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Classical Limit of Non-Integrable Systems
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Self-induced decoherence formalism and the corresponding classical limit are extended from quantum inte-
grable systems to non-integrable ones.

1 Introduction
Decoherence was initially considered to be produced by de-
structive interference [1]. Later the strategy changed and de-
coherence was explained as caused by the interaction with
an environment [2], but this approach is not conclusive be-
cause:

i.- The environment cannot always be defined, e. g. in
closed system like the universe.

ii.-There is not a clear definition of the ”cut” between
the proper system and its environment.

iii.- The definition of the pointer basis is not simple.
So we need a new and complete theory: The self-induced

approach [3], based in a new version of destructive interfer-
ence, which will be explained in this talk in its version for
non-integrable systems. The essential idea is that this inter-
ference is embodied in Riemann-Lebesgue theorem where it
is proved that if f(ν)εL1 then

lim
t→∞

∫ a

−a

f(ν)e−i νt
~ dt = 0

If we use this formula in the case when ν = ω − ω′, where
ω, ω′ are the indices of the density operator ρ̂, in such a way
that ν = 0 corresponds to the diagonal, we obtain a catastro-
phe, since all diagonal and not diagonal terms would disap-
pear. But, if f(ν) = Aδ(ν) + f1(ν), where now f1(ν)εL1,
we have

lim
t→∞

∫ a

−a

f(ν)e−i νt
~ dt = A

and the diagonal terms ν = 0 remain while the off-diagonal
ones vanish. This is the trick we will use below.

2 Weyl-Wigner-Moyal mapping
Let M = M∈(N+∞) ≡ R∈(N+∞) be the phase space. The
functions over M will be called f(φ), where φ symbolizes
the coordinates of M

φa = (q1, ..., qN+1, p1
q, ..., p

N+1
q )

Then the Wigner transform reads

symbf̂ $ f(φ) =
∫
〈q + ∆|f̂ |q −∆〉ei p∆

~ dN+1∆

where f̂ εÂ and f(φ)εAwhere Â is the quantum algebra and
the classical one isA. We can also introduce the star product

symb(f̂ ĝ) = symbf̂ ∗ symbĝ = (f ∗ g)(φ),

(f ∗ g)(φ) = f(φ) exp
(
− i~

2
←−
∂ aωab−→∂ b

)
g(φ)

and the Moyal bracket, which is the symbol corresponding
to the commutator

{f, g}mb =
1
i~

(f ∗ g − g ∗ f) = symb

(
1
i~

[f, g]
)

so we have

(f∗g)(φ) = f(φ)g(φ)+0(~) , {f, g}mb = {f, g}pb+0(~2)
(1)

To obtain the inverse symb−1 we will use the symmetrical
or Weyl ordering prescription, namely

symb−1[qi(φ)pj(φ)] =
1
2

(
q̂ip̂j + p̂j q̂i

)

Then we have an isomorphism between the quantum algebra
Â and the classical one A

symb−1 : A →Â , ∫†mb : Â→ A
The mapping so defined is the Weyl-Wigner-Moyal symbol.

For the state we have

ρ(φ) = symbρ̂ = (2π~)−N−1symb(for operators)ρ̂

and it turns out that

(ρ̂|Ô) = (symbρ̂|symbÔ) =
∫

dφ2(N+1)ρ(φ)O(φ) (2)

Namely the definition ρ̂ε Â′, as afunctional on Â, is equal
to the definition symbρε A′, as afunctional on A.
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3 Decoherence in non integrable sys-
tems

3.1 Local CSCO.
a.- When our quantum system is endowed with a CSCO
of N + 1 observables, containing Ĥ, the underlying clas-
sical system is integrable. In fact, let N + 1−CSCO be
{Ĥ,Ô1, ..., Ô N} the Moyal brackets of these quantities are

{OI(φ), OJ(φ)}mb = symb

(
1
i~

[ÔI , ÔJ ]
)

= 0

where I, J, ... = 0, 1, ..., N and Ĥ = Ô0. Then when ~→ 0
from Eq.(1) we know that

{OI(φ), OJ (φ)}pb = 0 (3)

then as H(φ) = O0(φ) the set {OI(φ)} is a complete set of
N +1 constants of the motion in involution, globally defined
over all M, and therefore the system is integrable. q. e. d.

b.- If this is not the case N + 1 constants of the motion
in involution {H, O1, ..., O N} always exist locally, as can
be shown integrating the system of equations (3). Then, if
φiεM there is maximal domain of integration Dφ〉 around
φiεM where these constants are defined. In this case the
system in non-integrable. Moreover we can repeat the pro-
cedure with the system

{OI(φ), OJ(φ)}mb = 0 (4)

Then we can extend the definition of the constant
{H, O1, ..., O N}, defined in each Dφ〉 , outside Dφ〉 as null

functions. Their Weyl transforms {Ĥ,Ô1, ..., Ô N} can be
considered as a local N + 1-CSCOs related each one with
a domain Dφ〉 that we will call {Ĥ,Ô1φi , ..., Ô Nφi} (we
consider that Ĥ is always globally defined).

c.-We also can define an ad hoc positive partition of the
identity

1 = I(φ) =
∑

i

Iφi(φ)

where Iφi(φ) is the characteristic function or index func-
tion, i.e.:

Iφi(φ) =
{

1 if φεDφi

0 if φ /∈ Dφi

where the domains Dφi ⊂ Dφ〉 Dφi ∩ Dφj = ∅. Then∑
i Iφi(φ) = 1. Then we can define Aφi(φ) = A(φ)Iφi(φ)

and
A(φ) =

∑

i

Aφi(φ)

and using symb−1

Â =
∑

i

Âφi

We can further decompose

Âφi =
∑

j

Ajφi |j〉φi〈j|φi (5)

where the |j〉φi are the corresponding eigenvectors of the lo-
cal N +1−CSCO of Dφi

⊂ Dφ〉 where a local N +1-CSCO
is defined.. So

Â =
∑

ij

Ajφi
|j〉φi

〈j|φi

all over M. It can be proved that for i 6= k it is

〈j|φi |j〉φk
= 0

so the last decomposition is orthonormal, thus decomposi-
tion (5) generalizes the usual eigen-decomposition of inte-
grable system to the non-integrable case. We will use this
decomposition below.

3.2 Decoherence in the energy.

a.- Let us define in each Dφi
a local N + 1−CSCO {Ĥ

,Ôφi
} (as we have said we consider that Ĥ is always glob-

ally defined) as

Ĥ =
∫ ∞

0

ω
∑

im

|ω,m〉φi
〈ω,m|φi

dω,

ÔφiI =
∫ ∞

0

∑
m

OmIφi
|ω, m〉φi〈ω,m|φidω

where we have used decomposition (5). The en-
ergy spectrum is 0 ≤ ω < ∞ and mIφi =
{m1φi , ..., mNφi},mIφiεN. Therefore

Ĥ|ω, m〉φi = ω|ω, m〉φi , ÔφiI |ω, m〉φi = OmIφi
|ω, m〉φi

where, from the orthonormality of the eigenvector and
Eq.(5), we have

〈ω, m|φi |ω′, m′〉φj = δ(ω − ω′)δmm′δij

b.- A generic observable, in the orthonormal basis just
defined, reads:

Ô =
∑

imm′

∫ ∞

0

∫ ∞

0

dωdω′Õ(ω, ω′)φimm′ |ω,m〉φi〈ω′,m′|φi

where Õ(ω, ω′)φimm′ is a generic kernel or distribution in
ω, ω′. As explained in the introduction, the simplest choice
to solve our problem is the van Hove choice [4].

Õ(ω, ω′)φimm′ = O(ω)φimm′δ(ω − ω′) + O(ω, ω′)φimm′

(6)
where we have a singular and a regular term, so called be-
cause the first one contains a Dirac delta and in the second
one the O(ω, ω′)φimm′ are ordinary functions of the real
variables ω and ω′. As we will see these two parts appear in
every formulae below. So our operators belong to an algebra
Â and they read

Ô =
∑

imm′

∫ ∞

0

dωO(ω)φimm′ |ω, m〉φi〈ω,m′|φi+
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∑

imm′

∫ ∞

0

∫ ∞

0

dωdω′O(ω, ω′)φimm′ |ω,m〉φi〈ω′,m′|φi

The observables are the self adjoint O† = O operators.
These observables belong to a space Ô ⊂ Â . This space
has the basis {|ω, m,m′)φi , |ω, ω′,m, m′)φi} defined as:

|ω,m, m′)φi

.= |ω, m〉φi〈ω, m′|φi ,

|ω, ω′,m, m′)φi

.= |ω, m〉φi〈ω′,m′|φi

c.- Let us define the quantum states ρ̂ ∈ Ŝ⊂Ô′
, where Ŝ is a

convex set. The basis of Ô′ is {(ω, mm′|φi , (ωω′,mm′|φi}
and its vectors are defined as functionals by the equations:

(ω, m, m′|φi
|η, n, n′)φj

= δ(ω − η)δmnδm′n′δij ,

(ω, ω′, m,m′|φi
|η, η′, n, n′)φj

=

δ(ω − η)δ(ω′ − η′)δmnδm′n′δij ,

and all others (.|.) are zero. Then, a generic quantum state
reads:

ρ̂ =
∑

imm′

∫ ∞

0

dωρ(ω)φimm′(ω,mm′|φi+

∑

imm′

∫ ∞

0

dω

∫ ∞

0

dω′ρ(ω, ω′)φimm′(ωω′,mm′|φi

We require that:

ρ(ω, ω′)φimm′ = ρ(ω′, ω)φim′m,

ρ(ω, ω)φimm ≥ 0,

(ρ̂|Î) =
∑

im

∫ ∞

0

dωρ(ω)φi = 1, (7)

where Î =
∫∞
0

dω
∑

im |ω,m〉φi〈ω, m|φi is the identity op-
erator. Then, in fact, ρ̂ ∈ Ŝ , where Ŝ is a convex set, and we
have

〈Ô〉bρ(t) = (ρ̂(t)|Ô) =
∑

imm′

∫ ∞

0

dωρ(ω)φimm′O(ω)φimm′+

∑

imm′

∫ ∞

0

dω

∫ ∞

0

dω′ ρ(ω, ω′)φimm′

× ei(ω−ω′)t/~O(ω, ω′)φimm′ (8)

If we now take the limit t → ∞ and use the Riemann-
Lebesgue theorem, being O(ω, ω′) and ρ(ω, ω′)φimm′ regu-
lar (namely ′ρ(ω, ω′)φimm′O(ω, ω′)εL1 in the variable ν =
ω − ω′), we arrive to

lim
t→∞

〈Ô〉bρ(t) = (ρ̂∗|Ô) =

∑

imm′

∫ ∞

0

dωρ(ω)φimm′O(ω)φimm′

or to the weak limit

W lim
t→∞

ρ̂(t) = ρ̂∗ =
∑

imm′

∫ ∞

0

dωρ(ω)φimm′(ω,m, m′|φi

where only the diagonal-singular terms remain showing that
the system has decohered in the energy.

Remarks
i.- It looks like that decoherence takes place without a

coarse-graining, or an environment. It is not so, the van
Hove choice (6) and the mean value (8) are a restriction of
the information as effective as the coarse-graining is to pro-
duce decoherence.

ii.-Theoretically decoherence takes place at t → ∞.
Nevertheless, for atomic interactions, the characteristic de-
coherence time is tD = 10−15s [5]. For macroscopic sys-
tems this time is even smaller (e.g., 10−38s). Models with
two characteristic times (decoherence and relaxation) can
also be considered [6].

3.3 Decoherence in the other variables.

By a change of basis we can diagonalize the ρ(ω)φimm′ in
m and m′:

ρ(ω)φimm′ → ρ(ω)φipp′ = ρφi(ω)p δpp′ .

in a new basis orthonormal {|ω, p〉φi}. Therefore
ρφi(ω)p δpp′ .is now diagonal in all its coordinates in a fi-
nal local pointer basis in each Dφi , which, in the case of
the observables is { |ω, p, p′)φi , |ω, ω′, p, p′)φi} (i. e. essen-
tially {|ω′, p′〉φi}), so in this pointer basis we have obtained
a boolean quantum mechanics with no interference terms
and we have the weak limit:

W lim
t→∞

ρ̂(t) = ρ̂∗ =
∑

ip

∫ ∞

0

dωρφi(ω)p(ω, p, p|φi

or in the case of P̂ with continuous spectra:

W lim
t→∞

ρ̂(t) = ρ̂∗ =

∑

i

∫ ∞

0

dω

∫

pεDφi

dpNρ(ω)φi(ω, p, p|φi (9)

the only case that we will consider below.
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4 The classical statistical limit
a.- Let us now take into account the Wigner transforms.
There is no problem for regular operators which are con-
sidered in the standard theory. Moreover these operators are
irrelevant since they disappear after decoherence.

b.- So we must only consider the singular ones as

ÔS =
∑

i

∫

pεDφi

dpN

∫ ∞

0

Oφi(ω, p)|ω, p〉φi〈ω, p|φidω

where now the P̂ have continuous spectra. So

ÔS =
∑

i

Oφi
(Ĥ, P̂φi

) =
∑

i

ÔSφi

But Ĥ, P̂φi
commute thus

symbÔS = OS(φ) =
∑

i

Oφi
(H(φ), Pφi

(φ)) + 0(~2)

and if Oφi(ω, p) = δ(ω − ω′)δ(p− p′) we have

symb|ω′, p′〉φi〈ω′, p′|φi = δ(H(φ)− ω′)(Pφi(φ)− p)

(really up to 0(~2), but for the sake of simplicity we will
eliminate these symbols from now on).

Let us now consider the singular dual, the symbρ̂S as
the functional on M that must satisfy Eq.(2) that now reads

(symbρ̂S |symbÔS) = (ρ̂S |ÔS)

Then we define a density function ρS(φ) = symbρ̂S

=
∑

i ρφiS(φ) such that

∑

i

∫
dφ2(N+1)ρφiS(φ)OφiS(φ) =

∑

i

∫

pεDφi

∫ ∞

0

ρφi(ω, p, )Oφi(ω, p)dωdpN (10)

ρ̂S , is constant of the motion, so ρφi(φ) =
f(H(φ), Pφi(φ)). Then we locally define at Dφi the lo-
cal action-angle variables (θ0, θ1, ..., θN , J0

φi
, J1

φi
, ..., JN

φi
),

where J0
φi

, J1
φi

, ..., JN
φi

would just be H, Pφi1, ..., PφiN

and we make the canonical transformation φa →
θ0

φi
, θ1

φi
, ..., θN

φi
, H, Pφi1, ..., PφiN so that

dφ2(N+1) = dq(N+1)dp(N+1) = dθ
(N+1)
φi

dHdPN
φi

Now we will integrate of the functions f(H, Pφi) =
f(H, Pφi , ..., Pφi) using the new variables.
∫

Dφi

dφ2N+2f(H, Pφi) =
∫

Dφi

dθN+1
φi

dHdPN
φi

f(H, Pφi)

=
∫

Dφi

dHdPN
φi

Cφi(H, Pφi)f(H, Pφi)

where we have integrated the angular variables
θ0

φi
, θ1

φi
, ..., θN

φi
, obtaining the configuration volume

Cφi(H, Pφi) of the portion of the hypersurface defined by
(H = const., Pφi

= const.) and contained in Dφi
. So

Eq.(10) reads

∑

i

∫

pεDφi

∫ ∞

0

ρφi(ω, p, )Oφi(ω, p)dωdpN =

∑

i

∫
dHdPN

φi
Cφi

(H,Pφi
)ρφiS(H, Pφi

)OφiS(H, Pφi
)

for any Oφi
(ω, p) so ρSφi

(H, P ) = 1
Cφi

ρφi(H, P ) for
φεDφ〉 and

ρS(φ) = ρ∗(φ) =
∑

i

ρφi
(H(φ), Pφi

(φ))
Cφi(H,Pφi)

Putting ρφi(ω, p) = δ(ω−ω′)δN (p− p′) for some i and all
other ρφj (ω, p) = 0 for j 6= i, we have

symb(ω′, p′, (φ)|φi =
δ (H(φ)− ω′) δ(N)

(
P (φ)− p′φi

)

Cφi(H, Pφi)

c.- Moreover the symb of Eq.(9) reads

ρS(φ) = ρ∗(φ) =
∑

i

∫

pεDφi

dp×

∫ ∞

0

dωρφi(ω, p)
δ (H(φ)− ω) δ(N) (P (φ)− pφi)

Cφi(H, Pφi)
(11)

So we have obtained a decomposition of ρ∗(φ) =
ρS(φ) in classical hypersurfaces (H = ω, Pφi(φ) =
pφi), containing chaotic trajectories (since the system is
not integrable), summed with different weight coefficients
ρφi (ω, p) /Cφi(H, Pφi).

d.- Finally only after decoherence the positive definite
diagonal-singular part remains and from Eqs.(7) and (11)
we see that

ρφi(ω, p) ≥ 0 ⇒ ρ∗(φ) ≥ 0

so the classical statistical limit is obtained.

5 The classical limit
The classical limit can be decomposed into the following
processes

Quantum Mechanics− (decohence) −→

Boolean Quantum Mechanics−(symb and ~→ 0 ) −→

Classical Statistical Mechanics−(choice of a trajectory)

−→ Classical Mechanics
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where the first two have been explained. It only remains the
last one: For τ(φ) = θ0

φi
(φ) and at any fixed t we have

∑

i

∫

Dφi

δ(τ(φ)−τ0−ωt)δ(θφi
(φ)−θφi0−pφi

t)dτ0dθφi0 = 1

then we can include this 1 in decomposition (11) and we
obtain

ρ∗(φ) =
∑

i

∫
ρφi

(ω, pφi
)

C(ω, pφi
)

δ(H(φ)− ω)δ(Pφi
− pφi

)×

δ(τ(φ)−τ0−ωt)δ(θφi
(φ)−θφi0−pφi

t)dωdNpφi
dτ0dθφi0

namely a sum of classical chaotic trajectories satisfying:

H(φ) = ω , τ(φ) = τ0 + ωt) ,

Pφi
= pφi

, θφi
(φ) = θφi0 + pφi

t

weighted by ρφi
(ω,pφi

)

C(ω,pφi
) ,where we can choose any one of

them. In this way the classical limit is completed, in fact
we have found the classical limit of a quantum system since
we have obtained the classical trajectories, so the correspon-
dence principle is also obtained as a theorem.

6 Conclusion
i.- We have defined the classical limit in the non-integrable
case.

ii.- Essentially, we have presented a minimal formalism
for quantum chaos [7].

iii.- We have deduced the correspondence principle.
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