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HBT Interferometry: Historical Perspective
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I review the history of HBT interferometry, since its discovery in the mid 1950’s, up to the recent developments
and results from BNL/RHIC experiments. I focus the discussion on the contributions to the subject given by
members of our Brazilian group.

1 Introduction
I will discuss the fascinating method invented decades ago,
which turned into a very active field of investigation up to
the present. This year, we are celebrating the 50th anniver-
sary of the first publication of the phenomenon observed
through this method. In this section, I will briefly tell the
story about the phenomenon in radio-astronomy, the subse-
quent observation of a similar one outside its original realm,
and many a posteriori developments in the field, up to the
present.

1.1 HBT

Figure 1. Aerial photo and illustration of the original HBT appara-
tus. They have been extracted from Ref.[1].

HBT interferometry, also known as two-identical-
particle correlation, was idealized in the 1950’s by Robert
Hanbury-Brown, as a means to measuring stellar radii

through the angle subtended by nearby stars, as seen from
the Earth’s surface.

Figure 2. Picture of the two telescopes used in the HBT experi-
ments. The figure was extracted from Ref.[1].

Before actually performing the experiment, Hanbury-
Brown invited Richard Q. Twiss to develop the math-
ematical theory of intensity interference (second-order
interference)[2]. A very interesting aspect of this exper-
iment is that it was conceived by both physicists, who
also built the apparatus themselves, made the experiment in
Narrabri, Australia, and finally, analyzed the data. Nowa-
days, the experiments doing HBT at the RHIC/BNL accel-
erator have hundreds of participants. We could briefly sum-
marize the experiment by informing that it consisted of two
mirrors, each one focusing the light from a star onto a photo-
multiplier tube. An essential ingredient of the device was the
correlator, i.e., an electronic circuit that received the signals
from both mirrors and multiplied them. As Hanbury-Brown
himself described it, they “ ... collected light as rain in a
bucket ... ”, there was no need to form a conventional im-
age: the (paraboloidal) telescopes used for radio-astronomy
would be enough, but with light-reflecting surfaces. The
necessary precision of the surfaces was governed by max-
imum permissible field of view. The draw-back they had to
face in the first years was the skepticism of the community
about the correctness of the results. Some scientists consid-
ered that the observation could not be real because it would
violate Quantum Mechanics. In reality, in 1956, helped by
Purcell [3], they managed to show that it was the other way
round: not only the phenomenon existed, but it also followed
from the fact that photons tended to arrive in pairs at the
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two correlators, as a consequence of Bose-Einstein statis-
tics. A very interesting review about these early years was
written by Gerson Goldhaber[1], one of the experimentalists
responsible for discovering the identical particle correlation
in the opposite realm of HBT: the microcosmos of high en-
ergy collisions.

1.2 GGLP
In 1959, Goldhaber, Goldhaber, Lee and Pais performed
an experiment at the Bevalac/LBL, in Berkeley, CA, USA,
aiming at the discovery of the ρ0 resonance[4]. In the
experiment, they considered p̄p collisions, at 1.05 GeV/c.
They were searching for the resonance by means of the de-
cay ρ0 → π+π−, by measuring the unlike pair, π+π−,
mass-distribution and comparing it with the ones for like
pairs, π±π±. Afterwards, they concluded that there was
not enough statistics for establishing the existence of ρ0.
Nevertheless, they observed an unexpected angular corre-
lation among identical pions! Later, in 1960, they success-
fully reproduced the empirical angular distribution by a de-
tailed multi-π phase-space calculation using symmetrized
wave functions for LIKE particles. Being so, they concluded
the effect was a consequence of the Bose-Einstein nature of
π+π+ and π−π−. They were not aware of the experiment
Hanbury-Brown and Twiss had performed previously. Thus,
they had discovered, by chance, the counterpart of the HBT
effect in high energy collisions. They parameterized the ob-
served correlation as:

C(Q2) = 1 + e−Q2r2
= 1 + e(q2

0−q2)r2
(1)

Q2 = −q2 = −(k1 − k2)2 = M2
12 − (m1 + m2)2 .

The Gaussian form in the above equation, and several of its
variant options, would be widely used in the years to come,
mainly by the experimentalists, due to the simplicity of the
emission source and analytical results allowed by this pro-
file. We will see which are the parameters and interpreta-
tions derived from it in a while.

1.3 Simple picture
At this point, it is natural to ask the question: How to under-
stand interferometry, or two-particle correlation, in a simple
way? First of all, we should anticipate that it follows from
considering two essential points: the adequate quantum sta-
tistics and chaotically emitting sources, which was already
emphasized by Bartknik and Rza̧żewski[5]. Let me illus-
trate it by a simple example of only two point sources, as
shown in Fig. 3:

The amplitude for the process can be written as

A(k1, k2) =
1√
2
[e−ik1.(xA−x1)eiφ1e−ik2.(xB−x2)eiφ2

± e−ik1.(xA−x2)eiφ′2e−ik2.(xB−x1)eiφ′1 ], (2)

where the (+) sign refers to bosons and the (−) one, to
fermions. In the above equation, φi corresponds to an
aleatory phase associated to each independent emission
(completely chaotic sources), i.e., one phase at random in

each emission. These phases are also considered to be inde-
pendent on the momenta k of the emitted quanta.

y

y»»»»»»»»»»»»»»»»

XXXXXXXXXXXXXXXX

H
H

H
H

H
H

H
H

©
©

©
©

©
©

©
©

xµ
2

xµ
1

II

I

(xµ
B)

(xµ
A)

B

A

kµ
2

kµ
1¾

½

»

¼

Figure 3. Simplified picture: two point sources, I and II, emit
quanta considered as plane waves, which are observed in detec-
tors A and B, respectively, with momenta kµ

1 and kµ
2 . Since the

quanta are indistinguishable, there are two possible combinations
for this observation, illustrated by the two continuous and the two
dashed lines.

The probability for a joint observation of the two quanta
with momenta k1 and k2 is given by

P2(k1, k2) = 〈|A(k1, k2)|2〉 =

=
1
2
[2± (ei(k1−k2).(x1−x2)〈e±i(φ1+φ2−φ′1−φ′2)〉+ c.c.)]

= 1± cos[(k1 − k2).(x1 − x2)]. (3)

The emission being chaotic, we have to consider an av-
erage over random phases, i.e.,

〈e±i(φ1+φ2−φ′1−φ′2)〉 = δφ1φ′1δφ2φ′2 + δφ1φ′2δφ2φ′1 .
(4)

The two-particle correlation function can be written as

C(k1, k2) =
P2(k1, k2)

P1(k1)P1(k2)
= 1±cos[(k1−k2).(x1−x2)] ,

(5)
where Pi(ki) is the single-inclusive distribution. It is es-
timated in a similar way as in the simultaneous detection
discussed above, i.e.,

A(ki) =
1√
2
[e−ik1.(xA−x1)eiφ1± e−ik1.(xA−x2)eiφ2 ]

P1(ki) = 〈|A(ki)|2〉= 1
2
[2± eiki.(x1−x2)〈e±i(φ1−φ2)〉+c.c.]

(6)

In the above case, we would have 〈e±i(φ1−φ2)〉 = δφ1φ2 .
Since the source is supposed to be chaotic, the two aleatory
phases of emission would be equal only if they were emitted
at the same space-time point. However, since we are consid-
ering here that the probability of two simultaneous emission
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by the same source is negligible, we would be forced to con-
clude that only possible solution to this problem that would
satisfy this criterium is that the average over phases is null,
in the case of observation by a single detector. We see then
that Pi(ki) = 1 in this case and then the result on Eq.(5)
follows.

Already from the very simple example discussed above,
se can see that, in the case of two identical bosons (fermi-
ons), we expect to see that C(q = k1 − k2 = 0) = 2 (0)
for completely chaotic sources. On the contrary, in the case
of total coherence C(q = k1 − k2) = 1 for all values of the
momentum difference. For large values of their relative mo-
menta, however, the correlation function should tend to one,
which is clearly not the case in Eq. (5). But this is merely
the consequence of considering an oversimplified example
of only two point sources.

1.4 Extended sources

More generally, for extended sources in space and time, if
ρ(x) is the normalized space-time distribution, we have

P2(k1, k2) =

= P1(k1)P1(k2)
∫

d4x1

∫
d4x2 |A(k1, k2)|2ρ(x1)ρ(x2)

= P1(k1)P1(k2)[1± |ρ̃(q)|2], (7)

where

ρ̃(q) =
∫

d4x eiqµxµρ(x) (8)

is the Fourier transform of ρ(x). Conventionally, we denote
the 4-momentum difference of the pair by qµ = (kµ

1 − kµ
2 ),

and its average by Kµ = 1
2 (kµ

1 + kµ
2 ).

Then, the two-particle correlation function can be writ-
ten as

C(k1, k2) =
P2(k1, k2)

P1(k1)P1(k2)
= 1± λ |ρ̃(q)|2. (9)

In Eq.(9) we added, as historically done, the parame-
ter λ, later called incoherence or chaoticity parameter.
This was introduced by Deutschmann et al.[6], in 1978, as
a means for reducing systematic errors in the experimental
fits of the correlation function. The origin of the large sys-
tematic errors was the Gaussian fit. The reason was that the
experimentalists tried to fit the data points with Gaussian
functions whose maxima in q = 0 were 2, although the data
never reached that maximum value. This led to discrepan-
cies and to large systematic errors. The easiest way out of
this apparent inconsistency was to add a fit parameter, λ,
thus reducing the systematic errors by the introduction of
this extra degree of freedom.
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Figure 4. Simple illustration corresponding to the ideal Gaussian
source. The upper curve represents to the bosonic case, while the
lower curve, the fermionic one. The parameter R is the r.m.s. ra-
dius of the emitting region.

To illustrate the correlation function as written in Eq.(9)
with a simple analytical example, let us consider the
Gaussian profile, i.e.,

ρ(x) = e−xµxµ/(2R)2 −→ ρ(q) = e−q2R2/2 . (10)

Consequently, in this very simple example, a typical corre-
lation function is written as

C(k1, k2) = 1± λ e−q2R2
. (11)

In equation (11), as we denoted before, the plus sign
refers to the bosonic case, and the minus sign to the fermi-
onic one. We easily see that, in this simple example, we
would expect experimental ideal HBT data to behave as
sketched in Fig. 4, where the upper part refers to bosons and
the lower one, to fermions. We see that, in the two-boson
(two-fermion) case, there is an enhancement (depletion) of
the correlation function in the region where the relative mo-
menta of the pair are small. In both cases of this simple
example, the typical size of the emission region corresponds
to the inverse width of the C(k1, k2) curve, plotted as a func-
tion of q = k1 − k2.

Returning to the discussion of the fit parameter λ, I
would like to point out that there is a very simple explanation
to reconcile this apparent inconsistency, without the need to
introduce this extra degree of freedom. Limited statistics
is behind it, since it is virtually impossible to measure two
identical particles with exactly the same momenta. This led
the experimentalists to split the momenta of the particles in
small bins. In more recent times, these bins can be projected
in two or more dimensions. For instance, along the income
beam direction in fixed target heavy ion collisions (qL), and
in the direction transverse to it (qT ). Good quality data al-
low the experimentalists to consider very small bin sizes.
Nevertheless, their range is finite. Being so, when the corre-
lation function is projected along, say, the qT direction, the
smallest value of qL is not zero, but within the first (smaller)
bin size, in case of high enough statistics. Consequently,
we immediately see that the correlation function plotted as
a function of qT , will not reach the maximum (minimum)
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value of 2 (0) for bosons (fermions) at qT = 0. Naturally,
the larger the first bin size, the bigger is the deviation from
the maximum (minimum) expected value for the correlation
function at q = 0. This can be better seen with the help
of Fig. 5, where the two upper curves represent the pure
correlation function and the two lower ones, the theoretical
correlation functions corrected by the Gamow factor, Υ(q),
a multiplicative factor taking into account 2-body Coulomb
final state interaction. This factor distorts the pattern, mainly
at small values of the momentum difference of the pair, and
is written as

Υ(q) =
qc/q

exp(qc/q)− 1
; qc = 2παm , (12)

where q is the four-momentum difference and α is the fine
structure constant. The Gamow factor simply multiplies the
entire expression in Eq.(9), (11), and all other forms of cor-
relation function for two charged, identical particles. Fig. 5
was generated by the code CERES, whose hypothesis and
formulation will be discussed later in this manuscript, in
Section 2.2.

Figure 5. The plot illustrates the fact that we can have the maxi-
mum of the bosonic correlation curve below unity, even when the
intercept parameter is fixed to be λ = 1. This normally happens in
realistic cases of finite statistics. In the plot, we see the two-pion
correlation as a function of qT , for two possible bin sizes, i.e., for
qL ≤ 0.01 GeV/c and qL ≤ 0.1 GeV/c. This plot was extracted
form Ref.[7]

We should emphasize, however, that the simple rela-
tion between the two-particle correlation function and the
Fourier transform of the space-time distribution, as written
in Eq. (11) is not straightforward, in general. It is observed
only when we can consider the phase-space as decoupled,
i.e., f(x,p) = ρ(x)g(p), where ρ(x) is the source space-
time distribution, and g(p) is the energy-momentum distri-
bution. In general, it cannot be decoupled in this way. This
is, for example, the case in relativistic heavy ion collisions,
where the source expands during its life-time. The reason
is that HBT is not only sensitive to the source geometry at
particle emission but is also sensitive to the underlying dy-
namics. This makes the analysis model-dependent and more
powerful formalisms (like the one proposed by Wigner, the
Covariant Current Ensemble, etc.) must be adopted. We will
discuss more about this limitation later on.

1.5 Further applications

In the 1970’s, Kopylov, Podgoretskiı̆, and Grishin[8] used
second-order interferometry to study several interesting
problems. For example, they modelled the nucleus as a sta-
tic sphere with radius R, emitting pions from its surface and
got the following correlation function

C(k1, k2) = 1± [
2J1(qT R)

qT R
]2[1 + (q0τ)2]−1 , (13)

where

q‖ = q.
K
|K|

qT = q− q‖

q0 = E1 − E2 ≈ 1
2m

(k2
1 − k2

2)

≈ 1
2m

(k1 − k2).(k1 + k2) ∝ q‖ . (14)

The two variables in Eq.(14) are nowadays known as Kopy-
lov variables. With respect to the same parametrization,
Cocconi[9] re-interpreted in 1974 the quantity cτ = δ(< R)
as the thickness of the pion emission layer. They used sim-
ilar forms for studying: i) the lifetime of excited nuclei
through the interferometry of evaporated neutrons, ii) shape
and size of multiple production region with π±π± correla-
tions, etc. They also applied to CERN/ISR data on pp, p̄p.

Many other scientists contributed to the field during
that decade. Just to mention a few names, I would
quote Shuryak; Biswas; Fowler & Weiner; Giovannini &
Veneziano; Grassberger; Yano & Koonin; Gyulassy, Kauff-
mann & Wilson, etc. Many of these contributions were orga-
nized in a collection of reprints, edited by R. M. Weiner[10],
in the late 1990’s, which is a very good source of these
reference papers. Among them, the papers by Gyulassy,
Kauffmann & Wilson[11], as well as those by Fowler and
Weiner[12], represented important steps in the field, for in-
troducing more powerful formalisms for studying the cases
of coherent, chaotic, and partially coherent sources. On the
other hand, Grassberger[13] called the attention to the fact
that resonances could play an important role in interferom-
etry, since the long lived ones could distort the correlation
function in the region where it was more significant, i.e., at
small values of q, thus changing the chaoticity parameter
considerably. This is due to the fact that a resonance of 4-
momentum k, mass M , and width Γ, would travel a distance
∼ k/(MΓ) before decaying, causing interference effects
whenever k.q ≤ MΓ. The first attempt to analyze the effect
of resonances on interferometry in detail was made more
than a decade afterwards. I will discuss it later in Sec. 2.2.

Despite the comment made earlier in the text, regarding
the limitations of the static Gaussian fit, this has always been
the preferred source model, due to its simplicity. Along this
line, it is instructive to observe that there is a Gaussian limit
of Eq.(13), corresponding to
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[
2J1(qT R)

qT R
]2 ≈ e−q2

T
R2

T /4 ;
1

[1 + (q0τ)2]
≈ e−q2

0
τ2

,

(15)

a variation of which suggests a non-relativistic parametriza-
tion of the correlation function, i.e.,

C(k1, k2) = 1± λ e−q2
0
τ2/2e−q2

T R2
T /2e−q2

LR2
L/2 . (16)

The expression in Eq. (16) has been widely employed
since the beginning of high energy heavy ion collisions, be-
coming the standard form to analyze two-particle interfer-
ometry, particularly among the experimentalists. In Eq.(16),
qL is the momentum difference along the direction of the
incident beam, qT is the component transverse to beam di-
rection, and q0 is the time component. In the late 80’s, the
most popular form changed slightly, according to the sug-
gestion by Bertsch[14], becoming

C(k1, k2) = 1± λ e−q2
SR2

S e−q2
OR2

Oe−q2
LR2

L/2 , (17)

similarly to the previous definition. However, in Bertsch’s
suggestion, there was a decomposition of the transverse
component, partially incorporating the definition introduced
by Kopylov and Podgoretskiı̆, i.e., qO and qS are both per-
pendicular to beam direction but qO ‖ KT [= 1

2 (k1T
+

k2T
)], and qS ⊥ KT. As before, qL represents the com-

ponent of the pair momentum difference along the beam
direction. Latter, Heinz et al., suggested to include a out-
longitudinal cross term in Gaussian fits to the data, i.e., the
correlation in this case would be written as[15]

C(k1, k2) = 1± λ e−q2
SR2

S e−q2
OR2

Oe−q2
LR2

Le−2q2
OLR2

OL .
(18)

Ever since, this field has been under constant develop-
ment and expansion, both in the theoretical and in the ex-
perimental grounds. I will briefly highlight only some of
the theoretical contributions to the field, mainly focusing
at the ones from the Brazilian group and some collabora-
tors from abroad, since a complete discussion of the con-
tribution along theses 50 years is beyond the scope of the
present review. For a complete survey of the subject, as well
as of the theoretical and experimental progress in the field,
I would strongly encourage the reader to look into Refs.
[10, 16, 17, 18, 19, 20, 21].

2 Contributions from group mem-
bers

The first contact of the group, whose contributions we are
discussing here, with HBT interferometry started in the mid-
to late eighties, and was the subject of my PhD Thesis[22].
In fact, it happened a few years before the group itself began
performing as a group. Nevertheless, this topic consistently
appeared during the group meetings along these years and,
since this is a historical perspective, it is worthy to insert the
subject in this context. Around the beginning of the decade
of 1980, there was already an emerging subject that was
attracting the attention of the high energy community: the

possible existence of a new state of matter, the Quark-Gluon
Plasma (QGP), expected to be produced at high enough tem-
peratures and/or densities. The QGP is a state in which
quarks and gluons, the constituents of the hadrons, would be
free to wander around a volume much bigger than the usual
hadronic size. This state was expected to exist for a brief
period of time, since only usual hadrons, with quarks and
gluons confined in their interior, have been observed em-
pirically. This imposed the need to look for probes of its
existence. Among them, Interferometry was suggested, as
a means to estimate the dimensions of the system formed
in high energy collisions, thus testing if it was produced in
such a new state of matter. In fact, James D. Bjorken was
the person who suggested pion interferometry as the subject
of my Ph.D. thesis[23].

2.1 Expansion effects in HBT
In the first paper on the subject, we started by making the
hypothesis that the Quark-Gluon Plasma was already be-
ing produced in pp and p̄p collisions at the CERN/ISR.
We considered[25] that the system produced in such colli-
sions expanded before emitting the final particles (hadrons),
according to the one-dimensional Landau Hydrodynamical
Model [26]. In the initial stage, the system was formed in the
QGP phase at a certain temperature, T0, started expanding
and cooling down, until it reached the critical temperature,
Tc, which we assumed to be of order of pion mass. It could
be imagined that, once Tc was reached, the hadronization
occurred instantaneously, followed by the particle emission.
This simplifying hypothesis was actually adopted in the gen-
eral study of the effects on the correlation function caused by
the system expansion. On the other hand, the energy density
of the ideal QGP fluid once Tc is reached, is much higher
that the correspondent one for a hadronic system, due to the
statistical degeneracy factors. More explicitly, εQGP (Tc) =
π
30 (gg + 7

8gq)T 4
c + B, where gg = 8(color) × 2(spin),

gq = 2(q̄q) × 3(color) × 2(spin) × Nf (flavors) are the
gluon and quark degeneracy factors. The constant B is the
vacuum pressure in the MIT Bag model. And, the hadronic
correspondent for an ideal gas of pions and kaons, at Tc,
is επ(Tc) = 1

2π2 [(gπ)φ(mπ/Tc) + gKφ(mK/Tc)], being
gπ = 3 and gK = 4, respectively the statistical factor
for pions and for kaons (The function φ(z) is a combina-
tion of Bessel modified functions of second class, Ki(z),
φ(z) = z2

∑∞
m=0(±1)m

{
3K2[z(1+m)]

(1+m)2 + z K1[z(1+m)]
(1+m)

}
).

Nevertheless, the large ratio of the QGP to the hadronic sta-
tistical degeneracy factors, together with the entropy con-
servation during the phase transition, make the duration of
the mixed phase very long. And mesons would be emitted
during all that period. This was a more realistic hypothe-
sis that was adopted when comparing our predictions with
experimental data. However, for the sake of simplicity, we
considered in the calculation that the emission occurred at a
typical average freeze-out time, < τf >.

In our calculation, we neglected the transverse expan-
sion and used the asymptotic Khalatnikov solution, i.e.

ξ ≡ ln
(

T

T0

)
' −c2

0 ln
( τ

∆

)

α ' 1
2

ln
(

t + x

t− x

)
(19)
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where α is the system rapidity, c0 ≈ 1/
√

3 is the sound ve-
locity

√
(1− c2

0)/πl, being l the initial thickness of the fire-
ball (solution valid whenever ξ À |α|). This is essentially
the Bjorken picture of hydrodynamics but with different ini-
tial conditions. In the version we adopted of the hydrody-
namics, the initial temperature T0 depends on the value of
the fireball, with mass M , initially formed in high energy
hadronic collisions. The hypothesis we used was that a large
Lorentz-contracted fireball was formed around one of the in-
cident particles[27], constituted of quarks and gluons, with
initial radius R ' Rproton. The fireball mass was estimated
as the missing mass, i.e., by discounting the fraction of the
energy available in the center of mass of the p̄(p)p collision
that was dragged by the dominant particle after the colli-
sion happened. For relating this initial temperature with the
fireball mass, we equated the number of produced hadrons
at Tc to the (conserved) entropy, which can easily be esti-
mated for a QGP as S(T0) = s(T0)VQGP . The initial vol-
ume of the QGP can be related to the initial energy density,
ε0, which can be simply written as ε0 = M/VQGP . The
initial entropy density, s(T0), can be estimated through sta-
tistical relations, leaving the calculation of the initial QGP
volume to be made. Since we considered p̄(p)p collisions,
we assumed that VQGP = 4

3πR3
0

2mp

M , where R0 and mp are,
respectively, the proton radius and mass. At the end, the fi-
nal proportionality coefficients were estimated with the help
of the experimental data on charged multiplicity versus the
missing mass. Finally, the initial temperature was related to
the fireball mass by a numerical factor, T0 = 0.0989

√
M .

From that, we estimated τc, instant corresponding to the be-
ginning of the phase transition, τc = ∆

(
T0
Tc

)
, and also the

instant it ended, τf , as well as the typical (average) duration,
< τf > (see Ref. [25] for details).

We had adopted the Kopylov variables described before,
in Eq. (14) and sketched in Fig. 6, as the relevant momentum
difference of the pair of pions.

Figure 6. Illustration of the Kopylov variables: we see that ~qL ≡
~q‖ ‖ ~K and ~qT ≡ ~q⊥ ⊥ ~K. The figure also shows other notations
commonly used: ~q ≡ ~∆p and ~K ≡ ~p.

For studying the general behavior of the correlation
function under the influence of the expansion effects, we as-
sumed that each point on the surface τ = τf of the QGP,
where T = Tc ' mπ, was an independent chaotic source
with momentum spectrum given by

f(p) ' 1
(2π)3

uµpµ

E
exp (−uµpµ

Tc
) , (20)

where uµ = (cosh α, sinhα, 0, 0) is the 4-velocity of the
fluid, and pµ = (E, px, py, pz) is the 4-momentum of the
emitted particle. The amplitude for a particle emitted at x′
to be observed at x is written as

A(x, x′) =
∫

d~p
√

f(p) exp [−ipµ(xµ − x′µ)]eiφ(x′) ,

(21)
where φ(x′) is a random phase. We followed the formula-
tion and notation of Ref.[28] for writing the probability of
detecting two quanta of momenta p1 and p2 in an event, as

W (p1, p2) = Ĩ(0, p1)Ĩ(0, p2)+|Ĩ[(p1−p2),
1
2
(p1+p2)]|2 ,

(22)
where

Ĩ[(∆p), p]=
∫

dx d(∆x)ei(x ∆p+∆x p)

∫
dx′I(x, ∆x, x′) ,

(23)
and

〈A∗[x−∆x

2
, x′]A∗[x+

∆x

2
, x′]〉 = δ(x′−x)I(x, ∆x, x′) .

(24)
The average indicated in the above equation is taken over
the random phases φ(x′) and φ(x′′). In particular, we see
that the single-inclusive distribution is written as

W (pi) = 〈|
∫

dx′
∫

dxeipi.xA(x, x′)dx|2〉 = Ĩ[0, pi] ,

(25)

Figure 7. C(p1, p2) as a function of the momentum difference
∆pT (≡ qT , in the text), for several values of the average momen-
tum p⊥ (≡ KT in the text). A clear dependence is seen: the curves
broaden with increasing average momentum, showing a progres-
sively smaller effective emission region. This plot is a reproduction
of the one originally published in Ref.[25].

From this formulation we obtained the expression for
the two-particle correlation function. With that, we studied
several different kinematical zones, trying to apprehend the
lessons that idealized theoretical cuts could teach us. Many
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interesting and important results came out of that study (see
Ref. [25] for details).

The first, unexpected effect, was showing a clear influ-
ence of different emission times at which the pions were
emitted from the source. I will write it in a simple analytical
form, later in the text. This effect showed itself into the cor-
relation function when plotted as a function of qT , the Kopy-
lov variable parallel to the average momentum of the pair,
K = 1

2 (k1 + k2). It is illustrated in Fig. 7. Independently
of our knowledge, S. Pratt had also suggested that the time
would influence the correlation function, so that large short-
lived sources could result into a similar correlation function
as a short long-lived one [29].

The dependence on the average momentum of the pair,
KT, shown above, was a symptom of effects coming from
the underlying dynamics, and reflected the break-up of the
naive picture, in which the correlation function depended
exclusively on the variable qT, as in the Gaussian example
discussed above.

We also compared our results with data of pp and p̄p col-
lisions at CERN/ISR (

√
s = 53 GeV) and could efficiently

describe the trend of data. This was maybe the only success-
ful description of that particular experimental result, reflect-
ing the need for more powerful formalisms when describ-
ing HBT interferometry at high energies. In this case, in
an effort to make the estimate more realistic, we considered
that the emission occurred later, at a typical instant of time
< τf >, averaged over the long period that lasted the first
order phase transition. We should notice that the curves in
Fig. 8 are not fits, but predictions from the model, obtained
without the need for introducing the λ parameter (which is
equivalent to fixing λ = 1). Similar treatment within the
same model was also given to two-kaon interferometry data
from the same experiment[25], successfully describing data.

Figure 8. In (a), the two-pion correlation function is shown in as
a function of the Kopylov variable qT , averaged over the interval
qL ≤ 0.15 GeV (we adopted natural units, in which ~ = c = 1).
In (b), it is shown as a function of the other component, qL ‖ K,
for qT ≤ 0.15 GeV. The data points are from Ref. [24]. These
plots were originally published in Ref.[25].

Figures 7 and 8 above also show another important result
from that study: the observation of strong distortions in the
correlation function, definitely departing from the Gaussian
shape, due to the dynamical effects related to the expansion
of the system.

2.2 Non-ideal effects

More than 10 years after Grassberger pointed out the impor-
tant role resonances could have in interferometry we inves-
tigated it in detail, in collaboration with M. Gyulassy[30].
In particular, we analyzed the effect of resonances decay-
ing into pions, following the predictions of resonance frac-
tions from the ATTILA version of the Lund model[31]. Very
briefly, it can be understood as follows: long lived reso-
nances, such as ω, η, η′, can mimic sources with longer life-
times, even if they freeze-out simultaneously as the direct
π’s.

I call the attention to the fact that, although denoted by
the same letters, the variables qL and qT of momentum dif-
ference, appearing in Fig. 9, are defined as the components
parallel and perpendicular to the incident beam direction, re-
spectively, as became a convention in high energy heavy ion
collisions.

Figure 9. The two-pion correlation function is shown in three dif-
ferent scenarios, as a function of qT . The first, in parts (a) and (d)
were calculated assuming an ideal inside-outside cascade source
(IOC) as in the 1-D Bjorken picture[36]. In parts (b) and (e), a
non-ideal resonance gas source is considered with parameters sug-
gested by the ATTILA version of the Lund model. Parts (c) and
(f) correspond to the QGP model of Ref.[33]. Plots in the upper
panel were calculated in the central rapidity region (2 < yπ < 3),
whereas the ones in the lower panel refer to 1 < yπ < 2. This
figure is a reproduction of the one originally published in Ref.[30].

It was very important to verify if we could explain
the preliminary results obtained by the NA35 collaboration
(CERN/SPS)[32] colliding O+Au at 200 GeV/nuclear in a
more conventional way, without assuming QGP formation.
This last hypothesis had been suggested by G. Bertsch[33]
at that time as the only possible explanation. Actually, by
introducing resonances decaying into pions explicitly into
interferometry, we managed to demonstrate that our result,
assuming the formation of a regular hadronic system and no
QGP, led to an equally good agreement with data, as can
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be seen from Fig. 9. In fact, we showed in Ref. [30] (and
presented in the Quark matter ’88 Conference [34]) that the
NA35 preliminary data of that time was consistent with a
wider range of pion source parameters when additional non-
ideal dynamical and geometrical degrees of freedom were
incorporated into the analysis by extending the Covariant
Current Formalism[11, 30, 35].

2.2.1 Ideal Bjorken IOC Picture

In the Covariant Current Ensemble formalism [11,30,35],
the correlation function for identical bosons (since mainly
bosonic HBT will be discussed in this review) can be ex-
pressed as

C(k1, k2) = C(q, K) = 1 + λ
|G(q,K)|2

G(k1, k1)G(k2, k2)
, (26)

where qµ = kµ
1 − kµ

2 and Kµ = 1
2 (kµ

1 + kµ
2 ).

The complex amplitude, G(k1, k2), can be written as

G(k1, k2) =
∫

d4xd4p eiqµxµD(x, p)j∗0 (uµ
f k1µ)j0(u

µ
f k2µ) ,

(27)
where D(x, p) is the break-up phase-space distribution[30,
37] and the currents, j0(uf .ki), contain information about
the production dynamics. The one-particle spectrum is ob-
tained from Eq. (27) by imposing k1 = k2, which leads
to

G(ki, ki) =
∫

d4xd4p D(x, p)|j0(uµ
f kiµ)|2 . (28)

The currents j0(uf .ki) in Eqs. (27,28) can be associated
to thermal models, and can be written in a covariant way as

j0(k) ∝
√

uµkµ exp {−uµkµ

2T
} . (29)

However, to make the computation easier, we adopted a
more convenient parametrization

j0(u.k) = exp {−uµkµ

2Tps
} , (30)

where the so-called pseudo-temperature Tps is related with
the true temperature T according to[35]

Tps(x) = 1.42T (x)− 12.7 MeV . (31)

This mapping between T (x) and Tps(x) was later shown
to be a good approximation also in the case of kaon
interferometry[44].

With the covariant pseudo-thermal parametrization as in
Eq. (30), the complex amplitude can be rewritten in a sim-
pler form,

G(k1, k2) = 〈eiqxaf e−Kpaf /(mT )〉 , (32)

where the bracket < ... > denote an average over the pion
freeze-out phase-space coordinates.

In the case of Bjorken ideal Inside-Outside Cascade
(IOC) picture, the phase-space distribution involves a fixed
freeze-out proper time τf and a perfect correlation between

η and y. The correspondent phase-space distribution is writ-
ten as

D(x, p) =
1

Ef
ρ

1
τf

δ(τf−τ)δ(η−y)δ(p0−Ep)g(pT )
e
−x2

T
R2

T

πR2
T

,

(33)
where Ep =

√
p2 + m2 is the energy and g(pT ) is the

transverse momentum distribution; the rapidity distribution
is considered to be uniform, i.e., dN

dy = ρ. In the ideal IOC
picture, there is a perfect correlation in phase-space between
the space-time rapidity

η =
1
2

ln[
t + z

t− z
] (34)

and the energy-momentum rapidity,

y =
1
2

ln[
E + pz

E − pz
] , (35)

i.e., they are indistinguishable.
To obtain simple analytical equations, we assume a

very narrow distribution of pT around small momenta, i.e.,
g(pT ) = δ2(pT ). The finite pion wave-packets gener-
ate the finite pT distribution in our case. By substituting
D(x, p) from (33) into (27) and considering the pseudo-
thermal parametrization (30) for the currents, the function
G(k1, k2) was found to be[35]

G(k1, k2) = 2 <
dN

dy
> { 2

qT RT
J1(qT RT )}K0(ξ) ,

(36)
where

ξ2 = [
1

2Tps
(m1T + m2T )− iτ(m1T −m2T )]2 +

2(
1

4T 2
ps

+ τ2)m1T m2T [cosh(∆y)− 1] , (37)

and ∆y = y1 − y2.
The single-inclusive distribution is then written as

G(ki, ki) = E
d3N

dk3
i

= 2 <
dN

dyi
> K0(

miT

Tps
) . (38)

To compare theoretical correlation functions with data
projected onto two of the six dimensions, we computed the
projected correlation function trying to mimic what is done
in the experiment, i.e.,

Cproj(qT , qL)=
∫

d3k1d
3k2P2(~k1,~k2)A2(qT , qL;~k1,~k2)∫

d3k1d3k2P1(~k1)P1(~k2)A2(qT , qL;~k1,~k2)
,

(39)
where P1 and P2 are, respectively, the single- and two-pion
inclusive distributions. It is essential to have perfect cor-
respondence between the experimental information and the
theoretical estimates concerning the number of dimensions
into which the correlation data is projected, the cuts in mo-
mentum and rapidity, the sizes of the bins, etc. A2 is the
experimental two-particle binning and acceptance function,
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through which we approximate the theoretical estimate to
the empirical cuts.

We should notice that, experimentally, the two-particle
correlation function in high energy collisions is obtained by
measuring the following ratio

Cexp(i, j) = Nexp × A(i, j)
B(i, j)

∆Cexp(i, j) = Cexp(i, j)

√[
∆A(i, j)
A(i, j)

]2

+
[
∆B(i, j)
B(i, j)

]2

. (40)

The numerator A(i, j) ±∆A(i, j) corresponds to the com-
bination of pairs of identical particles from the same event,
and the denominator, B(i, j) ± ∆B(i, j), represents the
background; Nexp is an experimental normalization. His-
torically, the background for identically charged pions have
been the combination of unequally charged ones. How-
ever, later it was realized that π+π− could frequently come
from the decay of resonances, which would distort the back-
ground and cause strange pattern for the correlation function
built in this way. They soon realized that a better way to con-
struct the background was to combine identically charged
particles, but from different events. Another possibility used
sometimes is a Monte Carlo simulated background, taking
into account the experimental cuts and acceptance.

2.2.2 Non-ideal IOC

The non-ideal picture mentioned before referred to the un-
derlying effects that would be important to incorporated into
the interferometric analysis, even restricting the attention to
completely chaotic sources. For instance, the π− rapidity
distribution at 200 AGeV was clearly not uniform, as as-
sumed in the asymptotic Bjorken picture, but would be bet-
ter described by a Gaussian with width Yc ≈ 1.4[32]. On
the other hand, a large fraction of the pions could arise from
the decay of long lived resonances, such as ω, K∗, η, etc,
as was suggested by Grassberger[13]. In coordinate space,
the finite nuclear thickness, together with resonance effects,
could lead to a large spread (∆τ ) of the freeze-out proper
times, and to a wide distribution of transverse decoupling
radii (RT ). In phase-space, there is not the perfect correla-
tion between the space-time and energy-momentum rapid-
ity variables present in the ideal Bjorken picture. Instead,
as suggested by the ATTILA version of the Lund model,
they would be better related by a Gaussian with finite width
∆η. Besides, other correlations may have to be considered if
collective hydrodynamic flow occurs, for instance, between
transverse coordinates (~x⊥) and transverse momentum com-
ponent (~p⊥). All these effects together were generically
called as the non-ideal picture, which is equivalent to con-
sidering a more realistic picture than the one idealized by
the Bjorken in his version of the 1-D hydrodynamics. The
phase-space distribution representing these effects together
can be obtained from Eq. (33) by replacing

ρ
1
τf

δ(τf − τ)δ(η − y) → 2
∆τ2

exp

(
−τ2

f

∆τ2

)
×

exp
[
− (y − y∗)2

2Y 2
c

]
1√

2π∆η
exp

[
− (η − y)2

2∆η2

]
.(41)

Besides the modification in Eq.(41), there is a major cor-
rection to be added, i.e., the effect of long-lived resonances
decaying into pions. This can be included in the semiclassi-
cal approximation [30,34]. The pion freeze-out coordinates,
xµ

a , can be related to the parent resonance production coor-
dinates, xµ

r , through

xµ
a = xµ

r + uµ
r τ , (42)

where uµ
r is the resonance four velocity and τ is the proper

time of its decay. Summing over resonances r of widths
Γr, and averaging over their decay proper times, we obtain,
instead of Eq.(32) the final expression [30,34]

G(k1, k2) ≈ 〈
∑

r

fπ−/r
exp(iqxr −Kur/Tr)

(1− iqur/Γr)
〉 , (43)

where f(π−/r) is the fraction of the observed π−’s arising
from the decay of a resonance of type r, and the temper-
ature Tr characterizes the decay distribution of that reso-
nance. According to the Lund model, the main resonance
contributing to the negative pion yield at CERN/SPS ener-
gies are f(π−/ω) = 0.16, f(π−/K∗) = f[π−/(η+η′)] = 0.09,
f(π−/ρ) = 0.40, f(π−/direct) = 0.19. Although we included
direct pions and the ones coming from ρ decay indepen-
dently, they are hardly distinguishable, since ρ’s decay very
fast.

All these effects combined were simulated in a Monte
Carlo code, named CERES, which was also able to include
simplified subroutines which mimicked the experimental
cuts and acceptance[30, 34, 37].

Figure 10. Numerical results for the pion correlation function ver-
sus ∆y are shown in the central rapidity region, when the non-ideal
effects are introduced, one by one. This plot is a reproduction of
the one originally published in Ref.[37].

For explicitly demonstrating how the above results
would show themselves into the correlation function, we
derived in Ref. [37] several analytical relations where the
non-ideal effects were progressively introduced. We started
with the ideal Bjorken 1-D picture. Then, instead of the in-
stant freeze-out assumed there, we considered a spread (∆τ )
and, subsequently, all the other effects mentioned above, one
by one. For fixed qT = 0, the results as a function of the
rapidity difference ∆y (≈ qL/mT for ∆y ¿ 1), can be
seen in Fig. 10. For generating these plots, we estimated
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the correlation function using the code CERES and adopt-
ing the following values for the parameters: RT ≈ 4fm,
τf ≈ 4fm/c, fixed the intercept parameter λ = 1, ∆τ = 4
fm/c; Yc ≈ 1.4, ∆η ≈ 0.8, plus the above fractions fπ/r

from the Lund model, when adding resonances.
In the curves shown in Fig. 9, nevertheless, we had three

sets of parameters, corresponding to the different models
compared there: in the Lund resonance case, besides the
fractions fπ/r, we used Yc ≈ 1.4, ∆η ≈ 0.7, RT ≈ 3fm,
τf ≈ 3fm/c, y∗ = 2.5 and fixed λ = 1; for mimicking the
QGP model of Ref.[33], we used no resonance, τf = 9.0
fm/c, RT = 3.3 fm, ∆η ≈ 0.76, assuming Yc → ∞ and
λ = 1.

The results shown previously in Fig. 9 clearly posed an-
other problem to the interferometric probes of high energy
heavy ion collisions: several very distinct dynamical scenar-
ios could lead to approximately the same final correlation
function and similar experimental HBT results.

Figure 11. Comparison of two-pion, in parts (a) and (b), and
two-kaon projected correlation functions, in parts (c) and (d) is
considered as a function of the transverse momentum difference,
qT . The plots are calculated in the central rapidity region and with
qL ≤ 0.1 GeV. Solid (dashed) lines indicate correlations without
(with) Coulomb distortions. Parts (a) and (c) correspond to predic-
tions based on the Lund model[31], and parts (b) and (d), to the
plasma hydrodynamical model of Ref.[33]. The pion data is from
Ref.[32]. This figure was extracted from Ref.[38].

One possibility to discriminate among very different sce-
narios, suggested in Ref. [38], was to explore distinct freeze-
out geometries by comparing pion and kaon interferome-
try. This suggestion was motivated by the fact that an en-
tirely different set of hadronic resonances decay into pions
than into kaons. In the first case, according to the ATTILA
version of the Lund fragmentation model, long lived res-
onances such as ω, η and η′, contribute to the final pion
yield, whereas, in the second case, half of the kaons are
produced by direct string decay, and the other half by the
decay of K∗. On the other hand, in the QGP model consid-
ered previously in Ref.[30] for comparison, the freeze-out
geometry of all hadrons was expected to be about the same.

In the case of pions, we saw from Fig. 9 that both cases
led to equally good results as compared to the experimen-
tal points. In the case of kaons, then, an entirely different
behavior would be expected. Indeed, we see from Fig. 11 a
more significant difference between those two models, help-
ing to separate long-lived scenarios from those where HBT
results were generated by the effect of resonances.

Figure 12. Negative pion correlation in p̄p and pp reactions at
CERN/ISR energies are shown as a function of Qinv on the left
plot, and as function of qT (with qL ≤ 0.15 GeV/c) on the right
plot. Dashed, solid and dot-dashed histograms indicate the cal-
culated correlation functions with, respectively, no, half and full
Lund resonance abundances. The data points are from Ref.[39] on
the left, and from Ref. [24], on the right hand side. Both plots were
extracted from Ref.[7].

The important role of resonances stressed above led us
to investigate how would be their influence for much smaller
systems at higher energies. For this, we looked into p̄p and
pp data from CERN/ISR[39]. For simplicity, in this calcu-
lation, we assumed the ideal Bjorken picture to describe the
freeze-out distribution. Surprisingly, the result[40] turned
out to be neither compatible with the absence of resonance
nor with the full resonance fractions predicted by the Lund
fragmentation model mentioned before. Instead, the data
seemed to be best described by the scenario with about half
the resonance fractions predicted by the Lund model, as can
be seen in Fig.12.

Meanwhile, we also derived a general and powerful
formulation[41], based on the Wigner density formalism,
which allows to treat complex system, by including an ar-
bitrary phase-space distribution (i.e., the momentum dis-
tribution, g(p), and the space-time one, ρ(x), could be
entangled) and multi-particle correlations. This formal-
ism corresponds to a semiclassical generalization of the n-
particle phase-space distribution, in which it is allowed for
a Gaussian spread of the coordinates around the classical
trajectories, in order to incorporate minimal effects due to
the uncertainty principle. Also, correction terms due to pion
cascading before freeze-out were derived using this semi-
classical hadronic transport model. Such terms, however,
can be neglected if the mean free path of pions is small
compared to the source size, or if the momentum transfers
are small compared to the pion momenta. The main result
of that investigation can be summarized by the following
formula for the Bose-Einstein symmetrized n-pion invariant
distribution

Pn(k1, ...,kn) ∝ 〈
∑

σ

n∏

j=1

exp
[
i(kj − kσj ).xj

]

δ̃∆(kj − kσj
, pj) 〉 , (44)
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with the smoothed delta function given by

δ̃∆(k − k′, p−K) =
exp{[p− 1

2 (k + k′)]2/(2∆p2)}
(2π∆p2)−3/2

× exp[
∆x2

2
(k − k′)2] . (45)

The brackets < ... > denote an average over the 8n
pion freeze-out coordinates {x1, p1, ..., xn, pn}, as obtained
form the output of a specific transport model, such as a
cascade[33] or the Lund hadronization model[31]. In the
form written in Eq. (44) and (45), this formulation is ideally
suited for Monte Carlo computation of pion interference ef-
fects. The smoothed delta function results from the use of
Gaussian wave packets with widths ∆x and ∆p, which de-
pend on details of the pion production mechanism. The sum
runs over n! permutations σ = (σ1, ..., σn) of the indices;
x, k, p, ... denote 4-vectors and all momenta are on-shell.
This is a generalization of the Wigner type of formulation
proposed in Ref.[28] and used in the pioneer work of HBT
in the group, discussed in Section 2.1 and in Ref. [22, 25].
As a special limit, we found out that, for minimum Gaussian
packets, i.e., ∆x∆p = 1/2, having ∆p ' mTps, where
m is the particle mass and Tps is the pseudo temperature
of Eq. (31) we recovered the interferometric relations de-
rived within the Covariant Current Ensemble formalism[11],
which, for the sake of simplicity, was adopted as a first ap-
proach to the study of non-ideal effects on Interferometry
described above.

An equivalent alternative way of expressing Eq.(44) is
[41]

Pn(k1, ...,kn) ≈ 〈CN,n〉
∑

σ

n∏

j=1

D∆[q(j, σj), ~K(j, σj)] ,

(46)
with

D∆(q, ~K) =
∫

d4x

∫
d3p eiqxD(x, ~p)δ̃∆(q, p−K),

(47)
where D(x, ~p) can be given by, for example, Eq.(33), and
CN,n ≡ N !/(N − n)!, where n = 2 in case of two-pion
correlations, and N is the multiplicity of the event.

An interesting simple point explicitly demonstrated in
Ref. [41], is the dependence of the effective transverse ra-
dius on the average momentum of the pair, which was al-
ready shown in Fig. 7, as one of the results of Ref.[25],
and also suggested in [29]. This dependence on KT appears
through the time dependence of the emission process. The
demonstration was done by means of a simple Gaussian ex-
ample, as in Eq. (16). For better understanding it, we should
recall the definition of the average 4-momentum of the pair,
Kµ, and their difference, qµ, i.e.,

qµ = (kµ
1 − kµ

2 ) ; Kµ =
1
2
(kµ

1 + kµ
2 ) . (48)

From the above relations, it immediately follows that

qµKµ = q0K0−q.K ≡ 0 → q0 =
q.K
EK

=
qT.KT + qLKL

EK
,

(49)

where EK =
√

K2 + m2 was written for the sake of sim-
plicity.

Propagating the above result into the Gaussian correla-
tion function, we get

R2
Teff

≈ 2R2
T + (∆τ)2(K2

T /E2
K)

R2
Leff

≈ R2
L + (∆τ)2(K2

L/E2
K) . (50)

The results on Eq. (50) show that the time spread of the
source freeze-out generally enhances the effective size mea-
sured by interferometry.

I should remark that several contributions and invited
talks presented in international conferences in the period are
being omitted here, due to the lack of space. I would ad-
dress to the Quark Matter Conference proceedings for that,
as well as the proceedings of the RANP Conference and of
Hadron Physics.

2.3 Discriminating different dynamical sce-
narios

The coincidental agreement with data of two opposite sce-
narios, such as the resonance gas and the QGP discussed
before, in Fig. 9, stressed the necessity of finding other
means to more clearly discriminate among different decou-
pling geometries. Although the comparison of kaon with
pion interferometry was shown to be helpful, as seen in
Fig. 11, it still lacked from more quantitative information.
Then, how to disentangle different models in a more precise
way?

In order to answer this question, M. Gyulassy and my-
self developed a method, in which a 2-D χ2 analysis was
performed, comparing two-dimensional theoretical and ex-
perimental pion interferometry results[42]. For illustrating
the method we performed the calculations using the code
CERES mentioned above, for two very distinct scenarios.
The first one considered the effects of resonances decay-
ing into pions, including Lund resonance fractions. The
other one ignored the contribution of resonances. The data
points were kindly sent to us by Richard Morse, from the
BNL/E802 Collaboration, and corresponded to Si+Au col-
lisions at 14.6 GeV/c[43], as measured at the BNL/AGS. I
will summarize the method by recalling Eq. (39) and Eq.
(40). The E802 experimental acceptance functions for two
particles was approximated by

A2(qT , qL;~k1,~k2) = A1(~k1)A1(~k2)Θ(20− |φ1 − φ2|)
δ(qL − |kz1 − kz2|)δ(qT − |~kT1 − ~kT2 |) . (51)

The angles are measured in degrees and the momenta in
GeV/c. The single-inclusive distribution cuts were specified
by

A1(~k) = Θ(14 < θlab < 28)
Θ(plab < 2.2 GeV/c)Θ(ymin > 1.5) .(52)

The input temperature matching the experimentally ob-
served pion spectrum was T ≈ 170 MeV.

For the purpose of performing a quantitative analysis of
the compatibility of different scenarios with data, we com-
puted the χ2 goodness of fit on a two-dimensional grid in
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the (qT , qL) plane, binned with δqT = δqL = 0.01 GeV/c.
The χ2 variable was computed (as suggested by W. A. Zajc)
through the following relation[42]

χ2(i, j) =
[A(i, j)−Nχ

−1Cth(i, j)B(i, j)]2

{[∆A(i, j)]2 + [Nχ
−1Cth(i, j)∆B(i, j)]2} ,

(53)
where Nχ is a normalization factor estimated as to mini-
mize the average χ2, which depends on the range in the
qT , qL plane under analysis. The minimization of the av-
erage χ2 was performed by exploring the parameter space
of the transverse radius RT and the time τ , and computing
the < χ2 >, averaging over a 30x30 grid in the relative re-
gion qT , qL < 0.3 GeV/c of relevant HBT signal. In the
vicinity of the minimum we determined the parameters of
the quadratic surface

〈χ2(RT , τ)〉 = χ2
min+α(RT−RT0)

2+β(τ−τ0)2 . (54)

The quantitative differences could be seen in a 3-D plot
of the correlation function, projected in terms of qT and qL,
shown in Fig. 13. The main results in the case of Gamow
corrected data (i.e., where the HBT signal has recovered
at small values of q by multiplying by the inverse of the
Gamow factor, Υ(q)−1, defined in Eq. (12)), are shown in
Table 1. For a more complete discussion of the method, I
would address the full article, in Ref.[42].
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Figure 13. π−π− correlations in central Si+Au collisions is shown
as a function of qT and qL. The preliminary E802 data[43] cor-
rected for acceptance and Coulomb effects are shown in part (a).
Parts (b) and (c) show theoretical correlation functions filtered with
the E802 acceptance. They correspond, respectively, to cases with-
out and with resonance production. This figure was extracted from
Ref.[42].

TABLE 1. 2D-χ2 Analysis of Pion Decoupling Geometry
χ2(RT , ∆τ) No Resonances LUND Resonances

E802 Data Gamow Corrected
|χ2

min − 1|/σ 2.1 2.2
R0T 4.6± 0.9 3.1± 1.3
∆τ0 3.4 ± 0.7 1.6± 1.0
α 0.027 0.014
β 0.042 0.023

We see from the upper plots in Fig. 13 that the 2-D cor-
relation function for the non-resonance case is clearly dif-
ferent from the resonance scenario but only at very small
values of the momentum difference qT and qL. Neverthe-
less, if we look into the lower panel where we plotted the χ2

distribution of the theoretical curves compared to the exper-
imental points, we see that the distinction is blurred by the
large fluctuations of data, mainly at the edge of the accep-
tance. The most efficient measure of the goodness of the fit
in this case was obtained by studying the variation of the av-
erage < χ2 > per degrees of freedom in the (qT , qL) plane
with respect to the unity, i.e., | < χ2

min > −1|/σ. In this
way, we found out that the resolving power of the distinc-
tion between different scenarios was magnified, as shown in
Fig. 14.
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Figure 14. The plot shows the number of standard deviations from
unity, of the average < χ2 > per degree of freedom, as a function
of the range Qmax of the analysis in the (qT , qL) plane. This plot
was extracted from Ref.[42].

The method was further tested later, in a more challeng-
ing situation[44], by comparing the interferometric results
of K+K+ of two distinct scenarios, i.e., Lund predicted
resonances (only K∗’s and direct kaons contribute signif-
icantly to this particle yield) with the non-resonance case.
This was done by Cristiane G. Roldão in her Master Dis-
sertation, under my supervision. The data on K+K+ inter-
ferometry from Si + Au collisions at 14.6 GeV/c was sent
to us by Vince Cianciolo, from E859 Collaboration (an up-
grade of the previous E802 experiment at BNL/AGS).

TABLE 2. 2D-χ2 Analysis of Kaon Decoupling Geometry
χ2(RT , ∆τ) No Resonance LUND Res.

(fKdir = 1) (fKdir = fK/K∗ = 0.5)

Optimized RT and ∆τ

〈χ2
min〉30×30 1.03 1.02

〈χ2
min〉10×10 1.17 1.30

RT0 2.19± 0.76 1.95 ± 0.89
∆τ0 4.4± 2.0 4.4± 2.6
α 0.0410 0.0299
β 0.0058 0.0034
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The acceptance function for the E859 experiment was
approximated[45] by

A2(qT , qL; k1, k2) = A1(k1)A1(k2)Θ(22− |φ1 − φ2|)
δ(qL − |kz1 − kz2|)δ(qT − |kT1 − kT2 |) . (55)

The angles were measured in degrees and the momenta in
GeV/c. The single inclusive distribution cuts are specified
by

A1(k) = Θ(14 < θlab < 28)Θ(plab < 2.9 GeV/c)
Θ(ymin > 0.75) . (56)

In the case of kaons, the input temperature matching the ex-
perimentally observed kaon spectrum was T ≈ 180 MeV.
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Figure 15. Zone in the (RT , ∆τ ) plane investigated, leading to
the determination of the most probable region where the minimum
〈χ2〉, associated to (RT , ∆τ ), could be located. Parts (a) and (b)
correspond to cases where the contribution of K? were ignored.
Parts (c) and (d) were estimated including their contribution to the
kaon yield. In parts (a) and (c) we fixed ∆τ = 0, and optimized
only RT . Figure extracted from Ref.[44].

It was expected to be harder to differentiate both sce-
narios due to the lack of contribution from long-lived reso-
nances. It was found that they could still be separated, with
data favoring the non-resonance scenario at the 14.6 Si+Au
collisions (BNL/AGS). As in the two- pion interferometric
analysis, the variation of the average < χ2 > per degrees of
freedom in the (qT , qL) plane was the significant quantity to
look at, as can be seen n Fig. 16. The main fit results found
in this analysis are summarized in Table 2. For more details,
see Ref.[44].
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Figure 16. The number of standard deviations from unity of the
average < χ2 > per degree of freedom is shown for increasing
number of bins. In part (a), the transverse radius parameter, RT ,
and the freeze-out spread, ∆τ , used for generating the theoretical
plots, were optimized. In (b), only RT was optimized, whereas ∆τ
was fixed to be zero. Figure extracted from Ref.[44].

The tests also ruled out the possibility of a zero decou-
pling proper-time conjectured by that experimental results
of AGS/E859 Collaboration[45]. This can be seen from part
(b) of Fig. 16: by fixing ∆τ to be zero the numerical de-
viations of the average < χ2 > per degrees of freedom are
completely meaningless.

2.4 Sonoluminescence bubble
In the beginning of this review, we saw that the HBT inter-
ferometry was originally proposed for measuring the large
sizes (of order R ∼ 1010 m) of stelar sources in radio-
astronomy . On the other hand, in the totality of the cases
discussed here so far, the dimensions went down to the or-
der of the hadronic or to the nuclear size (roughly, R ∼
10−15 m). In between these two very different scales, Yo-
giro Hama, Takashi Kodama, and myself [46] discussed
in 1995 an interesting approach to a beautiful problem, in
a distinct environment. The focus was in a small sono-
luminescent bubble, whose radius would lie in the range
R ∼ 10−5m. The phenomenon had been discovered long
time ago, in 1934, at the Univ. of Cologne, but its single bub-
ble version was found out by Gaitan et al.[47] only in 1988.
In this last case, a single bubble of gas (usually filled with
air) formed in water, is trapped by standing acoustic waves,
contracting every 10-12 pico-sec approximately, and simul-
taneously emitting light. In other words, the sonolumines-
cence process converts the acoustic energy in a fluid medium
into a short light pulse emitted from the interior of a collaps-
ing small cavitating bubble[47]. The spectrum of emitted
light is very wide, extending from the visible to the ultra-
violet regions. An important fact is that the light emission
takes place within a very short period of time. The small
size of the emission region and the short time scale of the
emission process make it difficult to obtain precise geomet-
rical and dynamical information about the collapsing bub-
ble. Besides, a particular aspect of the emission process is
still controversial: some authors attribute the light emission
to the quantum-electrodynamic vacuum property based on
the dynamical Casimir effect[48], whereas others consider
that thermal processes[49], such as a black-body type of ra-
diation, should be the natural explanation. In Ref.[46], we
suggested that two-photon interferometry could shed some
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light to the problems raised above, by estimating the very
small size and life-time of the single bubble sonolumines-
cence phenomenon. In fact, the simple existence of a HBT
type of signal from such a collapsing bubble selects the
scenario of explanation between the two classes mentioned
above. This is possible because the emission processes are
opposite in the case of thermal models and in the Casimir
based ones. In the first case, the emission is chaotic, a con-
dition that is essential for observing the two-identical parti-
cle HBT correlations, and an interferometric pattern would
be observable. For the Casimir type of models, however, the
emission is coherent and no HBT effect would be observ-
able since, in that case, the correlation function acquires the
trivial value C(k1, k2) = 1 for all values of ki.

Figure 17. The upper part of the figure shows correlation functions
plotted as function of ∆ω = ω1 − ω2 = c(k1 − k2). Cases A to
E correspond, respectively, to the first up to the fifth examples in
Table 2. The lower part, shows the geometrical form factor Φ(q)

plotted as a function of X =
p
−(1/2)[d2Φ(0)/dq2]q. Figures

extracted from Ref.[46].

In this work we neglect all the dynamical effects dis-
cussed in the previous studies, and considered that the space
and time dependence would be decoupled as well. We
adopted the notation used in [50], applied for our case.

C(~k1,~k2) = 1 +
1
2

|S̃(~q, ~K)|2
S̃(0,~k1) S̃(0,~k2)

, (57)

where

S̃(~q, ~K) =
∫

d4x e−iqxρ(x) j∗(~k1)j(~k2) ,

~q = ~k1 − ~k2 , ~K = (~k1 + ~k2)/2 , and j(~ki) is the amplitude
for the emission of a photon with the wave-vector ~ki at the
source point x. The factor 1/2 in the second term of Eq. (57)
comes from the spin 1 character of the photon[50].

We suggested a set of candidate models that could try
and describe the system, as summarized in Table 3.

As far as I know, no HBT experiment has been made
yet with the photons emitted by the sonoluminescence bub-
ble. T. Kodama and members of his group had initiated the
experiment to produce single cavitating bubbles, with inten-
sion to perform the interferometric test I have just described
above. In any case, the simple observation of a two-photon
HBT correlation would be enough to rule out one of the two
classes of models that aim at explaining the phenomenon,
i.e., the ones based on the Casimir effect, in which the emis-
sion is coherent. It would automatically enforce the other
class of thermal models, for which the emission is chaotic.

TABLE 3. Analytic expressions for some source parameterizations
and the corresponding correlation functions are shown.

Source ρ(r, t) C(~k1,~k2)− 1

A: e−r2/2R2
e−t2/2τ2

e−(∆ω)2τ2
e−q2R2

/2

B: δ(r −R) e−t2/2τ2
e−(∆ω)2τ2

[sin(qR)/(qR)]2/2

C: Θ(R− r) e−t2/2τ2
(9/2) e−(∆ω)2τ2{(qR)}−4

{ [cos(qR)− sin(qR)/(qR)]}2
D: e−r/R Θ(3τ2 − t2)

�
sin(∆ω

√
3 τ)/∆ω

√
3 τ
�2

�
1 + q2R2

�−4
/2

E: 9 |I|2 /(8µ6),

Θ(Ṙ t− r) e−t2/τ2
Θ(t) I = −i

√
π[(1 + µz+)W (z+)−

(1− µz−)W (z−)]− 2µ

2.5 Continuous emission
In Section 2.2.1, we discussed the Bjorken Inside-Outside
Cascade (IOC)[36] picture. It considers that, after high en-
ergy collisions, the system formed at the initial time τ = τ0,
thermalizes with an initial temperature T0, evolving after-
wards according to the ideal 1-D hydrodynamics, essentially
the same as Landau’s version discussed in Section 2.1, but
with different initial conditions. During the expansion, the
system gradually cools down and later decouples, when the
temperature reaches a certain freeze-out value, Tf . In this
model there is a simple relation between the temperature and

the proper-time, i.e., τ ∝ τ0

(
T0
Tf

)3

.

A very interesting alternative picture of the particle
emission was proposed by Grassi, Hama and Kodama[51]:
instead of emitting particles only when these crossed the
freeze-out surface, they considered that the process could
occur continuously during the whole history of the expand-
ing volume, at different temperatures. In this model, due to
the finite size and lifetime of the thermalized matter, at any
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space-time point xµ of the system, each particle would have
a certain probability of not colliding anymore. So, the distri-
bution function f(x, p) of the expanding system would have
two components, one representing the portion already free
and another corresponding to the part still interacting, i.e.,
f(x, p) = ffree(x, p) + fint(x, p).

In the Continuous Emission (CE) model, the portion
of free particles is considered to be a fraction of the to-
tal distribution function, i.e., ffree(x, p) = Pf(x, p) =⇒
fint(x, p) = (1−P)f(x, p) or, equivalently,

ffree(x, p) =
P

1− P fint(x, p) . (58)

The interacting part is assumed to be well represented
by a thermal distribution function

fint(x, p) ≈ fth(x, p) =
g

(2π)3
1

exp [p.u(x)/T (x)]± 1
,

(59)
which poses a constraint on the applicability of the picture,
since by continuously emitting particles the system would
be too dilute to be considered in thermal equilibrium in its
late stages of evolution. In Eq. (59), uµ is the fluid velocity
at xµ and T is its temperature in that point.

The fraction of free particles P at each space-time point,
xµ, was computed by using the Glauber formula, i.e., P =
exp

(
− ∫ tout

t
n(x′)σvreldt′

)
,where tout = t+(−ρ cos φ+√

R2
T − ρ2 sin2 φ)/(v sin θ).

The model also considered that, initially, the energy den-
sity could be approximated by a constant (i.e., ε = π2

10 T 4
0 for

all the points with ρ ≤ RT and zero for ρ > RT ). Then,
the probability P may be calculated analytically, resulting
in P = (τ/τout)a; a ∼ 31.202

π2 T 3
0 τ0σvrel,where vrel ≈ 1.

The factor P can be interpreted as the fraction of free parti-
cles with momentum pµ or, alternatively, as the probability
that a particle with momentum pµ escapes from xµ without
further collisions.

Their early results for the spectra can be seen in Ref.[51]
and in the review by Frederique Grassi, in this volume,
which is a good source of further details and discussions on
the Continuous Emission model.

Later, in collaboration with F. Grassi, Y. Hama, and O.
Socolowski[52], we developed the formulation for applying
this new freeze-out criterium into ππ interferometry. Natu-
rally, we would like to further explore if the above model
would present striking differences when compared to the
standard freeze-out picture (FO). One expectation would be
that the space-time region from which the particles were
emitted would be quite different in both scenarios. In partic-
ular, as we saw in Section 2.1 and 2.2.2, a non-instantaneous
emission process strongly influences the behavior of the cor-
relation function. Being so, a sizable difference was ex-
pected when comparing the instant freeze-out hypothesis
and the continuous emission version, since in this last one,
the emission process is expected to take much longer.

For treating the identical particle correlation within the
continuous emission picture, instead of using the Covari-
ant Current Ensemble formalism discussed in item 2.2, we
adopted a different but equivalent form for expressing the
amplitudes in Eq. (26) as in Ref.[51]. Then, the single-
inclusive distribution, can be written as

G(ki, ki) =
∫

d4x Dµ [kµ
i ffree] , (60)

where Dµ is the generalized divergence operator. In
Ref.[51], it was shown that, in the limit of the usual freeze-
out, Eq. (60) is reduced to the Cooper-Frye integral,
E d3N

dp3 =
∫

Tf
dσµpµf(x, p), over the freeze-out hyper-

surface T = Tf , being dσµ the vector normal to this surface.
Or equivalently, Eq. (60 ) in the instant freeze-out picture is
reduced to Eq. (28), with the currents given by Eq. (29),
or even by Eq. (30), which is a simplified parametric form
of describing thermal currents used for obtaining analytical
results in the Bjorken picture. We see more easily that it
is indeed the limit if we replace the distribution function in
Eq.(59) by its Boltzmann limit. We see more clearly that Eq.
(28), or Eq. (38) in the Bjorken picture, are the natural lim-
its of the proposed continuous emission spectrum, in case of
instant freeze-out.

Analogously, the two-particle complex amplitude is
written as

G(k1, k2) =
∫

d4xeiqx {Dµ [kµ
1 ffree]} 1

2 {Dµ [kµ
2 ffree]} 1

2 .

(61)
We saw above that the expression for the spectrum is

reduced to the one in the Covariant Current Ensemble for-
malism in the limit of the instant freeze-out. Analogously,
the above expression in this limit should yield to the result
in Eq. (27). We see that this is indeed the case if we re-
place the individual momenta kµ

i in E.(61) by the average
momentum of the pair, Kµ = 1

2 (kµ
1 + kµ

2 ). This replace-
ment is even more natural, if we remember that the Kµ

is the momentum appearing in the Wigner formulation of
interferomtry[29, 41, 33, 19, 53]. And, it was shown in Ref.
[41] that this also is reduced to the Covariant Current En-
semble for minimum packets and having the packet width
equated to the pseudo-thermal temperature, as discussed in
Section 2.2.2. When this is assumed, also a substantial sim-
plification is obtained in Eq.(61), which could then be writ-
ten as

G(q,K) =
∫

d4x eiqνxν Dµ [Kµffree] . (62)

We compare next the results for these two very different
scenarios by means of the two-pion correlation functions,
assuming the Bjorken picture for the system, i.e., neglecting
the transverse expansion. For the instant FO case, we use
Eq.(36) and (38) for obtaining C(q,K). For the CE case,
we use Eq.(60) and (62), writing the four-divergence and
the integrals in cylindrical coordinates, using the symmetry
of the problem, which leads to a simpler expression:
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G(q, K) =

1
(2π)3

∫ 2π

0

dφ

∫ +∞

−∞
dη

{∫ RT

0

ρ dρ τF MT cosh(Y − η)× ei[τF (q0 cos η−qL sinh η)−ρqT cos(φ−φq)]

+
∫ +∞

τ0

τdτρFKT cos φ ei[τ(q0 cos η−qL sinh η)−ρFqT cos(φ−φq)]

}
× e−MT cosh(Y−η)/Tps(x)

(1− PF )
, (63)

where MT =
√

K2
T + M2; M2 = KµKµ − 1

4qµqµ; Kµ = 1
2 (kµ

1 + kµ
2 ); Y is the rapidity corresponding to ~K, φ is the

azimuthal angle with respect to the direction of ~K, φq is the angle between the directions of ~q and ~K, and

τF =
−ρ cos φ +

√
R2

T − ρ2 sin2 φ

(kT /E)[
√

sinh2 η + P−2/a
F − cosh η]

.

ρF = −τ (kT /E) cos φ[
√

sinh2 η + P−2/a
F − cosh η] ±

√
R2

T − τ2(
kT

E
)2 sin2 φ [

√
sinh2 η + P−2/a

F − cosh η]2.

d

The spectrum is obtained from the expression (63), by
replacing Kµ → kµ

i , M → m, and qµ → 0. In Eq. (63),
τF and ρF , whose expressions are written above, are the
limiting values corresponding to the escape probability PF ,
which we fix to be PF ≈ 0.5, approximate value chosen for
the sake of simplicity and for guaranteeing that the thermal
assumption still holds in systems with finite size and finite
lifetime. The rest of the emission for PF > 0.5 is assumed
to be instantaneous, as in Eq. (36) and (38).

The complexity of the expressions for the Continuous
Emission (CE) case suggested that we should look into spe-
cial kinematical zones for investigating the differences be-
tween this scenario and the instant freeze-out picture. For
details and discussions, see Ref.[52]. I summarize some
of them. First, we observed that the correlation function
C(qO, qL) plotted versus the outward momentum differ-
ence, qO, exhibited the well-know dependence on the av-
erage momentum of the pair, KT , discussed earlier in this
section, in both cases. However, it was enhanced in the CE
scenario, as expected, since the emission duration is longer

in this case than in the standard freeze-out picture. We also
observed a slight variation with KT of the correlation func-
tion versus qS in the CE, differently from the instant freeze-
out case, were it was absent, since we were considering only
the longitudinal expansion of the system and no transverse
flow. This result showed the tendency of the curve versus
qS to become slightly narrower for increasing KT , an oppo-
site tendency as compared to the curves plotted as functions
of qO.

We also studied more realistic situations, where the cor-
relation function was averaged over kinematical zones. Us-
ing the azimuthal symmetry of the problem, we defined
the transverse component KT along the x-axis, such that
~K = (KT , 0,KL). We then averaged over different kine-
matical regions, mimicking the experimental cuts, by inte-
grating over the components of ~q and ~K (except over the
plotting component of ~q). For illustration, we considered
the kinematical range of the CERN/NA35[54] experiment
on S+A collisions at 200 AGeV, as

c

〈C(qL)〉 = 1 +

∫ 180

−180
dKL

∫ 600

50
dKT

∫ 30

0
dqS

∫ 30

0
dqoC(K, q)|G(K, q)|2

∫ 180

−180
dKL

∫ 600

50
dKT

∫ 30

0
dqS

∫ 30

0
dqoC(K, q)G(k1, k1)G(k2, k2)

.

d

With the previous equation we estimated the average
theoretical correlation functions versus qL, qO and qS , com-
paring the results for CE and for FO scenarios. First, we
considered the case in which the initial temperature was the
same in both cases (T0 = 200 MeV) and compared the CE

prediction with two outcome curves corresponding to two
FO temperatures, Tfo = 140 and Tfo = 170MeV. We ob-
served that the same initial temperature led to entirely dif-
ferent results in each case. The details are shown and dis-
cussed in Ref. [52]. In the second situation, we relaxed
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the initial temperature constraint and studied the similarity
of the curve in the CE scenario corresponding to a certain
value of T0, and compared to three different curves in the
FO scenario, for which the freeze-out temperature was fixed
Tfo = 140 MeV. Each one of these curves in the standard
FO case corresponded to a different initial temperature. The
purpose here was to investigate, as usually done when try-
ing to describe the experimental data, which initial temper-
atures in the FO scenario would lead to the curve closest
to the one generated under the CE hypothesis. The results
are shown in Fig. 18. Usually the shape of the correlation
curve is very different in both cases, the one corresponding
to the CE being highly non-Gaussian, mainly in the upper
left plot of Fig. 18. In this particular one, we see that the
CE correlation curve can be interpreted as showing the his-
tory of the hot expanding matter. For instance, the tail of
〈C〉 reflects essentially the early times, when the size of the
system is small and the temperature is high, since the tail of
the CE curve is closer to the FO one corresponding to the
highest initial temperature. On the contrary, the peak region
corresponds to the later times where the dimensions of the
system are large and the temperature low (see the compati-
bility with the FO curve corresponding to the lowest initial
temperature).
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Figure 18. The average correlation function 〈C〉ππ is shown ver-
sus qL, qO , and qS , averaging over, respectively, (qS , qO), (qL ,
qS), and (qL,qO). Comparison is made of the (solid) curve for the
CE scenario with three others corresponding to the usual freeze-out
at Tfo = 140 MeV, but with different initial temperatures, whose
values are shown in the plot. Plots extracted from Ref.[52].

2.6 Finite size effects
2.6.1 Pion system

In 1998, a pos-doctoral fellow from China, Qing-Hui Zhang,
joined the group, spending one year with us. Together, we
investigated the effects of finite source sizes (boundary ef-
fects) on π±π± interferometry. We derived a general formu-
lation for spectrum and two-particle correlation, adopting a

density matrix suitable for treating the charged pion cases in
the non-relativistic limit[55].

A few hypotheses inspired that study. First, we consid-
ered pions, the most abundant particles produced in relativis-
tic heavy-ion collisions, to be quasi-bound in the system,
with the surface tension[56, 57, 58] acting as a reflecting
boundary. In this regard, the pion wave function could be
assumed as vanishing outside this boundary. As usual, we
also considered that these particles become free when their
average separation is larger than their interaction range and
we assumed this transition to happen very rapidly, in such a
way that the momentum distribution of the pions would be
governed by their momentum distribution just before they
freeze out. We then studied the modifications on the ob-
served pion momentum distribution caused by the presence
of this boundary. We also investigated its effects on the cor-
relation function, which is known to be sensitive to the geo-
metrical size of the emission region as well as to the underly-
ing dynamics. In this formalism, the single-pion distribution
can then be written as

P1(p) = 〈ψ̂†(p)ψ̂(p)〉 =
∑

λ

∑

λ′
ψ̃∗λ(p)ψ̃∗λ′(p)〈â†λâλ′〉

=
∑

λ

Nλψ̃∗λ(p)ψ̃λ(p) , (64)

where the last equality follows from the fact that the expecta-
tion value 〈â†λâλ′〉 is related to the occupation probability of
the single-particle state λ, Nλ, by 〈â†λâλ′〉 = δλ,λ′Nλ ; aλ

(a†λ) is the annihilation (creation) operator for destroying
(creating) a pion in a quantum state characterized by a quan-
tum number λ. In Eq. (64) ψ̂(†)(p) =

∑
l â

(†)
l ψ̃

(∗)
l (p),

where â† (â) is the pion creation (annihilation) operator,
and ψ̃l is one of the eigenfunctions belonging to a localized
complete set, satisfying orthogonality and completeness re-
lations.

For a bosonic system in equilibrium at a temperature T
and chemical potential µ, Nλ it is represented by the Bose-
Einstein distribution

Nλ =
1

exp
[

1
T (Eλ − µ)

]− 1
. (65)

The above formula coincides with the one employed in
Ref.[57] for expressing the single-pion distribution.

The normalized expectation value of an observable A is
given by

〈Â〉 =
tr{ρ̂Â}
tr{ρ̂} ; ρ̂ = exp

[
− 1

T
(Ĥ − µN̂)

]
=

∏

l

ρ̂l ,

(66)
where ρ̂ is the density matrix operator for the bosonic sys-
tem, and ρ̂l = exp

[
− 1

T (Ĥl − µN̂l)
]
, with

Ĥ =
∑

l

Ĥl; Ĥl = ElN̂l; N̂ =
∑

l

N̂l , (67)

respectively, the Hamiltonian and number operators; µ is the
chemical potential, fixed to be zero in the results we present
here.
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Similarly, the two-pion distribution function can be writ-
ten as

P2(p1,p2) =
∑

λ1,λ2,λ3,λ4

ψ̃∗λ1
(p1)ψ̃∗λ2

(p2)ψ̃λ3(p1)φ̃λ4(p2)

〈â†λ1
â†λ2

âλ3 âλ4〉
=

∑

λ1,λ2,λ3,λ4

ψ̃∗λ1
(p1)ψ̃∗λ2

(p2)ψ̃λ3(p1)φ̃λ4(p2)

[
〈â†λ1

âλ3〉〈â†λ2
âλ4〉λ1 6=λ2 + 〈â†λ1

âλ4〉〈â†λ2
âλ3〉λ1 6=λ2

+〈â†λ1
â†λ2

âλ3 âλ4〉λ1=λ2=λ3=λ4

]

= P1(p1)P1(p2) + |
∑

λ

Nλψ̃∗λ(p1)ψ̃λ(p2)|2. (68)

Since we are considering the case of two indistin-
guishable, identically charged pions, then 〈â†λâ†λâλâλ〉 =
2〈â†λâλ〉2. From the particular form proposed for the den-
sity matrix it follows that 〈â†λâ†λ〉 = 〈âλâλ〉 = 0, showing
that it would not be suited for describing π0π0 and π+π−
cases. For this purpose, the formalism proposed in Ref.[59]
is more adequate.

The two-particle correlation can be written as

C2(p1,p2) =
P2(p1,p2)

P1(p1)P1(p2)

= 1 +
|∑λ Nλψ∗λ(p1)ψλ(p2)|2∑

λ Nλ|ψλ(p1)|2 ∑
λ Nλ|ψλ(p2)|2 .

(69)

In Ref. [55] we illustrated the formalism by means of
two examples. The first considered that the produced pions
were bounded inside a confining sphere with radius R. In
the second, they were inside a cubic box with size L. Since
the results were similar in both cases, I will briefly discuss
here only the first one. We estimated Eq.(64) for the con-
fining sphere of radius R for studying the boundary effects
on the spectrum. The results can be summarized by looking
directly into the top left plot in Fig. 19, where we also show
the curve corresponding to the limit of very large system
(R → ∞). We see that the finite size affects the spectrum
by depleting the curve at small values of the pion momen-
tum and, at the same time, rising and broadening the curve
at large p (momentum conservation).

For studying the behavior of the correlation function we
estimated Eq. (69) in the case of the bounding sphere. Some
results are shown in the top right plot of Fig. 19 and they are
as expected: the correlation shrinks (i.e., the probed source
dimension increases) with increasing values of the radius.
Nevertheless, the bottom curve, corresponding to C(q,K)
versus q, shows an unexpected behavior for different values
of the average momentum K. Contrary to what is observed
in expanding system, the correlation function becomes nar-
rower (probed region enlarges) with increasing K. How-
ever, the example shown for illustration does not take into
account the expansion of the system. The variation with
K merely reflects the strong sensitivity of the results to the
dynamical matrix adopted in the formulation. It is related
to the weight factor Nλ, in Eq. (69): pions with larger

momenta come from higher quantum states λ, which cor-
respond to a smaller spread in coordinate space. But, due
to the Bose-Einstein form of the weight factor, large quan-
tum states give a small contribution to the source distribu-
tion, causing the effective source radius to appear larger. To
emphasize this we include in the bottom plot the narrowest
curve, corresponding to fixing Nλ = 1 (or equivalently, by
considering T À 1 in the Bose-Einstein distribution, which
makes C(q, K) insensitive to K, due to the large tempera-
ture). This limit allows for an analytical expression,

C2(q) = 1 +
9

q4R6

[
R cos(qR)− sin(qR)

q

]2

, (70)

which is shown in the lowest curve of the bottom plot of
Fig. 19. Underneath this curve, shown by little circles in the
same plot, is the numerically generated curve for Nλ = 1,
confirming the correcteness of our result.
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Figure 19. The top plot shows the spectrum in the example of pi-
ons confined in the sphere of radius R. The top right plot shows
Cππ(q) versus q, for three different values of the source radius.
The plot in the bottom shows that the correlation function shrinks
for increasing average momentum, K, in opposition to the behav-
ior seen in Fig. 7 and for expanding systems, in general. Plots
extracted from Ref.[55].

2.6.2 Q-Boson system

More recently, Qing-Hui Zhang and I extended the above
formalism for treating the interferometry of two Q-bosons.
The concept of quons was suggested[60] as an artifact for
reducing the complexity of interacting systems, at the ex-
pense of deforming their commutation relations by means
of a deformation parameter, Q. Then, this could be seen as
an effective parameter, encapsulating the essential features
of complex dynamics.

We derived a formalism suitable for describing spec-
tra and two-particle correlation function of charged Q-
bosons, which we considered as bounded in a finite volume.
We adopted the Q-boson type suggested by Anchishkin et
al.[61], according to which the Q-bosons are defined by the
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following algebra of creation (â†) and annihilation opera-
tors (â): âlâ

†
l′ − Qδl,l′ â†l′ âl = δl,l′ , [âl, âl′ ] = [â†l , â

†
l′ ] =

0, [N̂l, âl′ ] = −δl,l′ âl [N̂l, â
†
l′ ] = δl,l′ â

†
l , [N̂l, N̂l′ ] = 0; N̂l

is the number operator, N̂l =
∑∞

s=1
(1−Q)s

(1−Qs) (â
†
l )

s(âl)s. In
the limit Q = 1, the regular bosonic commutation relations
are recovered. The deformation parameter Q is a C-number,
here assumed to be within the interval [0, 1].

The single-inclusive, P1(p), and the two-particle distri-
butions are derived in a similar way as in the case of regular
pions discussed above. In the Q-boson case, Eq.(64) con-
tinues to hold, but the weight factor, Nλ, related to the oc-
cupation probability of a single-particle state l, no longer is
as written in Eq.(65), but is changed into a modified Bose-
Einstein distribution,

Nl =
1

exp
[

1
T (El − µ)

]−Q
. (71)

The two-particle correlation function as also modified,
and is written as

C2(p1,p2) =
P2(p1,p2)

P1(p1)P1(p2)
=

= 1 +

{∑

l

Nl|ψ̃l(p1)|2
∑

l

Nl|ψ̃l(p2)|2
}−1

×
∑

l,l′
NlNl′ ψ̃

∗
l (p1)ψ̃∗l′(p2)ψ̃l(p2)ψ̃l′(p1)×

{
1− δl,l′(1−Q) · exp( 1

T (El − µ)) + Q

exp( 1
T (El − µ))−Q2

}
.(72)

We apply this formulation by means of similar models
as in Ref.[55], for the confining sphere of radius R. We
studied the effects of different values of Q on the correla-
tion function, under different values of the pair average mo-
mentum, KT . In Fig. 20 we show the boundary effects
on the Q-boson spectrum and on the two-Q-boson correla-
tion function. We also included in that plot the behavior of
the of the two-Q boson intercept parameter, λ, defined by
λ = C(q = 0,K) − 1. The top two plots in Fig. 20 repro-
duce the basic characteristics seen in Fig. 19, in particular,
the correlation function narrows as the average momentum,
K, grows. There is, however, a new result: the maximum of
the correlation function drops as the deformation parame-
ter, Q, increases. This can also be seen by looking into the
bottom plot of the intercept λ, as a function of Q.

We also derived a generalized Wigner function for the
Q-boson interferometry, which would reduce to the regular
one in the limit of Q → 1. For that, we define the Wigner
function associated to the state l as

gl(x,K) =
∫

d3∆x

(2π)3
e−iK.∆xψ∗l (x +

∆x
2

)ψl(x− ∆x
2

) .

(73)

0 0.2 0.4 0.6 0.8
             p(GeV/c)

0

0.02

0.04

0.06

   
   

   
 P

(p
)

R=infinity, Q = 1.0

R = 6 fm, Q = 1.0

R = 3 fm, Q = 1.0

R=infinity, Q = 0.5

R = 6 fm, Q = 0.5

R = 3 fm, Q = 0.5

R = 6 fm, Q = 0

0 0.2 0.4 0.6
              q(GeV/C)

0.8

1.2

1.6

2

   
   

   
   

   
  C

2(
q)

K = 0.3 GeV/c, Q = 1

K = 0.5 GeV/c, Q = 1

K = 0.3 GeV/c, Q =0.5

K = 0.5 GeV/c, Q =0.5

K = 0.5 GeV/c, Q = 0

0 0.2 0.4 0.6 0.8 1
             Q

0.4

0.5

0.6

0.7

0.8

0.9

1

   
   

   
   

 λ

K = 0.3 GeV/c, R = 3 fm

K = 0.5 GeV/c, R = 3 fm

K = 0.3 GeV/c, R = 6 fm

K = 0.5 GeV/c, R = 6 fm

Figure 20. The results shown here were obtained by considering
the Q-bosons confines inside a three-dimensional sphere of radius
R. In the three plots above, the temperature was fixed to T = 0.12
GeV and the chemical potential, µ = 0. The top left plot corre-
sponds to the normalized spectrum (in arbitrary units) vs. momen-
tum |p| (in GeV/c). The solid lines correspond to the case R →∞,
the dotted ones to R = 6 fm, and the dashed lines correspond to
the case, R = 3 fm/c. The bare lines refer to Q = 1.0 and the ones
with symbols, to Q = 0.5 (Q = 0). The top right plot shows the
two-pion correlation vs. momentum difference |q| (in GeV/c), for
a R = 3 fm sphere. The solid lines correspond to mean momentum
K = 0.3 GeV/c and the dashed ones, to the case K = 0.5 GeV/c.
The bare lines refer to the case of Q = 1.0 and the ones with sym-
bol, to Q = 0.5 (Q = 0). The bottom plot shows the intercept
parameter, λ, vs. the deformation Q. The solid lines correspond to
the mean momentum K = 0.3 GeV/c and dashed ones to the case
K = 0.5 GeV/c. The bare lines refer to the case R = 3 fm and the
ones with symbols, to R = 6 fm. Plots extracted from Ref.[62].

We proceeded analogously to define the equivalent func-
tion for the integration in y and ∆y, remembering that
gl(x,K) = g∗l (x,K). Then, denoting by

g(x,K) =
∑

l

Nl gl, (74)

we finally defined the generalized Wigner function of the
problem as

g(x,K;y,K) = g(x,K)g(y,K) − (1−Q)×
∑

l

{
N2

l

[
exp( 1

T (El − µ)) + Q

exp( 1
T (El − µ))−Q2

]
gl(x,K) gl(y,K)

}
.(75)

We see that, for Q = 1, the above expression is reduced to
the usual result of the original Wigner function, i.e.,

g(x,K;y,K) = g(x,K)g(y,K) . (76)

On the other hand, for Q = 0, Eq. (75) is identically zero
for single modes only, as it would be expect in the limit of
Boltzmann statistics. Nevertheless, in the multi-mode case,
there seems to be some sort of residual correlation among
Q-bosons even in the classical limit.
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By means of this Wigner function, the two-Q-boson cor-
relation function can be rewritten as

C2(p1,p2) = 1 +
∫ ∫

e−iq.(x−y)g(x,K;y,K)dxdy∫
g(x,p1)dx

∫
g(y,p2)dy

(77)
Particularly interesting is the approach in Ref.[63],

where it was shown that the composite nature of the par-
ticles (pseudo-scalar mesons) under study could result into
deformed structures linked to the deformation parameter Q.
In that reference this parameter is then interpreted as a mea-
sure of effects coming from the internal degrees of free-
dom of composite particles (mesons, in our case), being the
value of Q dependent on the degree of overlap of the ex-
tended structure of the particles in the medium. Being so,
the Q-parameter could be related to the power of probing
lenses, for mimicking the effects of internal constituents of
the bosons. In this case, and for high enough magnifica-
tion, the bosonic behavior of the Q-bosons could be blurred
by the fermionic effect of their internal constituents, which
would result in decreasing the value of Q. Our results on the
two-Q-boson interferometry are compatible with this inter-
pretation, as explained in detail in Ref.[62].

2.7 Non-extensive statistics and HBT
Sérgio M. Antunes[64], working under my supervision and
in collaboration with G. Krein during his Master Degree,
studied the effects of Tsallis[65] non-extensive statistics on
the two-particle correlations and spectra. In this work, a
very simple starting hypothesis was made: that under cer-
tain circumstances, the Boltzmann limit to the pion distribu-
tion could be replaced by an equivalent approximate expres-
sion derived within the non-extensive statistics. This con-
cept of non-extensivity could be summarized very briefly by
the relation: SqTs

(A + B) = SqTs
(A) + SqTs

(B) + (1 −
qTs)SqTs

(A)SqTs
(B), i.e., the entropy of a system formed

by two independent sub-systems A and B, no longer is the
sum of the entropy of the two subsystems (note that by in-
dependent it is meant that the probability of the composite
system factorizes as pA+B = pA + pB). The parameter qTs

is a measure of the degree of non-extensivity of the system
and the Boltzmann-Gibbs statistics is recovered in the limit
qTs → 1. From the definition of the generalized entropy
in the Tsallis[65] formulation, it is possible to obtain ap-
proximate analytical expressions, for instance, for the mean
occupation number[66]

exp{[−(E(p, r)− µ]/T} −→
{1 + (qTs − 1)[(E(p, r)− µ]/T}−1/(qTs−1) ,(78)

which is reduced to the Boltzmann distribution for qTs→1,
where T is the temperature and µ, the chemical potential.
The form given in Eq.(78) is, however, valid for qTs close
to unity. Later, G. Wilk et al.[67] showed that the above
distribution can be written in the form

GqTs
= CqTs

[
1− (1− qTs)

x

λ

] 1
1−qTs . (79)

Considering GqTs
as a probability distribution (Lévy dis-

tribution) in the variable x, with x ε (0,∞), the para-
meter qTs must be limited to the interval 1 ≤ qTs ≤ 2.

However, if the mean value of x is required to be finite
(< x >= λ/(3 − 2qTs) < ∞) for x ε (0,∞), then qTs

has to belong to the interval 1 ≤ qTs ≤ 1.5, which better
justifies the interval of applicability of Eq. (78).

For investigating the above hypothesis, we adopted a
model with radial flow [68], leading to a non-decoupled
phase-space freeze-out distribution

D(x, ~p) =
δ(r −R) e−t2/τ2

[1 + (qTs
− 1) 1

T (E′(~p, r̂)− µ)]1/(qTs−1)
,

(80)
where E′(~p, r̂) = (Ep − r̂.~p)(1− v2)−

1
2 and µ = 0.

With the above decoupling distribution the correlation
function is written as

C2( ~K, ~q) = 1 + exp[−1
2
(Ek1 − Ek2)

2τ2]×
∣∣∣∣
∫ π

0
sin θJ0(|~q||~x|sin θ sin θ) exp{i|~q||~x|cos θ cos θ}dθ

[1+(qTs−1)( γ
T E ~K/2−y cos θ)]1/(qTs

−1)

∣∣∣∣
2

(∫ +1

−1
dξ[1 + (qTs

− 1)( γ
T E ~K/2 − y cos θ)]1/(1−q)

)2

where E 1
2

~K =
√

( ~K
2 )2 + m2

π, γ = (1− v2)−1/2 and J0(x)
is the Bessel function of order 0. In Eq. (81), θ is the angle
between ~K and ~x, θ is the angle between ~K and ~q, in such
a way that the angle α between ~q and ~x, can be determined
by cos α = cosθcosθ + sinθsinθ cos(φ− φ). But ~K and ~q
define a plane, so that we can choose the directions of these
vectors in such a way that φ = 0. Then, choosing the di-
rection of ~K along the z-axis, if we integrate Eq. (81) for
θ = 0 and θ = 900, this corresponds, respectively, to ~q ‖ ~K

(i.e, qO) and ~q ⊥ ~K (i.e., qS).
The correlation function versus the momentum differ-

ence, q = k1 − k2, showed a strong dependence on the
combined variables K = k1 + k2 and T/(γv), where v
is the flow velocity (with v ∼ 0.55 as typical flow veloc-
ity at CERN/SPS, and v ∼ 0.37 as typical flow velocity at
LBNL/Bevalac), γ = (1− v2)−1, and T is the temperature.
Although not explicitly illustrated here, the dependence on
the average momentum of the pair showed that the correla-
tion curves became narrower for increasing K, similarly to
what was observed in the results of Sect. 2.6, even though
the present model considers an expanding system. More-
over, also similarly to the results on the Q-boson interferom-
etry, the correlation shrinks, i.e., the probed effective region
grows, for increasing qTs , suggesting that long-range cor-
relation could be present, in association with Tsallis statis-
tics. The study also showed that a very small deviation from
the Boltzmann statistics, corresponding to qTs = 1.015,
could lead to clear differences in the correlation function un-
der some particular choices of the combination T/(γv), as
shown in the top right plot of Fig. 21. We see that, due the
strong dependence on the combination T/(γv), the search
for such a deviation from the Boltzmann statistics, as sug-
gested by the Tsallis extensive statistics, would be favored
at lower energies. Nevertheless, it was shown that the exper-
imental data on event-by-event pion transverse-momentum
fluctuations, that could not be explained by a model based



90 Brazilian Journal of Physics, vol. 35, no. 1, March, 2005

on standard extensive statistics, was compatible with a small
deviation, i.e., for a value of the non-extensive parameter
qTs

= 1.015, which inspired our analysis. Also, NA35 Col-
laboration data on pion transverse momentum distribution
from S+S collisions at SPS showed a better agreement with
fit based on non-extensive statistics, with qTs

= 1.038[70],
mainly for the tail of the distribution, which is of power-law
type.
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Figure 21. The two upper plots show results for the two-pion
correlation as function of qO . The top plot has fixed values of
| ~K| = 0.8 GeV/c and the factor T/(γv) = 0.152 GeV, with
T = 0.100 MeV and v ≈< v >= 0.55, and curves corre-
sponding to qTS = 1.0 (dashed), qTS = 1.015 (long-dashed) and
qTS = 1.10 (continuous). The plot in the middle results from fix-
ing | ~K| = 0.6 GeV/c, T/(γv) = 0.109 GeV, T = 0.044 MeV
and v ≈< v >= 0.37, with curves corresponding to qTS = 1.0
(long-dashed) and qTS = 1.015 (continuous). The plot on the bot-
tom show the spectrum corresponding to the upper case, with cor-
responding curves for qTS = 1.0 (continuous) and qTS = 1.015
(dashed).

The above approach to the problem, however, is very
simple, since the connection of qTs to the space-time
variables was considered only through the non-decoupled
phase-space present in the adopted model[68]. Neverthe-
less, the possibility is not excluded that a more general form

for the Wigner function, as the one derived in Eq.(75) of
Section 2.6.2, would be more appropriate. Maybe long-
range correlations, as suggested by Tsallis statistics, would
not allow for reducing the Wigner function to its conven-
tional form, as in Eq.(76).

2.8 Phase-space density

Victor Vizcarra-Ruiz[71], another student working with me,
investigated a suggestion made by George Bertsch[72], ac-
cording to which the average phase-space density could be
estimated by means of the two-pion correlation function and
the single-particle spectrum. In his Master dissertation, a
generalization of Bertsch’s suggestion is proposed, by ap-
plying the wave-packet formalism proposed in Ref.[41].

Bertsch’s proposition could be briefly summarized as
follows. He considered that, in ultra-relativistic heavy-ion
collisions, the local phase-space density in the final state is
frozen and gives a measure of the dynamics in the priory
interacting region. He starts by converting the source func-
tion to an equivalent one at a common instant, t0, times the
phase-space density at that time, i.e.,

g(x, ~K) → δ(t− t0)f(~r, ~K)/(2π)3. (81)

Using the Wigner formulation for the spectrum d3N
d3k =∫

d2xg(x, ~K) and assuming the approximate validity of the
relation d3N/d3k1 ≈ d3N/d3k2 ≈ d3N/d3K, indepen-
dently of the momentum difference ~q, he wrote the average
phase-space density as

< f > ~K=
∫

d3rf2(~r, ~K)∫
d3rf(~r, ~K)

≈ d3N

d3k

∫
d3q[C(~q, ~K)− 1].

(82)
For instance, in case the experimental single-inclusive

distribution could be well reproduced by the expression

d3N

d3k
=

1
EK

dNy

dy

e−KT /T

2πT 2
(83)

and the correlation function by Eq.(17), the phase-space
density would be written as

< f > ~K=
λ
√

π

2EKT 2

dNy

dy

e−KT /T

RORSRL
(84)

since the right-hand-side of Eq.(82) results in λπ3/2

RORSRL
.

The generalization proposed in [71] was derived
using the powerful formulation based on the Wigner
formalism[41] and summarized in Section 2.2.2, applying to
the case of two-boson interferometry. In this first approach,
we tried to keep our derivation as close as possible to the one
proposed by Bertsch, so that the differences could be clearly
seen. With this in mind, we maintained expression (81) for
the non-relativistic source function as suggested in [72].
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The single-particle distribution (spectrum) is then writ-
ten as

[
Eki

d3N

d3ki

]

∆

=
1

(2π)3(2π∆p)
3
2

∫
d3rd3p f(~r, ~p) e−(~p−~ki)

2/2∆p2

≈ 1
(2π)3

∫
d3rd3p f(~r, ~p, ~K;∆p),

(85)
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Figure 22. The top plot shows the pion spectral distribution. The
dashed line represents the transverse distribution in Eq. (83), the
continuous one, the Kolehmainen-Gyulassy type, and the long-
dashed curve, the Gaussian spectral distribution. The plot in the
middle shows the correlation function in terms of qL, for all the pa-
rameterizations used: Gaussian without and with the inclusion of
the wave-packets (two bottom ones), as well as the one on top cor-
responding to minimal packets (or Kolehmainen-Gyulassy). The
plot on the bottom shows the estimate for the average phase-space
(divided by the integral in rapidity), for all the models: the highest
curve corresponds to the simple Gaussian parametrization for the
source with exponential spectrum, the lowest one, to the Gaussian
source with Gaussian spectrum and minimal wave-packets, and the
middle curve, to the Kolehmainen-Gyulassy type.

where we have defined

f(~r, ~p, ~K; ∆p) =
1

(2π∆p)
3
2

f(~r, ~p) e−(~p− ~K)2 . (86)

The average phase-space density is then defined as

< f( ~K;∆p, ∆x) >=∫
d3rd3p f(~r, ~p, ~K;∆p,∆x) f(~r, ~p, ~K; ∆p)∫

d3rd3p f(~r, ~p, ~K;∆p)
.(87)

Then, the reformulation of the average phase space den-
sity in terms of the generalized Wigner formalism was de-
rived as

< f( ~K; ∆p, ∆x) >≈
[
d3N

d3K

]

∆

∫
d3q[C∆(~q, ~K)− 1].

(88)
With the definition in Eq.(86), we see from Eq. (88) that

the form of expression for the average phase density < f >
does not change significantly with the introduction of the
wave-packets coming from the generalization of the Wigner
formulation for interferometry,. What actually changes is
the way to estimate the spectrum and the two-pion correla-
tion function, where the wave packets are implicitly present.

For illustrating an application of Eq.(88), we can look
into the simplest example, the Gaussian emission function,
similarly to the one proposed by Bertsch, but without split-
ting the transverse variables, i.e.,

C(k1, k2) = 1 + e−q2
T R2

T e−q2
LR2L , (89)

whereas the correspondent expression in the generalized
Wigner formulation of Ref.[41] is

C(k1, k2) = 1 + e−q2
T R2

∆,T e−q2
LR2

∆,L , (90)

from where we see that the intercept parameter,λ, is implic-
itly being fixed to unity. In Eq. (90), we have R2

∆,i =
R2

i (K) + 1/(4mπTf ). Thus, we see that the results for the
radial parameters in the standard Wigner formulation would
correspond to the limit ∆x ∼ 1/∆p → 0. The parameters
used in this example are: RT = 3.56 fm, RL = 2.52 fm, as
suggested by experimental results from the BNL/AGS[45],
Tf = 140 MeV, and minimum packets were considered,
i.e., ∆x∆p = 1/2, being ∆p ≈ √

mπTf . Relative to
these values of radii, the factor 1/∆p is very small (0.5 fm,
or ≈ 4%).Consequently, the corrections to the correlation
function and to < f > are expected to be small, which is in-
deed what is observed. Nevertheless, we should notice that
the time dependence was supposed to be a delta function,
similar to Eq. (81), to keep the analysis simple and closer
to Bertsch’s proposition, and for emphasizing the influence
of the wave-packets. However, we know that the duration
of the emission has an enormous influence into the correla-
tion function and the expectations are that more pronounced
differences would be seen if a broader time interval was in-
troduced, for instance, by Gaussian time spread instead of
the delta one used.

The proposed extension of the average phase-space esti-
mate was applied to some examples. The first was the static
Gaussian case, with and without the inclusion of wave pack-
ets. Another one was the case corresponding to the Bjorken
picture, IOC, which, for minimal packets in the generalized
Wigner formalism, is reduced to the Kolehmainen-Gyulassy
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solution, where the spectrum is close to an exponential. In
the generalized Wigner formalism, however, it is possible to
choose other possibilities for parameterizing the spectrum
and, for a test, a Gaussian version of the momenta distribu-
tion is tried, although it is well known that the experimental
results favor an exponential type of parametrization.

In the estimate of the average phase-space density, a
strong sensitivity to the adopted spectral shape was ob-
served. The study compared cases of static Gaussian source
distribution, having exponential and Gaussian correspond-
ing to minimum packets, with the Bjorken type from the
Kolehmainen-Gyulassy approach. This is shown in Fig. 22.

2.9 The RHIC Puzzle
The new millennium started together with the first run of the
Relativistic Heavy Ion Collider, at BNL. The main prelimi-
nary surprising result released was, coincidentally, in HBT.
Since The conference Quark Matter 2001, in January of that
year, it has been known as the RHIC Puzzle, first seen by
the STAR collaboration[73] and later confirmed by PHENIX
Collaboration[74]. The result was related to the ratio of two
of the radii parameters, Rout/Rsid (Rout ≡ RO is the trans-
verse radius in the direction of the transverse average mo-
mentum, KT, whereas Rsid ≡ RS is its component orthog-
onal to KT). The predictions based on microscopic models,
such as UrQMD, suggested that the ratio would either grow
indefinitely (considering hadronic re-scattering only) or in-
crease up to KT > 0.15 GeV/c and then decrease, appar-
ently saturating towards unity at large KT (when combining
hydrodynamics and cascading). In any case, the ratio was
above unity. The data, however, indicated an opposite trend,
i.e., the data points for that ratio appeared to be steadily de-
creasing, reaching values around 0.8 at KT ≈ 0.4 GeV/c.
Hydrodynamical models, such as proposed by U. Heinz and
P. Kolb[75], failed in general to describe the experimental
results for the individual radii, approaching data only if they
considered that the system would immediately freeze-out at
the hadronization point. Even in that case, however, they did
not succeed in describing the ratio.

2.9.1 Hot tamale model

Challenged as well by this puzzle, Larry MacLerran and my-
self tried and built a model assuming that the QGP, initially
formed at RHIC, constituted an opaque source. The opacity
was implemented by considering a model where pions are
emitted from the surface of the system, at fixed radius, all
along its lifetime, from its formation at τ0, up to the freeze-
out. We neglected transverse flow for simplicity, consider-
ing the ideal Bjorken picture of 1+1 longitudinal expansion.
The phase transition started at τc (at temperature Tc = 175
MeV, to be consistent with lattice Monte-Carlo data), ending
at τh. The system, pions only, further expanded until reach-
ing τf (at Tf = 150 MeV, to be consistent with the energy
per particle at RHIC and to fit the pT distribution of pions),
when it broke up, in a volumetric emission.

Many of the features of the model we propose are em-
bodied in the hydrodynamic computations of Heinz and
Kolb[75], the essential difference being the treatment of sur-
face emission. The energy was emitted already from the par-
tonic phase. This quark and gluon matter was assumed to be
directly converted into a flux of pions with the same energy
and a blackbody distribution at the temperature of emission.

This energy conservation condition allowed us to directly
take a flux of gluons and quarks and convert it into a spec-
trum of purely pions. No complex mechanism for the QGP
hadronization was considered in detail, although hadroniza-
tion must take place. In other words, in first approximation,
we considered the evaporation of “gluons” and “quarks” (as
hadronized pions) from the external surface of the system in
the same way as emission of pions, except for the different
number of degrees of freedom.

We estimated the emitted energy and the total entropy
at each stage. In the initial phase, lasting from τ0 to τc, the
emitted energy as a function of time was estimated consid-
ering the emission by an expanding cylinder of transverse
radius RT and length h, in the time interval between τ and
τ + dτ , as

dEin = −κσT 4 2π RT h dτ − 1
3

σT 4 π R2
T dh , (91)

where the first term comes from the black-body type of en-
ergy radiated from the surface of the cylinder, and the sec-
ond term results from the mechanical work due to its expan-
sion. The κ factor was introduced to take into account that
the system has some opacity to surface emission. The con-
stant σ is proportional to the number of degrees of freedom
in the system. Integrating this equation we get for the energy
density (i.e., ε = E/V )

εin = ε0(
τ0

τ
)

4
3 e
− 2κ

RT
(τ−τ0) . (92)

From Eq.(92) we see that an extra factor, e−
2κ
RT

(τ−τ0), is ob-
tained in additional to that coming from the Bjorken picture.
Consequently, the temperature in this model changes more
rapidly, according to

T (τ) = T0(
τ0

τ
)

1
3 e
− κ

2RT
(τ−τ0) (T0 < T < Tc) . (93)

The initial temperature was estimated by equating
the initial entropy to the number of produced pi-
ons (pion yield) at the end, i.e., S0 = ΓN =[
(gg + gq)× ( 4

3 )π2

30 T 3
0

]
πR2

T τ0,where N ∼ 1000 is the
average produced pion multiplicity per unit of rapidity at
RHIC, and Γ = Sπ/Nπ ≈ 3.6. Then, we get T0 = 411
MeV. The degeneracy factors, g, are given by the gluon
degrees of freedom, gg = 2(spin) × 8(color), and the
quark/anti-quark degrees of freedom, gq = 7

8 [2(spin) ×
2(q + q̄) × 3(color) × Nf (flavor)], which add up to
gqgp = gg + gq . In the case of pions, the degeneracy factor
is gπ = 3.

The initial time is estimated by means of the uncertainty
principle, i.e., E0τ0 ∼ 1 (~c = 1) and E0 ≈ 3T0.

During the mixed phase (i.e., τc < τ < τh), the temper-
ature remains constant and the total entropy is conserved. If
the fraction of the fluid in the QGP phase is f , the fraction
in the pionic phase is (1 − f ), so that the entropy density is
written as s̃ = fs̃QGP + (1− f)s̃h, where

f =

(
τh e

− 2κ
RT

(τ−τc) − τ e
− 2κ

RT
(τh−τc)

τh − τc e
− 2κ

RT
(τh−τc)

)
τc

τ
. (94)
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TABLE 4. Parameters of the Tamale Model

κ τ0 τc τh τf S/Ntot V/Ntot

( fm
c

) ( fm
c

) ( fm
c

) ( fm
c

) (τ0 ≤ τ ≤ τf ) (at τf )

1 0.160 1.54 5.73 6.97 0.844 0.156
0.5 0.160 1.75 8.37 10.5 0.758 0.242

Finally, the instants corresponding to the initial of the first-
order phase transition, τc, its end, τh, and the breakup of the
system, τf , were estimated as

τc e
3κ

2RT
τc =

(
T0

Tc

)3

τ0 e
3κ

2RT
τ0 , (95)

τh e
2κ
RT

τh =
(

gg + gq

gπ

)
τc e

2κ
RT

τc , (96)

τf e
3κ

2RT
τf =

(
Tc

Tf

)3

τh e
3κ

2RT
τh . (97)

0 0.5 1 1.5
ki_T (GeV/c) 

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

[1
/(

2p
i k

i_
T

)]
 d

2N
/(

dk
i_

T
 d

y)
  

kappa=0.5

DATA:

kappa=1

PHENIX − min. bias

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
K_T (GeV/c)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

R
_o

ut
 / 

R
_s

id
 

kappa=1

kappa=0.5

DATA:
STAR −> triangles

PHENIX −> circles

(b)

Figure 23. Part (a) shows the prediction for the spectrum based
on the Tamale model. The points are from the minimum bias data
from PHENIX Collaboration. The emissivity κ is indicated in each
curve. Part (b) shows results for the ratio Rout/Rsid for our model
and for two values of the emissivity. The ratio corresponding to
κ = 1 agrees very well with the PHENIX data points, within the
experimental error bars but the one with 50% emissivity is com-
pletely excluded by data. The plots were extracted from Ref.[76].

Table 4 illustrates the time variables for two different as-
sumptions on the emissivity, κ. I also write the estimated
fraction of the particles emitted from the surface during the

period τ0 ≤ τ ≤ τf , S/Ntot, relative to the total number of
produced particles, Ntot, as well as the remnant portion at
freeze-out, V/Ntot, then emitted from the entire volume.

With the above parameters, we estimated the spectra
and compared with experimental data from RHIC/Phenix
Collaboration[74], restricted to the central rapidity region.
This is shown in Fig. 23.

With this model we managed to roughly explain the
trend of data for Rout but failed for Rsid, since it was in-
dependent on KT . This, however, was expected, since the
flow was neglected. The ratio, however, as can be seen from
Fig. 23, came up just right, through the middle of the data
points[76]! Nevertheless, only much afterwards we did real-
ize our emissivity parameter, κ, which controlled the surface
emission, differed from the conventional one associated to a
black-body. In fact, only by then we realized that the sys-
tem would have to irradiate about four times more than an
usual black-body for matching the data points. We then con-
cluded that it was another strong evidence that flow should
be included in the estimates, which is still under investiga-
tion.

2.9.2 IC, SPheRio, CEM & HBT

In Ref.[77], Otávio, Frédérique, Yogiro and Takeshi analyze
the effects of fluctuations in the initial conditions (IC), and
of the continuous emission (CE) model, in two-pion interfer-
ometry within the hydrodynamical description of the SPhe-
Rio code[78], comparing the results with the RHIC/STAR
data.

The IC are, for simplicity, usually chosen as highly sym-
metric and smooth distributions of velocities and thermody-
namical quantities. These IC correspond to mean distrib-
utions of hydrodynamical variables, averaged over several
events. Nevertheless, for the typical finite systems formed
in high energy collisions, large fluctuations are expected,
varying from event to event. Moreover, the IC on the event-
by-event basis often show small high-density spots[77] in
the energy distribution. Being so, it would be expected that
such spots would manifest themselves in the particle emis-
sion, contributing to decrease the HBT radii. In order to pro-
duce event-by-event fluctuating IC, in Ref.[77] they used the
NeXus event generator[79]: once the incident nuclei and in-
cident energy are given, it produces the energy-momentum
tensor distribution at the proper time

√
t2 − z2, in an event-

by-event basis. This, together with the baryon-number den-
sity distributions constitute the fluctuating IC. No strange-
ness was introduced in the calculation.

On the other hand, the CE model we already discussed
in Sec. 2.5, is a alternative picture for describing the final
state of the high energy collisions, i.e., the particle emission.
According to the CE model, this emission occurs not only
from the sharply defined freeze-out surface but also happens
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continuously, from the whole expanding volume at different
temperatures and times. The main ingredients of the model
are discussed in more detail by Frédérique Grassi in her re-
view, in this volume. The basic formulation for CE interfer-
ometry was discussed in Sec. 2.5.

In between the assumptions in the IC and the final
stages described by the CE picture, there is the system evo-
lution. This is considered in Ref.[77] by means of hy-
drodynamics, developed in the code SPheRio, which was
based on the Smoothed Particle Hydrodynamics (SPH), first
used in astrophysics and more recently adapted to nuclear
collisions[78]. SPH uses discrete Lagrangian coordinates at-
tached to small volumes (“particles”) with some conserved
quantities, which they take as the entropy and baryon num-
ber. For details about SPheRio and hydrodynamics, see the
review by Yogiro Hama and Takeshi Kodama, in this vol-
ume.

Some of the results shown in Ref.[77] are summarized
in Fig. 24.
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Figure 24. The plot on the left shows correlation functions assum-
ing fluctuating IC and average IC, with sudden freeze-out. The
qO,S,L that are not displayed in the horizontal axes were integrated
in the interval 0 ≤ qO,S,L ≤ 35 MeV. The plot on the right shows
the radii RO, RS , RL together with the ratio RO/RS , as a func-
tion of mT . The complement 1 stands for average IC and 2, for
fluctuating IC. The plots were extracted from Ref.[77].

To test the effect of fluctuations in the IC, a sudden
freeze-out is initially assumed, at Tf.o. = 128 MeV. In
the left part of Fig. 24 the correlation function C2, aver-
aged over 15 fluctuating events, is compared with the cor-
responding C2 with average IC (i.e., no fluctuations). The
IC fluctuations are reflected in the fluctuations seen in the
correlation functions. Averaging the correlations over the
fluctuating range, we see that the resulting C2 is broader
than the correspondent ones computed with average IC. So,
the effect of the IC fluctuations is to reduce the effective
radii extracted from the correlation functions. Besides, the
shapes of the resulting correlations with fluctuating IC and
with smoothed average IC, are different. On the right-hand-
side of Fig. 24, it is shown the mT dependence of the HBT

radii. These were estimated by fitting Gaussians to C2. Re-
sults based on the CE model, as well as RHIC data from
STAR Collaboration[73] are also included in that plot.

From Fig. 24, we see that joint effects of the smooth IC
with sudden freeze-out make the mT dependence of the out-
wards radii, RO, flat or slightly increasing. The fluctuating
IC push the effective radii towards smaller values and flat
mT dependence. Adding the CE hypothesis to the analysis,
we also see from Fig. 24 that all effective radii, RO, RS , and
RL decrease with increasing mT . This is expected, since in
the CE picture, high-kT particles have a bigger chance of
being emitted at early times, when the system is hot, mostly
from its surface. On the contrary, low-kT particles are emit-
ted later, when the system has already cooled down and has
larger size due to the expansion. The role of the fluctuat-
ing IC in the CE case is mostly of reducing the values of the
effective radii, without significantly changing its mT depen-
dence. These two effects together improve the description of
the data points, as seen in Fig. 24. Nevertheless, the ratio
RO/RS is still above unity and does not describe the data
points yet. Another ingredient may still be lacking.

2.10 Back-to-Back Correlations
The Back-to-Back Correlations (BBC) have a much more
recent history. Under the historical perspective we are pur-
suing in this review, it is worthy to briefly revise its origin.
In 1991, Andreev, Plümber and Weiner[80] wrote a paper
in which they pointed out the surprise existence of a new
quantum statistical correlation, among particle-antiparticle
pairs. Thus, π+π− correlations of this type would be sim-
ilar to π0π0 (since π0 is its own antiparticle) but entirely
different from the Bose-Einstein correlations we discussed
in the previous sections. They were related to the expecta-
tion value of the annihilation (creator) operator, more specif-
ically, < â(†)(k1)â(†)(k2) > 6= 0, analogous to what is ob-
served in two-particle squeezing in optics, where the av-
erages are estimated using a density matrix that contains
squeezed states. Although not all they discussed was cor-
rect, they pointed out that C(π+π−) > 1 and C(π0π0) >
1, reflecting particle-antiparticle quantum statistical effects.
Later, Sinyukov[59], discussed a similar effect for π+π−
and π0π0 pairs, claiming that the effects would be due to
inhomogeneities in the system, as opposite homogeneity re-
gions in HBT, which comes from a hydrodynamical descrip-
tion of the system evolution. He used Wick’s theorem for
expanding the two-particle inclusive distribution in terms of
bilinear forms.

We can understand the origin of this effect in a simpler
way in terms of creation and annihilation operators, in the π0

case. For instance, the single-inclusive distribution is writ-
ten as

N1(ki) = ωki

d3N

dki
= ωki〈â†ki

âki〉 , (98)

and, after the decomposition that follows from Wick’s theo-
rem, the two-particle distribution is written as

N2(k1,k2) = ωk1ωk2〈â†k1
â†k2

âk2 âk1〉
= ωk1ωk1{〈â†k1

âk1〉〈â†k2
âk2〉+ 〈â†k1

âk2〉〈â†k2
âk1〉

+ 〈â†k1
â†k2

〉〈âk1 âk2〉} . (99)
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In Eq. (99), the first term corresponds to the product of
the two single-inclusive distributions, the second one gives
rise to the Bose-Einstein identical particle correlation, re-
flecting the last position, just after particle emission. The
third term, absent in the π±π± case, is the responsible for
the particle-antiparticle correlation. Under analogous condi-
tions as HBT, this last term usually vanishes but is non zero
if the Hamiltonian of the system is of the type H = H0+H1,
where H0 is the free part in the vacuum (final particles) and
H1 represents the interaction of quasi-particles, resulting in
an effective shift of their masses. Alternatively, as in the pi-
oneer work in Ref. [80], this could be similar to having a
chaotic superposition of coherent states and the density ma-
trix containing squeezed states.

Later, Andreev and Weiner[81] continued the discus-
sion. They considered that, in high energy collisions, a
pion blob (strongly interacting pion system, seen as a liquid)
is formed and later undergoes a sudden freeze-out, where
the pionic system (having background and excited states) is
rapidly converted into free pions. They postulate that, at the
moment of transition, they can relate in-medium creation
and annihilation operators (b̂†, b̂) to the corresponding free
ones (â†, â), by means of a squeezing transformation, with a
real squeezing parameter [r = 1

2 ln(Efr/Ein)]. In the same
year, Asakawa and Csörgő proposed a similar structure to
this previous approach, but relating in-medium operators to
free ones by means of a Bogoliubov transformation. They
suggested that, while the in-medium Hamiltonian, H1, is di-
agonalized in terms of b̂†, b̂, the free one is diagonalized by
â†, â. They also proposed to observe hadron mass modifica-
tion in hot medium by means of Back-to-Back Correlations.
However, the theory was not yet completely correct.

There were a few more tentative works by the two
groups but the correct approach was finally written in 1999,
by Asakawa, Csörgő, and Gyulassy[83].

The formalism developed for the case of an in-
finite medium can be summarized as follows. The
in-medium Hamiltonian is written as H = H0 −
1
2

∫
dx dyφ(x)δM2(x − y)φ(y), where H0 =

1
2

∫
dx

(
φ̇2 + |∇φ|2 + m2φ2

)
, is the asymptotic (i.e., free)

Hamiltonian, in the rest frame of matter. The scalar field
φ(x) in the Hamiltonian H corresponds to quasi - parti-
cles that propagate with a momentum-dependent medium-
modified effective mass, which is related to the vacuum
mass, m, via

m2
∗(|k|) = m2 − δM2(|k|).

The mass-shift is assumed to be limited to long wavelength
collective modes: δM2(|k|) ¿ m2 if |k| > Λs. Given
such a mass shift, the dispersion relation is modified to
Ω2

k = ω2
k − δM2(|k|), where Ωk is the frequency of the

in-medium mode with momentum k.
The in-medium, thermalized annihilation (creation) op-

erator is denoted by bk (b†k), whereas the corresponding
asymptotic operator for the observed quantum with four-
momentum kµ = (ωk,k), ω2

k = m2 + k2 (ωk > 0) is de-
noted by ak (a†k). These operators are related by the Bogoli-
ubov transformation, i.e., ak1 = ck1bk1 + s∗−k1

b†−k1
, which

is equivalent to a squeezing operation. For this reason, rk
is called mode-dependent squeezing parameter. Note that

the relative and the average pair momentum coordinates are
q0
1,2 = ω1 − ω2, q1,2 = k1 − k2, Ei,j = 1

2 (ωi + ωj), and
K1,2 = (1/2)(k1 + k2). For shortening the notation, we
wrote the squeezed functions as ci,j = cosh[r(i, j, x)] and
si,j = sinh[r(i, j, x)], where

r(i, j, x) =
1
2

log
[
(Kµ

i,juµ(x))/(K∗ν
i,j (x)uν(x))

]

=
1
2

log
[

ωki(x) + ωkj (x)
Ωki

(x) + Ωkj
(x)

]
. (100)

Also, ni,j is the density distribution, which is taken as
the Boltzmann limit of the Bose-Einstein distribution, i.e.,
n

(∗)
i,j (x) ≈ exp {−[K(∗)µ

i,j uµ(x)− µ(x)]/T (x)}, where the
symbol ∗ implies the use of in-medium mass, whereas it
should be dropped where there is no mass-shift.

In cases where the boson is its own anti-particle, as
for π0π0 or φφ correlations, the full correlation func-
tion consists of a HBT part (related to the chaotic ampli-
tude, Gc(1, 2)) together with a BBC portion (related to the
squeezed amplitude, Gs(1, 2)), as shown below

C2(k1,k2) =
N2(k1,k2)

N1(k1)N1(k2)

= 1 +
|Gc(1, 2)|2

Gc(1, 1)Gc(2, 2)
+

|Gs(1, 2)|2
Gc(1, 1)Gc(2, 2)

,

(101)

being the invariant single-particle and two-particle momen-
tum distributions given by

Gc(1, 2) =
√

ωk1ωk2〈â†k1
âk2〉,

Gs(1, 2) =
√

ωk1ωk2〈âk1 âk2〉,
Gc(i, i) = Gc(ki, ki) = N1(ki). (102)

So far, the derivation considered an infinite system. The
effects of finite size on BBC will be considered afterwards
in the text. In Ref.[83], they discussed the influence of fi-
nite emission times, observing that the BBC in this case was
suppressed when compared to the instant emission. Includ-
ing the finite emission time as θ(t − t0)Γ exp[−Γ(t − t0)],
C2(k1,k2) − 1 acquires a multiplicative factor [1 + (ωk −
ω−k)2/Γ2]. They illustrated the maximum BBC, corre-
sponding to C2(k,−k) for the φ-meson, obtaining a consid-
erable magnitude for the BBC correlation function, in spite
of considering the time suppression. We will see this more
explicitly later.

As we discussed in the beginning of this section, the
BBC is a different type of correlation, discovered for boson-
antiboson pairs. More recently, Tamás Csörgő, Yogiro
Hama, Gastão Krein, Prafulla K. Panda, and myself demon-
strated that a similar correlation existed between fermion-
antifermion pairs, if the mass of the fermions were modified
in a thermalized medium. We already saw in the Introduc-
tion that, regarding the HBT effect, identical bosons have an
opposite behavior as compared to identical fermions, as il-
lustrated in Fig. 4, where we see that quantum statistics sup-
presses the probability of observing pairs of identical fermi-
ons with nearby momenta, while it enhances such a proba-
bility in the case of bosons. With respect to BBC, however,
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we found out a very different situation: fermionic BBC are
positive and similar in strength to bosonic BBC! And, con-
trary to the HBT correlations, the BBC are unlimited.

In the fermion BBC case, there are expressions similar
to Eq.(98) and (99),

N1(ki) = ωki
〈a†ki

aki
〉 ; Ñ1(ki) = ωki

〈ã†ki
ãki
〉 , (103)

N2(k1,k2) = ωk1ωk2〈a†k1
ã†k2

ãk2ak1〉 . (104)

In the above expressions,< Ô > denotes the expec-
tation value of the operator Ô in the thermalized medium
and a†, a, ã†, ã are, respectively, creation and annihilation
operators of the free baryons and antibaryons of mass

M and ωk =
√

M2 + |~k2|, which are defined through
the expansion of the baryon field operator as Ψ(~x) =
1
V

∑
λ,λ′,~k(uλ,~kaλ,~k + vλ′,−~ka†

λ′,−~k
)ei~k.~x; V is the vol-

ume of the system, uλ,~k and vλ′,−~k are the Dirac spinors,
where the spin projections are λ, λ′ = 1/2,−1/2. The in-
medium creation and annihilation operators are denoted by
b†, b, b̃†, b̃. While the a-quanta are observed as asymptotic
states, the b-quanta are the ones thermalized in the medium.
They are related by a fermionic Bogoliubov-Valatin trans-
formation,

(
aλ,k

ã†λ′,−k

)
=

(
ck

fk

|fk| sk A

− f∗k
|fk| s

∗
k A† c∗k

)(
bλ,k

b̃†λ′,−k

)
,

(105)
here c1 = cos r1, s1 = sin r1, and

tan(2r1) = − |k1|∆M(k1)
ω(k1)2 −M∆M(k1)

(106)

is the fermionic squeezing parameter. Note that in the fermi-
onic case, the squeezing parameter is the coefficient of sine
and cosine functions, differently than the bosonic cases in
which appeared their hyperbolic counterparts. In Eq. (105)
A is a 2 × 2 matrix with elements Aλ1λ2 = χ†λ1

σ · k̂1χ̃λ2
,

where k̂1 = k1/|k1|, χ is a Pauli spinor and χ̃ = −iσ2χ.
Since r is real in the present case, we drop the complex-
conjugate notation in what follows.

In order to evaluate the thermal averages above, the
system is modelled as a globally thermalized gas o quasi-
particles (quasi-baryons). In this description, the medium
effects are taken into account through a self-energy func-
tion, which, for a spin- 1

2 particle (we will focus on proton
and anti-proton pairs), under the influence of mean fields in a
many-body system, can be written as Σ = Σs+γ0Σ0+γiΣi.
In this expression, Σ0 is a weakly momentum-dependent
function which, for locally thermalized systems that we are
considering, has the role of shifting the chemical potential,
i.e., µ∗ = µ − Σ0. The vector part is very small and is ne-
glected. The scalar part can be written as Σs = ∆M(k).
With these approximations we describe the system with a
momentum-dependent in-medium mass, M∗(k) = M −
∆M(|k|).

We are mainly interested here in the study of the
squeezed correlation function, which corresponds to consid-
ering only the joint contribution of the first and third terms
on the rhs of Eq. (101). In the fermionic case and for an

infinite, homogeneous thermalized medium, the correlation
BBC part of the correlation function is written as

C
(+−)
2 (k1,−k1) = 1 + [1 + (2∆t ωk)2]−1 ×

{ (1− nk − ñk)2(cksk)2

[c2
knk + s2

k(1− ñk)] [c2
kñk + s2

k(1− nk)]
}, (107)

where nk = 1
exp[(Ωk−µ∗)/T ]+1 ; ñk = 1

exp[(Ωk+µ∗)/T ]+1

in terms of which the net baryonic density is written as
ρB = (g/V )

∑
k

(
nk − n−k

)
. In Eq. (107) we have in-

cluded a more gradual freeze-out by means of a finite emis-
sion interval, similarly to what was done in Ref[83], which
has the effect of suppressing the BBC signal.

For our numerical study of the fermionic back-to-back
correlations (fBBC), we considered, for simplicity, momen-
tum independent in-medium masses, i.e., M∗ = M −∆M .
There is no difficulty in considering momentum dependent
self-energies, however, this requires the commitment to a
specific model and we preferred to leave it for a future inves-
tigation. In Fig. 25 we show fBBC for p̄p pairs as a function
of the in-medium mass M∗, for three values of the net bary-
onic density ρB : for the normal nuclear matter, one tenth of
this value and for the baryon free region, i.e., ρB = 0. We
show in the same plot results for the bosonic case, bBBC,
corresponding to φ meson pair, whose mass is close to the
proton mass and was the example used in Ref.[83].

810 855 900 945 990 1035 1080 1125

M* (MeV)

0

1

2

3

4

5

6

C
2(

k,
-k

)

p p
__

, B=0.17 fm
-3

p p
__

, B=0.017 fm
-3

p p
__

, B=0 fm
-3

800850900950100010501100

0.1
0.2

1
1.5

2
2.5

3
3.5

4
4.5

700800900100011001200

0.1
0.2

1
1.5

2
2.5

3
3.5

4
4.5

Figure 25. The plot on the left shows back-to-back correlations of
p̄p (fBBC) and of φ-meson pairs, for |~k| = 800 MeV/c. The plot
on the right shows the dependence of the fBBC on the in-medium
modified proton mass, M∗, and on the net baryon density, ρB and
two typical values of |~k|. In both cases T = 140 MeV and ∆t = 2
fm/c. The plots were extracted from Ref.[85].

We see from Fig. 25 that fBBC and bBBC are, indeed,
both positive correlations, with similar shape, and of the
same order of magnitude. We also observe that fBBC is
strongly enhanced for decreasing net baryonic density, being
maximal for ρB ≈ 0, i.e., for approximately equal baryon
and anti-baryon densities. Fig. 25 also shows that fBBC in-
creases with increasing momentum. Besides, we see that the
shape of fBBC is very sensitive to the shape of the freeze-
out distribution and, in the limit of a very long freeze-out,
both fBBC and bBBC would vanish.

So far, we considered an infinite and homogeneous
medium, although we know that the systems produced in
high energy collisions, including the ones at RHIC, have fi-
nite sizes. Thus, we need to know if the BBC signal would
survive when more realistic spacial and dynamical consider-
ations were made. For pursuing this purpose, we studied the
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effects on the squeezing parameter and on the back-to-back
correlation of a finite size medium moving with collective
velocity. For this, we considered a hydrodynamical ensem-
ble, in which the amplitudes Gc and Gs in Eq. (101) and
(102) are extended to the special form derived by Makhlin
and Sinyukov [84].

Gc(1, 2) =
1

(2π)3

∫
d4σµ(x)Kµ

1,2e
iq1,2·x{|c1,2|2n1,2

+ |s−1,−2|2(n−1,−2 + 1)}, (108)

Gs(1, 2) =
1

(2π)3

∫
d4σµ(x)Kµ

1,2e
2iK1,2·x{s∗−1,2c2,−1n−1,2

+ c1,−2s
∗
−2,1(n1,−2 + 1)}. (109)

In Eq.(108) and (109) d4σµ(x) = d3Σµ(x; τf ) F (τf )dτf is
the product of the normal-oriented volume element depend-
ing parametrically on τf (the freeze-out hyper-surface pa-
rameter) and on the invariant distribution of that parameter
F (τf ). We consider two possibilities: i) an instant freeze-
out, corresponding to F (τ) = δ(τ − τ0); ii) an extended
freeze-out, with a finite emission interval, with F (τ) =
[θ(τ−τ0)/∆t]e−(τ−τ0)/∆t. These cases lead, after perform-
ing the integration in dτ in Eq. (108) and (109) with weight
(Ei,j e−i2Ei,jτ ), respectively to: i) (ωi + ωj) e−i(ωi+ωj)τ0 ;
ii) (ωi + ωj)[1 + [(ωi + ωj)∆t]−2.

According to the hydrodynamical solution, we can ex-
press the chemical potential as µ(x)

T (x) = µ0
T − r2

2R2 , being R

the radius of the system, T = T (x) the temperature of the
system in each space-time point x, and µ0 a constant. We
assume that the system expands with four-dimensional flow
velocity uµ = γ(1,v), where v =<u> r

R . In the non-
relativistic limit, we can write γ = (1 + v)−1/2 ≈ 1 + 1

2v
2,

thus taking into account all terms up to O(mv2). We esti-
mate the geometrical and dynamical effects on the BBC in
the bosonic case, considering the in-medium changes for the
φ-meson.

For small mass shifts, i.e. (m−m∗)
m ¿ 1, the flow ef-

fects on the squeezing parameter are of fourth order, i.e.,
O

(
Kin. energy

m

)
( δm2

m2 ). As a consequence, the flow effects
on ri,j can be neglected, and the factor ci,j and si,j become
flow independent, although they could still depend on the
coordinate r through the shifted mass, m∗ (e.g., through
T (x), as in hydrodynamics), which is not considered here.

For the sake of simplicity, trying to keep the results as
much analytical as possible (for details, see [86]), we make
the hypothesis that the mass-shift is independent on the po-
sition within the fireball. We further assume that this last
one has a sharp surface, i.e., δm = 0 on the surface, and
also the density vanishes outside the system volume. The
spatial integration in Eq. (108) and (109) extends over the
region where the mass-shift is non-vanishing, which is not
infinitely large. For instance,I in relativistic heavy ion colli-
sions is a finite region V ≈ R3 ≈ (5−10)3 fm3. We should
keep in mind that the vacuum term in the integrand vanishes
outside the mass-shift region, since it is proportional to si,j ,
which vanishes in that region. On the other hand, the terms
proportional to n

(∗)
i,j (x) are finite. Being so, we can extend

the integration in Eq. (108) and (109) to infinity and, with-
out much loss of generality, we can choose for V a Gaussian
profile, exp[−r2/(2R2)].
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Figure 26. The Back-to-Back Correlation is shown as a function
of the pair average momentum, for k1 = −k2 = k, when con-
sidering the values of the shifted mass around the vacuum mass,
mφ = 1020 MeV). The squeezed mass was considered to change
in the entire Gaussian volume, with rms R = 6 fm. In the top plots
no flow was included, i.e., v =<u> r

R
= 0, but radial flow with

<u>= 0.5 was included in the bottom cases. Plots on the left side
correspond to the case of particles emitted instantly, and those on
the right, to the case where particles are emitted during a finite time
interval, ∆t.

We studied the flow effects in two cases. The first one
considers the mass-shift as occurring in the entire volume of
the system, for which the parameter R, in the exponential,
represents the cross-sectional area of the Gaussian profile
with rms R . The other case corresponds to considering the
shift of mass in a smaller volume, associated to a certain
Rs < R. We show in Fig. 2.10 the results for the first case
only, where we adopted R = 6 fm. The BBC signals for
the mass shift in the partial volume, although not shown, are
very similar to the ones in Fig. 26, except for the maximum
strength of the bBBC signal, which is smaller than seen in
the plots of Fig. 26, emphasizing that the effect is directly
proportional to the size of the region where the mass-shift
occurs. By comparing the top panels (no flow) with the bot-
tom ones (<u>= 0.5) in Fig. 26, we see that the flow has
a suppression effect on the bBBC strength in the high mo-
mentum region. However, the presence of flow surprisingly
enhances the BBC signal in the low momentum region (i.e.,
for |k| . 1000 MeV), as compared to the no-flow case on
top panel, suggesting this as the region to focus the search
for the BBC effect. In any case, we conclude with enthusi-
asm that the BBC signal survives more realistic conditions,
like finite sizes, time spread, and flow. This strongly encour-
ages us to analyze even more realistic systems than the ones
discussed here, and to optimize the way we should look for
this interesting, although not yet observed, effect.
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3 Brief concluding remarks
I would like to finalize by emphasizing that, although a lot
was written above about the evolution and contributions re-
lated to HBT, since its discovery about half a century ago,
the present text merely covers a tiny fraction of what has
been produced on this subject. An increasing number of
people over these five decades have given countelss contri-
butions to the field. Unfortunately, the lack of space would
not allow me to mention and discuss them all. Finally, I
would like to dedicate this review to the memory of my
father, who passed away this year, as well as to Robert
Hanbury-Brown and Richard Q. Twiss, on celebrating the
50th anniversary of their first publication on this fabulous
method and discovery.

I would like to express my gratitude to Yogiro Hama and
Takeshi Kodama for devising, 15 years ago, and organizing
ever since, this active group working on hadronic and nu-
clear interactions at high energies.
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dos em Colisões Hadrônicas a Altas Energias, Ph.D. Thesis
presented at Instituto de Fı́sica, Universidade de São Paulo
(October 16, 1987).

[23] J. D. Bjorken, private communication.
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222 (1997); U.Tirnakli, F. Büyükkili,̧ D.Dermirhan, Phys.
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