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In this note we discuss the relation between the Ornstein-Zernike decay of certain four-point functions (“energy-
energy correlations”) in lattice spin systems and spectral properties of the transfer matrix, related to the property
of two-particle asymptotic completeness in (massive) Euclidean lattice quantum field theories.

I. INTRODUCTION

In Statistical Mechanics, power-law corrections to the ex-
ponential decay provide an improved asymptotic description
for two-point functions (or pair-correlation) away from the
critical point. Such corrections have been analysed since the
pioneering work of Ornstein and Zernike [1] and its nature has
been associated to other underlying phenomena.

In this paper we study the Ornstein-Zernike (O-Z) behavior
of four-point functions in the context of (massive) Euclidean
quantum field theories on the d + 1 dimensional integer lat-
tice or, correspondingly, in the context of classical statistical
mechanics spin systems described by the transfer matrix for-
malism. We follow closely the methods of Paes-Leme [9].
More precisely, our work attempts to extend that results to
four-point functions and for the case of absolutely continu-
ous energy-momentum spectrum. Therefore, the emphasis of
the present work is to associate the O-Z corrections to spec-
tral properties of the transfer matrix related to the absence of
two-particle states and to properties of the dispersion curve of
one-particle states near the origin.

Our main result is expression (III.6) in Theorem III.1 below.
For the specific case of the Ising model at high temperatures in
space dimension d = 1 or 2, our expression (III.6) is weaker
than the known bound (obtained by more specific methods.
See, e.g., [15]), while for d > 3 we are able to reproduce
the bound known for that particular model (see [15]). In this
context, it is opportune to remark that our results and meth-
ods are based on general hypotheses, valid in essentially any
model described by the transfer matrix formalism and with-
out two-particle bound states, as we discuss in Sec. VI. In
fact, the exact asymptotics in d = 1 or 2 for the Ising model at
high temperatures are, in the framework of this paper, due to
of additional model-dependent properties of the function v in
(III.5). See Sec. VII for some comments on this in our context
or [15].

Rather than providing a replacement to other well-known
methods employed in Statistical Mechanics for the analysis of
decay properties of n-point functions, as random walk meth-
ods, our aim is to illuminate, in a model independent way, the
relation between O-Z corrections and spectral properties asso-
ciated to the particle structure of certain statistical mechanics
systems, seen as lattice quantum field theory models through
the transfer matrix formalism. Random walk methods may
not be available in models exhibiting continuous symmetries,
while our spectral hypotheses could in principle be verified

even in such cases by other formalisms, like those employed
in [17, 18, 20], that use ideas originated in [23].

To emphasise the features of our spectral approach, let us
present a brief historical review of the O-Z properties. The
original argument of Ornstein and Zernike consists basically
on a local limit type computation based on suitable assump-
tions on the structure of correlations. In a technical sense, this
description is valid (for classical systems) in the limit of infi-
nitely weak long-range potentials [2]. Fisher [3] introduced
a heuristic development of these results based on a Bethe-
Salpeter (B-S) type expression Ĝ = Ĉ+ρ−1ĈĜ for the Fourier
transform of the pair-correlation G. Here, the “B-S kernel” is
given by minus the inverse of the (mean) density ρ, the “free
resolvent” is the so called “direct correlation function” C and,
in this perhaps somewhat vague analogy, the critical point is
identified, in some sense, with a “pole” of the “resolvent” G.
Supported on symmetry arguments, the function C is assumed
to be quadratic near the origin (see [4]).

In more recent studies (see, e.g. [5–7]) the presence of
power-law corrections to the exponential decay (O-Z correc-
tions) has been established by the use of convergent expan-
sion methods, like polymer and cluster expansions or random
walks. In the work of Campanino, Ioffe and Velenik [8], for
instance, a refined expansion method was employed to de-
rived a precise O-Z asymptotic formula for the decay of the
two-point function, valid for all the region above the critical
temperature in a wide class of finite range Ising type models.

A general spectral approach for two-point functions in
the context of lattice spin systems, described by transfer ma-
trices, and satisfying conditions required by lattice quantum
field theories, can be found in the work of Paes-Leme [9].
There, the presence of O-Z corrections was associated to spec-
tral properties of the transfer matrix related to the presence of
a one-particle state and to properties of its dispersion curve
near the origin (zero momentum).

The O-Z behavior was also analysed for four-point func-
tions (or energy-energy correlations) and subsequently ex-
plored in the literature, mostly concerning the Ising Model
[10–12]. Later elaborations are found in [5–7] where, for the
analysis of four-point functions, correlation inequalities of the
type derived in [13, 14] were used. Further references and a
survey of results can also be found there. Note that the rele-
vance of energy-energy correlations for Statistical Mechanics
is based on its use for the computation of the specific heat
[4, 10]. The case of arbitrary odd-odd and even-even correla-
tions for the Ising model at high temperatures is considered in
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[15].
Our starting point is an explicit expression (eq. (III.5),

below) for the Fourier transform of the connected part of
a truncated four-point function. Assuming a “local mini-
mum (quadratic) behavior” for the dispersion curve at the ori-
gin, we can use, as in [9], a multidimensional adaptation of
Laplace method [16] for the asymptotic estimation of some
integrals and, in this way, we get the O-Z decay property,
namely a power-law correction as |τ0|−d , τ0 being the “time”-
component of the coordinate τ, defined in (III.3).

The main difference with respect to [9] is that our expres-
sion (III.5) is basically a paraphrase of the two-particle as-
ymptotic completeness condition studied in [19], as we will
remark in Sec. VI. Roughly speaking, this represents the ab-
sence of (two-particle) bound states. In a mathematical sense,
the energy-momentum spectrum up 2m is, in this case, ab-
solutely continuous and has multiplicity 1. Asymptotic com-
pleteness is verified under general hypotheses, as discussed
in [19]. The Ising model at high temperatures, for instance,
matches this condition [20].

Analogous results could be derived assuming the existence
of two-particle bound states but, in this case, it seems plau-
sible to expect that the exponential decay is corrected by
|τ0|−d/2, as in the case of the two-point function [9], instead
of |τ0|−d . See the final digression of Sec. IV and Sec. VII.

Our results provide a one-way proof that some suitable as-
sumptions on the energy-momentum spectrum, related to two-
particle asymptotic completeness, imply a definite O-Z decay.
One would be naturally tempted to speculate on the opposite
direction, and ask whether the knowledge of the O-Z decay of
correlations provides information on the energy-momentum
spectrum which could be interpreted in terms of properties of
the particle states, such as asymptotic completeness. Unfortu-
nately, however, to address such interesting general questions
is beyond our present capabilities, and we leave this point
without further comments.

This paper is organised as follows. In Sec. II we present the
basic setting we will work with. In Sec. III we introduce the
basic assumptions and state our main result, captured in The-
orem III.1. In Sec. IV we present some preparatory results to
the proof of Theorem III.1, finally presented in Sec. V. In Sec.
VI we derive the expression (III.5) under suitable hypotheses.
Sec. VII is devoted to some final remarks.

II. BASIC HYPOTHESES

A model in lattice quantum field theory is specified by
the choice of a state µ (i.e., a linear, positive functional
with norm 1) on the algebra C

(
SZ

d+1
)

of complex-valued,

continuous functions on the set of configurations SZ
d+1

:={
ϕ : Zd+1 → S

}
, with the product topology, where S ⊆ C is

a conveniently topologized set. For instance, for the Ising
Model we have S := {−1, 1} with the discrete topology, but
restrictions on S and its topology are not really serious neither
relevant in the present context. As usual, Zd+1 is the lattice of
integers in d + 1 dimensions, with d > 1, whose sites will be

denoted by x = (x0, x1, . . . , xd) or (x0, x), for short.
Examples of functions in SZ

d+1
are the projections at site

x, ϕx : ϕ 7−→ ϕ(x), and the function identically equal to 1,
denoted here by 1. For each i ∈ {0, 1, . . . , d} and a ∈
Z we define the semi-spaces Λi,a := {(x0, x1, . . . , xd) ∈
Zd+1 : xi > a}. We also define the lattice translations: τx :
y 7−→ y + x, ∀x, y ∈ Zd+1, and the reflections θi,a : y 7−→
(y0, y1, . . . , yi−1, 2a− yi, yi+1, . . . , yd), a ∈ Z/2. An exam-
ple is the “time” reflection θ := θ0,0 : (x0, x) 7−→ (−x0, x).
The state µ is interpreted as the vacuum state and is typically
obtained as the thermodynamic limit of finite volume Gibbs
states. Additionally, the state µ is assumed to satisfy

A1 Invariance under reflections and translations: µ =
µ◦θi,a = µ◦τx, ∀ i ∈ {1, . . . , d}, ∀x ∈ Zd+1 and ∀a ∈
Z/2.

A2 Reflection positivity: µ
(
θ0,a f f

)
> 0, ∀ f ∈ P (Λ0,a)

and ∀a ∈ Z/2.

Above, the bar indicates complex conjugation and P (Λ) de-
notes the algebra generated by all the projections ϕx with
x ∈ Λ. The last two properties allow to construct the Hilbert
space of physical states H as the completion of the quotient
P (Λ0,0)/{ f : 〈 f , f 〉0 = 0}, a procedure similar to the GNS
construction for C∗-algebras. Note that 〈 f , g〉0 := µ

(
θ f g

)
is a sesquilinear, Hermitian, non-negative form (by A2) on
P (Λ0,0). The standard procedure gives additionally a canoni-
cal inclusion i : P (Λ0,0)→H with dense image. For instance,
i(1) =: Ω is the vacuum state vector. Functions f ∈ P (Λ0,0)
act as multiplication operators on P (Λ0,0), f̃ : g 7−→ f g. The
action of functions and the lattice translations can also be ex-
tended through i, leading to operators acting on H . Some
relevant examples are:

i(ϕ̃x) =: Φ(x), the local fields, for x ∈ Λ0,0,
i(τe0) =: T , the transfer matrix,
i(τen) =: Tn, the generators of space translations,

for n = 1, . . . , d.

The local fields are bounded operators if S is a compact
set, with ‖Φ(x)‖ 6 sup{|s| : s ∈ S}. The transfer matrix is a
positive self-adjoint operator with norm equal to 1 and the op-
erators Tn, the generators of elementary space translations on
the lattice, are unitaries, so they can be expressed as Tn = eiPn

for certain self-adjoint operators Pn, with spectrum in (−π,π].
We can identify P = (P1, . . . , Pd) with the momentum op-
erator. The Hamilton operator is defined on Ker(T )⊥ by
H :=− ln(T ¹ Ker(T )⊥). Notice, however, that Ker(T ) = {0}
in many of the most interesting models (see [21]) and, hence,
H will be defined on the whole Hilbert space. Thus, (H, P)
will be called the energy-momentum operator.

Finally, for functions f on the lattice, the
Fourier transform f̂ and anti-transform f̌ are de-
fined by f̂ (p) = (2π)−

d+1
2 ∑

x∈Zd+1

e−i p·x f (x) and

f̌ (x) = (2π)−
d+1

2

Z

Td+1
ei x·p f (p)d p, respectively. Above,

Td+1 is the (d +1)-dimensional torus: Td+1 := (−π, π]d+1.
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III. THE MAIN RESULT

The n-point Euclidean, or Schwinger, functions are defined
by Sn(x1, . . . , xn) := µ(ϕx1 · · · ϕxn). As a consequence of
translation invariance A1, we can express Sn in terms of dif-
ference variables

Sn(x1, . . . , xn) = Sn(x1− xn, . . . , xn−1− xn). (III.1)

We define the connected part of the truncated four-point func-
tion as

D(x1, x2, x3, x4) := S4(x1, x2, x3, x4)

−S2(x1, x2)S2(x3, x4). (III.2)

In terms of the new variables

ξ := x1− x2, η := x3− x4, τ := x1 + x2− (x3 + x4),
(III.3)

and expressing the two-point and four-point functions in terms
of difference variables (III.1), we get

D(x1, x2, x3, x4) = S4

(
τ+ξ+η

2
,

τ−ξ+η
2

, η
)
−S2(ξ)S2(η) =: D(τ, ξ, η). (III.4)

The change of variables (III.3) requires certain care in the
lattice context. This was discussed in [19], and here we
omit these considerations. Denote R(k, p, q) := D̂(k, p, q),
considering it as a family of integral operators [R(k) f ](p) =R
Td+1 R(k, p, q) f (q)dq indexed by k.

Our results on the four-point function will be obtained from
the following single assumption, which we will derive from
other more basic ones in Sec. VI.

a. Assumption: For each f in a “suitable” space of func-
tions A (see Sec. VI), we have

〈 f , R(k) f 〉L2(Td+1) =
Z

Td

sinhG(p, k)
coshG(p, k)− cosk0

v(p, k) dp + B(k)( f ) , (III.5)

where

(a) G(p, k) = [ω(p + k) + ω(p− k)]/2. Here, ω is is
a “sufficiently differentiable”, real function defined in
the torus Td (i.e., periodic), with m := ω(0) 6 ω(k),
(gradω)(0) = 0, and such that the matrix B, whose en-
tries are given by

Bi j =
∂2ω

∂ki ∂k j

∣∣∣∣
k=0

,

is positive defined and non-singular. Furthermore, there

exists m′ > m such that m′ 6 ω(k) for all k outside a
neighborhood of the origin. See Fig. 1.

(b) v(p, k) is a non-negative, C∞ function.

(c) B(k)( f ) is analytic in the strip |Imk0|< m′′, where m′′ >
m′ > m.

By abuse of notation, we denote the map k0 7−→ 〈 f , R(k) f 〉
by R and D = Ř.

We are now in position to state our main result:
Theorem III.1 Under the assumptions above, we have

D(τ) = const
e−m |τ0|

|τ0|d
+ e−m |τ0|O∗

(
|τ0|−(d+ 1

2 )
)

+ O
(

e−m′′′ |τ0|
)

(III.6)

for τ0 → ∞, where m′′′ > m. Here, O∗ (K−p) means
O

(
K−p+δ) for all δ > 0 when K → ∞. 2

Remarks. 1. The precise meaning of expression (III.6) is the
following: there exists I(τ) such that

|D(τ)− I(τ)| 6 const e−m′′′ |τ0|, (III.7)
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FIG. 1: The assumed shape of the function ω near the origin.

where m′′′ > m, and the expression I(τ) satisfies:
∣∣∣∣∣I(τ) − const

e−m |τ0|

|τ0|d

∣∣∣∣∣ 6 const
e−m |τ0|

|τ0|d+ 1
2−δ

(III.8)

as τ0 →∞, for any δ > 0. The function I(τ) is the Fourier anti-
transform of the first term at the r.h.s. in (III.5). See (IV.1) in
Section IV below. 2. Our derivation of (III.6) from assump-
tion (III.5) is valid in any space dimension d. As shown in
Sec. VI, for the case d = 1 we derive relation (III.5) under

some suitable hypotheses, among them the existence of a one-
particle shell. In this case, the function ω of condition (a)
becomes the dispersion curve of the particle and m its mass.
3. From definition (III.3), note that the τ coordinate is twice
the difference between the “center of mass coordinates” (of
points x1 and x2 and points x3 and x4, respectively), so the
mass rate of the exponential decay in (III.6) is 2m, the ex-
pected one for that particular four-point function (compare,
f.i., with [23, 24]). 4. The condition on differentiability of ω
is not a physically restrictive condition. As will become clear
from our proof of Theorem III.1 below, condition (b) is not
essential and can be considerably weakened.

IV. SOME PREPARATORY REMARKS

Before we start the proof of Theorem III.1, let us make
some preparatory comments on the decay properties of D(τ).
From (III.5), we have, by the analyticity of B(k)( f ) in (c),

D(τ) = Ř(τ) = I(τ) + O(e−m′′ |τ0|) , (IV.1)

where I(τ) is the Fourier anti-transform of the first term at the
r.h.s. in (III.5)

I(τ) = (2π)−
d+1

2

Z

Td

Z

Td+1

sinhG(p, k)
coshG(p, k)− cosk0

v(p, k) eiτ·k dk dp

= (2π)−
d+1

2

Z

Td

Z

Td

(Z π

−π

sinhG(p, k)
coshG(p, k)− cosk0

eiτ0k0 dk0

)
v(p, k) eiτ ·k dk dp

= (2π)
1−d

2

Z

Td

Z

Td
e−G(p, k)|τ0| v(p, k) eiτ ·k dk dp. (IV.2)

The integral in k0 (in brackets at the second line above) was
easily evaluated by the method of residues, and its value is
2πe−G(p, k)|τ0|.

At this point we have to do a little digression. Let us denote
by |p| the l∞ norm of vectors p = (p1, . . . , pd) ∈ Rd (or Zd),
|p| := max{|p1|, . . . , |pd |}. Define the set Id = {n ∈ Zd :
|n|6 1} and, for some conveniently small ε > 0, consider the
region

D = {(p, k) ∈ Td ×Td : ∃ n,

m ∈ Id s. t. |p+k+2πn|< ε

and

|p−k+2πm|< ε}.
Note that for n∈ Id we can write 2n = a+b with a, b∈ Id and
|ai|= |bi| ∀i = 1, . . . ,d. Note also that if the two relations

|p+k+2πn|< ε, |p−k+2πm|< ε (IV.3)

are simultaneously valid for some n and m in Id , then n and
m are not independent, because |p| < π and |k| < π. In fact,
each component of the pair (n, m) admits just five possible
values, (ni, mi) = (±1, 0), (0, ±1 or 0). From these two ob-
servations, the pair of relations (IV.3) is equivalent to

|p+k+π(a+b)| < ε, |p−k+π(a−b)| < ε, (IV.4)

with a, b ∈ Id and |ai| = |bi| (for, just analyse each case sep-
arately and note that the original 9 = 3×3 cases are reduced
to 5, by the second observation above). Define the translation
Ta, b : (p, k) 7−→ (p+πa, k+πb) and the “rotation-reflection-
dilatation” given by the orthogonal matrix A =

(1 1
1 −1

)
, where

1 denotes here the d × d identity matrix. Then, the pair of
relations (IV.4) is equivalent to

|ATa, b(p, k)|< ε, (IV.5)

for all a, b ∈ Id with |ai|= |bi|. Therefore, the region D is the
image of the square of side 2ε centered in 0 by the inverse of
ATa, b, for every a, b ∈ Id with |ai|= |bi|. Such a pairs (a, b)
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are the center and the corners of the dotted big square shown
in Fig. 2, and the region D is the union of the five shaded
diamond shaped sub-regions.

We split the dpdk integral in (IV.2) in two pieces,
R

D +
R

Dc .
The integral on Dc is O(e−m′|τ0|), with m′ > m. More delicate
is the analysis of the integral on D. It can be written as a sum
of integrals on each of the regions Da,b,

Z

Da,b
e−G(p, k)|τ0| v(p, k) eiτ ·k dk dp. (IV.6)

In the integral above we perform the change of variables
given by the transformation ATa, b, with Jacobian determinant
(−2)d , to get

e−iπτ ·b

2d

Z

|p|<ε

(Z
|k|<ε

e−G◦(ATa,b)−1(p, k)|τ0| u(p, k) e−
i
2 τ ·k dk

)
e

i
2 τ ·p dp, (IV.7)

where u := v ◦ (ATa, b)−1. Notice that the four regions in the
corners of the big dotted square in Fig. 2 are identified as a
single one on the torus. Therefore, the region D is actually the
union of two diamond shaped regions on the torus. The proof
of the Theorem III.1 will be continued from this exact point
at the Sec. V below. The remaining of the present section is a
digression.

Instead of condition (a) of the Assumption, consider the fol-
lowing weaker one:

(a’ ) G(p, k) is a “sufficiently differentiable” function de-
fined in the torus Td (i.e., periodic), depending on the
variables p and k just in the combinations p + k and
p− k respectively, m 6 G(p, k), and with the follow-
ing property: there exists ε > 0 such that the matrix
B = B(p), whose entries are given by

Bi j =
∂2G

∂ki ∂k j

∣∣∣∣
k=0

,

is positive defined and non-singular for |p| < ε. Fur-
thermore, (gradkG)(p, 0) = 0, for |p|< ε.

As in [9], using the results of [16] the integral in brackets
in (IV.7) can be estimated using the method of Laplace, which

gets the asymptotic decay

const e−m |τ0|
[

1

|τ0|d/2 + O∗
(
|τ0|−

d+1
2

)]
. (IV.8)

The estimative in (IV.8) is valid for all regions Da,b and is,
therefore, valid for the integral on D. The power-law correc-
tion |τ0|−d/2 to the exponential decay of the four-point corre-
lations found above was obtained with a simple analysis, and
a less restrictive condition on G. As we will show in the next
section, they can be improved, leading to the stronger power-
law correction |τ0|−d , mentioned in Theorem III.1.

V. PROOF OF THEOREM III.1

Assuming the condition (a) for the function G

G(p, k) :=
ω(p+k)+ω(p−k)

2
, (V.1)

using (V.1) in (IV.7) we get

e−iπτ ·b

2d

Z

|p|<ε

(Z
|k|<ε

e−
1
2 ω(k−π(a−b)) |τ0| u(p, k)e−

i
2 τ ·k dk

)
e−

1
2 ω(p−π(a+b)) |τ0| e

i
2 τ ·p dp

=
e−iπτ ·b

2d

Z

|p|<ε

(Z
|k|<ε

e−
1
2 ω(k) |τ0| u(p, k) e−

i
2 τ ·k dk

)
e−

1
2 ω(p) |τ0| e

i
2 τ ·p dp. (V.2)

Now we can use, as in [9], the results of [16, p. 148 and ff.]
on a multidimensional adaptation of the method of Laplace to
estimate both integrals in (V.2), one at each time, beginning
with the dk integral. We get that expression (V.2) decays as-

ymptotically as

const
e−m |τ0|

|τ0|d
+ e−m |τ0| O∗

(
|τ0|−(d+ 1

2 )
)

, (V.3)
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FIG. 2: Left: The five regions Da,b. Right: The edges of the shaped regions with the same letter are identified in the torus, and the four
cornered regions become just one diamond region, like the central one.
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FIG. 3: The region R (shaded).

when τ0 → ∞. See Appendix A for the details. This bound,
valid on each region Da,b, extends immediately to the integral

on D. The integral on Dc can be split into the integrals on two
complementary regions, R and Rc∩Dc, where R is the shaded
region in Fig. 3.

In each rectangular sub-region Ra, b, just one of the inte-
grals in (V.2) has an exponential decay with mass rate m/2

corrected by |τ0|−
d
2 , while the other one has only an exponen-

tial decay with mass rate m′/2, with m′ > m. Therefore, these
integrals decay as

const e−
m+m′

2 |τ0| O
(
|τ0|−d/2

)
(V.4)

As in the previous section, the integral on Rc ∩Dc has an ex-
ponential decay with mass rate m′ > m. Finally, collecting the
pieces, we have

D(τ) = c′1
e−m |τ0|

|τ0|d
+ e−m |τ0|O∗

(
|τ0|−(d+ 1

2 )
)

+ e−
m+m′

2 |τ0| O
(
|τ0|−d/2

)
+ O

(
e−m′ |τ0|

)
+ O

(
e−m′′ |τ0|

)
, (V.5)

c′1 being a positive constant. This completes the proof of The-
orem III.1.

VI. DERIVATION OF EXPRESSION (III.5)

In this section we derive condition (III.5) from more ba-
sic hypotheses. The relation of the operator R(k) with the

spectral measure of the energy-momentum operator, given by
(VI.3), follows straightforwardly from the definitions intro-
duced in Sec. II and at the beginning of Sec. III. The hy-
potheses H1-H3, stated below, are sufficient conditions for
asymptotic completeness, as discussed in [19]. Moreover,
a Radon-Nykodim derivative for the spectral measure of the
energy-momentum operator (VI.5) can be explicitly derived
in this case. Expression (III.5) of the Assumption is a direct
consequence of the form of this Radon-Nykodim derivative.
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Directly from the definitions we have

D(τ,ξ,η) = S4

(
τ+ξ+η

2
,

τ−ξ+η
2

,η
)
−S2(ξ)S2(η)

= µ
(

ϕ τ+ξ+η
2

ϕ τ−ξ+η
2

ϕηϕ0

)
−µ

(
ϕξϕ0

)
µ(ϕηϕ0)

= µ
(
(ϕξϕ0−µ(ϕξϕ0)1).(1).τ− τ−ξ+η

2
(ϕηϕ0−µ(ϕηϕ0)1).(1)

)

=
〈(

Φ(ξ)Φ(0)−µ(ϕξϕ0)IH
)

Ω, T− τ−ξ+η
2

(Φ(η)Φ(0)−µ(ϕηϕ0)IH )Ω
〉

H
,

(VI.1)

where in the last equality we assumed ξ0 = 0. Assuming now additionally η0 = 0, identity (VI.1) takes the form

D(τ,ξ,η) =
〈

Θ(ξ), e−
1
2 |τ0|H e−

1
2 iτ ·P Θ(η)

〉
H

, (VI.2)

where Θ(α) := e−
1
2 iα·P [Φ(α)Φ(0)−µ(ϕαϕ0)IH ] Ω. Now, if f , g∈ L2

(
Td+1

)
are symmetrical, with purely spatial dependence,

we have

〈 f , R(k)g〉L2(T d+1) =
Z

Td+1

Z

Td+1
D̂(k, p,q) f (p) g(q) dqd p

= (2π)
1−d

2 ∑
τ,(0,ξ),(0,η)

e−ik·τ D(τ,(0,ξ),(0,η)) f̌ (−ξ) ǧ(−η)

= (2π)
1−d

2 ∑
τ,(0,ξ),(0,η)

e−ik·τ
〈

Θ(ξ), e−
1
2 |τ0|H e−

1
2 iτ ·P Θ(η)

〉
H

f̌ (−ξ) ǧ(−η)

= (2π)
1−d

2 ∑
τ

e−ik·τ
〈

Θ( f̌ ), e−
1
2 |τ0|H e−

1
2 iτ ·P Θ(ǧ)

〉
H

= (2π)
1−d

2

Z ∞

0

Z

Td

(
∑

τ0∈Z
e−ik0τ0 e−

1
2 |τ0|λ0

)(
∑

τ∈Zd

e−ik·τ e−
1
2 iτ ·λ

)
dEλ

= (2π)
d+1

2

Z ∞

0

Z

Td

sinh(λ0/2)
cosh(λ0/2)− cosk0

δ
(

λ

2
+k

)
dEλ

= (2π)
d+1

2

Z ∞

0

sinh(λ0/2)
cosh(λ0/2)− cosk0

dE(λ0,−2k).

(VI.3)

Here, we have used (VI.2). Moreover, we denote Θ(h) := ∑x Θ(x)h(−x), or

Θ(h) = ∑
x∈Zd

h(−x)e−
1
2 ix·P [

Φ((0,x))Φ(0)−µ(ϕ(0,x)ϕ0)1
]

Ω,

for the “two-particle states”, and we have introduced the
spectral measure of the energy-momentum operator dEλ :=
d
〈

Θ( f̌ ), EλΘ(ǧ)
〉

H .

Let us briefly present some definitions. Let the uncon-
nected four-point function be defined as D0(x1,x2,x3,x4) :=
S2(x1,x3)S2(x2,x4) + S2(x1,x4)S2(x2,x3). As in expression
(III.4), we can write D0 in terms of the variables ξ, η and τ,
introducing D0 as D0(x1, x2, x3, x4) =: D0(τ, ξ, η). Let the
“free resolvent” R0 be defined as R0(k, p, q) := D̂0(k, p, q),
considered as a family of integral operators indexed by k. Act-
ing on symmetric functions, i.e., f (p) = f (−p), it is given by
R0(k, p,q) = 2(2π)

d+1
2 Ŝ2(k + p)Ŝ2(k− p)δ(p + q) (see [19]).

The so-called Bethe-Salpeter kernel K is defined by the Bethe-
Salpeter equation R = R0−R0KR. Now, consider the follow-
ing hypotheses:

H1 Existence of “one-particle states”: The Fourier trans-
form of two-point function is given by:

Ŝ2(p0, p) =
Z(p) sinhω(p)

coshω(p)− cos p0

+
Z ∞

m+2δ0

sinhλ0

coshλ0− cos p0
dρ(λ0, p),(VI.4)
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where Z(p) is a positive, C∞ function; ω(p) is real ana-
lytic, m 6 ω(p) < m+2δ0; 0 < δ0 6 m.

H2 Exponential decay of the Bethe-Salpeter kernel: The
Bethe-Salpeter kernel K(k, p, q) is analytic in the re-
gion

|Im pi| < δi + ε (i = 0, 1, . . . , d)
|Imqi| < δi + ε (i = 0, 1, . . . , d)
|Imk0| < m+δ0

for certain δi > 0 (i = 1, . . . , d), and ε > 0.

H3 “Repulsive interaction”: K(k, p, q) = η1 +
η2K1(k, p, q), with K1 satisfying H2. Here 1 is
the function identically equal to 1 and η is a positive
constant.

The hypotheses H1-H3 were verified in various models under
several conditions by many authors (see [19] for a large list of
references). We introduce also the following few definitions

δ := (δ0, δ1, . . . , δd) ∈ Rd+1,

Iδ :=
{

(α0, α1, . . . , αd) ∈ Rd+1 : |αi|6 δi, ∀ i = 0, 1, . . . , d
}

,

‖ f‖2
δ := sup

α∈Iδ

Z

Td+1
| f (p+ iα)|2 d p,

Aδ := { f : f is analytic in |Im pi|6 δi, ‖ f‖δ < ∞, f (p) = f (−p)} .

It was proven in [19] that, for f in Aδ, the measure d
〈

Θ( f̌ ), EλΘ( f̌ )
〉

H vanishes in (0, 2m) and, if d = 1, has a Radon-
Nykodim derivative in [2m, 2(m+δ0)), given by

d
〈

Θ( f̌ ), E(λ0,−2k1)Θ( f̌ )
〉

H = 2π Z(F−1(λ0)+ k1) Z(F−1(λ0)− k1)

× (F−1)′(λ0) W f W f (0, F−1(λ0)) dλ0, (VI.5)

where, denoting (p0, p) = (p0, p1), (k0, k) = (k0, k1) and cosk0−1 = x+ iy, with x, y ∈ R, we have

F(p1) := ω(p1 + k1)+ω(p1− k1),

W f := lim
y→0+

x→θ(p)−1

[1+K(k0, k1)R0(k0, k1)]
−1 f ,

θ(p1) :=

√
cosh[ω(p1 + k1)+ω(p1− k1)]+1

2
.

Replacing expression (VI.5) in the last integral in (VI.3), after the the change of variables given by p1 = F−1(λ0), we have

〈 f , R(k) f 〉L2(T d+1) = (2π)
d+3

2

Z

T

sinh(F(p1)/2)
cosh(F(p1)/2)− cosk0

v(p1, k1) d p1 + B(k)( f ), (VI.6)

where

v(p1, k1) = Z(p1 + k1) Z(p1− k1) W f W f (0, p1), (VI.7)

B(k)( f ) = (2π)
d+1

2

Z ∞

2(m+δ0)

sinh(λ0/2)
cosh(λ0/2)− cosk0

d
〈

Θ( f̌ ), EλΘ( f̌ )
〉

H . (VI.8)

This establishes (III.5) under the above hypotheses.

VII. SOME FINAL COMMENTS

As a final remark, let us point that special mechanisms,
eventually occurring in some model-specific situations and
possibly related to particular symmetries or low-dimensional

properties, can lead to some improvements of our estimates.

Expression (III.5) reflects the fact that the spectral mea-
sure dE(λ0,−2k) in (VI.3) is absolutely continuous below m′′ =
2(m + δ0). Physically, this fact reflects the absence of bound
states. In the presence of two-particle bound states, additional
δ(λ0− 2w(k)) terms must be added to the spectral measure,
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as in the case of the two-point function, studied by Schor in
[22], where w is analogous to the dispersion curve ω. In this
case, a term like

sinhw(k)
coshw(k)− cosk0

has to be added to the r.h.s. of (III.5). As in the Sec. IV, it is
easy to prove that such a term leads to a decay as (IV.8).

In terms of Γ, the convolution inverse of the two-point func-
tion, satisfying

Ŝ2(p0, p) Γ̂(p0, p) = −1, (VII.1)

the dispersion curve ω is implicitly defined by
Γ̂(± iω(p), p) = 0, while the C∞, positive function Z is
defined by (see [22])

∂ Γ̂(p0, p)
∂(cos p0−1)

∣∣∣∣∣
p0=± iω(p)

=
1

Z(p) sinhω(p)
, (VII.2)

from which we get

Z(p) =


i

∂ Γ̂(p0, p)
∂ p0

∣∣∣∣∣
p0=± iω(p)



−1

. (VII.3)

By reflection invariance A1 (Sec. II), the two-point function
Ŝ2 is a symmetric function of p. From (VII.1), Γ̂ is equally
symmetric and, finally, by (VII.3), the function Z is symmetric
as well.

Assume that the function v in (III.5) is of the form v(p, k) =
Z(p + k)Z(p−k)v1(p), with Z symmetric. From the above
observations and from (VI.7), this condition is not much re-
strictive. Under this hypothesis, the integral in (V.2) assumes
the form

Z

|p|<ε

(Z
|k|<ε

e−
1
2 ω(k) |τ0| Z(k−2πm) e−

i
2 τ ·k dk

)
e−

1
2 ω(p) |τ0| Z(p−2πn) u1(p) e

i
2 τ ·p dp. (VII.4)

By the symmetry of Z, we have |Z(p)| ' z1 + z2 |p|2 near the origin, where z1, z2 are constants. Using this and the previously
mentioned asymptotic estimates, expression (VII.4) becomes asymptotically

e−m |τ0|
[(

c1

|τ0|d
+

c2

|τ0|d+1

)[
1 + O∗

(
|τ0|−(d+ 1

2 )
)]

+
c3

|τ0|d+2

]
. (VII.5)

In specific models, it can happen that the constant c1 above
vanishes and the leading term becomes c2e−m |τ0|/ |τ0|d+1.
This behavior could also be reproduced provided the func-
tion v1 above behaves as |v1(p)| ' |p|2 near p = 0. This is
possibly what happens in the high temperature Ising model in
d = 2, where only the c2-term reproduces the correct asymp-
totics. The precise analysis requires a model-specific study
of the properties of the functions Z and v1 that are beyond
the scope of our general approach. See f.i. [15]. Note that

the vanishing of either c1 or c2 is compatible with the claim
c′1 > 0 in (V.5). The claim would be incompatible only if both
c1 and c2 of (VII.5) were simultaneously zero.

APPENDIX A: PROOF OF (V.3)

Considering the integral in (V.2), for any A,B,C positive
numbers we can write

B
∣∣∣∣em |τ0|

Z

|p|<ε

(Z
|k|<ε

e−
1
2 ω(k) |τ0| u(p, k) e−

i
2 τ ·k dk

)
e−

1
2 ω(p) |τ0| e

i
2 τ ·p dp − A

∣∣∣∣

= B

∣∣∣∣∣e
m
2 |τ0|

Z

|p|<ε

(
e

m
2 |τ0|

Z

|k|<ε
e−

1
2 ω(k) |τ0| u(p, k) e−

i
2 τ ·k dk − C

|τ0|d/2 +
C

|τ0|d/2

)
e−

1
2 ω(p) |τ0| e

i
2 τ ·p dp − A

∣∣∣∣∣

6 B

∣∣∣∣∣e
m
2 |τ0|

Z

|p|<ε

(
e

m
2 |τ0|

Z

|k|<ε
e−

1
2 ω(k) |τ0| u(p, k) e−

i
2 τ ·k dk − C

|τ0|d/2

)
e−

1
2 ω(p) |τ0| e

i
2 τ ·p dp

∣∣∣∣∣

+ B

∣∣∣∣∣
C

|τ0|d/2 e
m
2 |τ0|

Z

|p|<ε
e−

1
2 ω(p) |τ0| e

i
2 τ ·p dp − A

∣∣∣∣∣ (A.1)
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Now, as a consequence of equation (2.9.6) in [16, p. 149], we have

Z

|p|<ε
e−

1
2 ω(p) |τ0| e

i
2 τ ·p dp = e−

m
2 |τ0|

Z

|p|<ε
e−

1
2 (ω(p)−m) |τ0| e

i
2 τ ·p dp

= e−
m
2 |τ0|

Z

|p|<ε
e−

1
4 〈p, Bp〉 |τ0| e

i
2 τ ·p dp + O∗

(
|τ0|−

d+1
2

)
(A.2)

The Gaussian integral at the r.h.s. in (A.2) can be bounded by a term proportional to |τ0|−d/2. Therefore

∣∣∣∣∣e
m
2 |τ0|

Z

|p|<ε
e−

1
2 ω(p) |τ0| e

i
2 τ ·p dp − C1

|τ0|d/2

∣∣∣∣∣ 6 C2

|τ0|
d+1

2 −δ
. (A.3)

Analogously,

∣∣∣∣∣e
m
2 |τ0|

Z

|k|<ε
e−

1
2 ω(k) |τ0| u(p, k) e−

i
2 τ ·k dk − C3

|τ0|d/2

∣∣∣∣∣ 6 C4

|τ0|
d+1

2 −δ
. (A.4)

If we set A = C3 C1 |τ0|−d , B = |τ0|d+ 1
2−2δ and C = C3, using (A.3) and (A.4) the first term at the r.h.s. in (A.1) is bounded by

BC4 C2 |τ0|−(d+1)+2δ = C4 C2 |τ0|−1/2 6 C4 C2, and for the second we have

B

∣∣∣∣∣
C3

|τ0|d/2 e
m
2 |τ0|

Z

|p|<ε
e−

1
2 ω(p) |τ0| e

i
2 τ ·p dp − C3 C1

|τ0|d/2 |τ0|d/2

∣∣∣∣∣

6 B
C3

|τ0|d/2

∣∣∣∣∣e
m
2 |τ0|

Z

|p|<ε
e−

1
2 ω(p) |τ0| e

i
2 τ ·p dp − C1

|τ0|d/2

∣∣∣∣∣

6 B
C3

|τ0|d/2

C2

|τ0|
d+1

2 −δ
= B

C3 C2

|τ0|d+ 1
2−δ

=
C3 C2

|τ0|δ
6 C3 C2. (A.5)

Therefore, the l.h.s. in (A.1) is bounded by C4C2 +C3C1 and
this means that the integral in (V.2) is equal to A+O(B−1), for

any δ > 0.
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