative motion between the fragments is presently
being developed [20].
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