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The density matrix and the Wigner function formalism requires the doubling of the degrees of freedom in
quantum mechanics (QM) and quantum field theory (QFT). The doubled degrees of freedom play the role of
the thermal bath or environment degrees of freedom and are entangled with the system degrees of freedom.
They also account for quantum noise in the fluctuating random forces in the system–environment coupling.
The algebraic structure of QFT turns out to be the one of the deformed Hopf algebra. In such a frame, the
trajectories in the space of the unitarily inequivalent representations of the canonical commutation relations turn
out to be classical trajectories and, under convenient conditions, they may exhibit properties typical of classical
chaotic trajectories in nonlinear dynamics. The quantum Brownian motion and the two-slit experiment in QM
are discussed in connection with the doubling of the degrees of freedom.

I. INTRODUCTION

In this paper I consider the problem of the interplay be-
tween ‘classical and quantum’ from the point of view of
the intrinsic mathematical structure of Quantum Field Theory
(QFT).

The emergence of classicality from Quantum Mechanics
(QM) as a result of decoherence has been and is currently an-
alyzed in detail in the literature. One further scenario, since
long well known, is the one of the emergence of macroscopic
ordered patterns out of a quantum dynamics; this is the case
of the generation of classically behaving structures out of QFT
(not QM!) with spontaneous breakdown of symmetry. Crys-
tals, ferromagnets, superconductors, superfluids are examples
of such classically behaving macroscopic quantum systems.
These are quantum systems not in the trivial sense that they,
as all other kind of matter, are made of quantum components,
but in the sense that their macroscopic behavior, characterized
by the classical (c-number) observable called order parameter,
cannot be explained without recourse to the underlying quan-
tum field dynamics. On the other hand, the opposite route,
from classical to quantum, namely the problem of ‘quantiza-
tion’ of a classical theory, is a central problem in many fields
of research; paradigmatic examples are the ones of gravitation
theories and of non-hamiltonian systems, such as dissipative
systems. More recently, an alternative, novel perspective has
been proposed [1] (see also [2–4]) for the route from classical
to quantum, the one of the ‘emergence’ of the quantum-like
behavior from a classical frame; namely, the possibility has
been considered that classical deterministic systems with dis-
sipation (information loss) may exhibit quantum behavior.

My task in this paper is to present and to discuss some re-
sults related with aspects of the classical/quantum interplay in
connection with the existence in QFT of infinitely many uni-
tarily inequivalent representations (uir) of the canonical com-
mutation (or anti-commutation) relations (ccr).

In QM the well known von Neumann theorem states that
for systems with a finite number of degrees of freedom all
the representations of the ccr are unitarily equivalent. Such a
theorem does not hold in QFT where the systems have infinite
number of degrees of freedom. Infinitely many uir of the ccr
are thus allowed to exist [5–7] and therefore, in this respect,

QFT is drastically different from QM, and one is not allowed
to make confusion among the two. The existence of uir is a
characterizing feature of QFT and a full series of physically
relevant consequences follows.

In the first part of the paper, by considering some aspects of
the quantum Brownian motion and of the two-slit experiment,
I discuss the role of the doubling of the degrees of freedom
and show how quantum/classical features depend on it (Sec-
tion II). This part, although physically interesting in itself for
the nature of the considered problems, is useful for the subse-
quent discussion of the deformed Hopf algebra structure[8, 9]
of QFT in Section III. This is indeed analyzed in the sec-
ond part of the paper and leads to recognize that a symplectic
structure with classical dynamics is embedded in the space of
the uir of ccr in QFT [10]. In this way, a further aspect of the
classical/quantum interplay emerges as an intrinsic feature of
QFT. The entanglement between the system degrees of free-
dom and the doubled ones is commented upon in Section IV.
In Section V trajectories in the space of the uir are shown to
be classical trajectories, which, under convenient conditions,
may satisfy the criteria for chaoticity prescribed by nonlinear
dynamics. Section VI is devoted to conclusions.

II. THE DOUBLING OF THE DEGREES OF FREEDOM

In this Section the main observation is that in QM and in
QFT a basic role is played by the doubling of the degrees
of freedom of the system under study. It is well known, for
example, that in thermal field theory the doubled degrees of
freedom describe the heat bath [7, 11–15]; or, near a black
hole, such a doubling describes the modes on the two sides of
the horizon [16–18].

On a much simpler ground, the familiar operation of
adding, e.g., the angular momentum Jα, α = 1,2,3, of two
identical particles, is given by ∆Jα = Jα⊗1 + 1⊗ Jα ≡ Jα

1 +
Jα

2 . Such an addition is a homomorphism which indeed dupli-
cates the algebra, ∆ : A → A⊗A , i.e. ∆O = O⊗1+1⊗O ≡
O1 + O2, with O ∈ A . I will come back to this point in the
following and the addition operation ∆ will be identified with
the coproduct map, thus recognizing the Hopf algebra to be
the basic algebraic structure of quantum theory.
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It is much instructive to illustrate the formal and the phys-
ical relevance of the doubling of the degrees of freedom by
considering some typical problems in QM, such as the two-slit
diffraction experiment and the Brownian motion of a quantum
particle.

On a formal basis, one can understand the doubling of the
degrees of freedom [19–21] by considering the standard ex-
pression for the Wigner function [22],

W (p,x, t) =
1

2π~

Z
ψ∗

(
x− 1

2
y, t

)
ψ

(
x+

1
2

y, t
)

e(−i py
~ )dy . (1)

The associated density matrix function is

W (x,y, t) = (x+|ρ(t)|x−) = ψ∗(x−, t)ψ(x+, t) , (2)

where x± = x± 1
2 y. The density matrix and the Wigner func-

tion formalism thus requires the introduction of a “doubled”
set of coordinates, (x±, p±) (or (x, px) and (y, py)).

It is possible to show [20] that the role of the “doubled” y
coordinate is absolutely crucial in the quantum regime, since
there it accounts for the quantum noise in the fluctuating ran-
dom force in the system-environment coupling: in the limit of
y→ 0 (i.e. for x+ = x−) quantum effects are lost and the clas-
sical limit is obtained. For example, this can be seen by con-
sidering the question of how a classical situation with x+ = x−
arises in the formalism by Schwinger[23] and by Feynman
and Vernon [24] for the quantum Brownian motion [21].

In the treatment of quantum Brownian motion one may
start by describing a classical object as having a coordinate
which depends on time x(t). The density matrix formalism
then suggests that a quantum object may be described as split-
ting the single coordinate x(t) into two coordinates x+(t) (go-
ing forward in time) and x−(t) (going backward in time) [23].
The classical limit is obtained when both motions coincide
x(t) = x+(t) = x−(t). To see why this is the case, one may
employ the Schwinger quantum operator action principle, or
recall the mean value of a quantum operator

Ā(t) = (ψ(t)|A|ψ(t)) =

Z Z
ψ∗(x−, t)(x−|A|x+)ψ(x+, t)dx+dx− =

Z Z
(x+|ρ(t)|x−)(x−|A|x+)dx+dx−. (3)

Thus one requires the density matrix (2) to follow two copies
of the Schrödinger equation, i.e. the forward in time motion
and and the backward in time motion, respectively controlled
by the two Hamiltonian operators H±:

i~
∂ψ(x±, t)

∂t
= H±ψ(x±, t), (4)

which gives

i~
∂(x+|ρ(t)|x−)

∂t
= H (x+|ρ(t)|x−), (5)

where

H = H+−H−. (6)

Working with two copies of the Hamiltonian (i.e. H±) oper-
ating on the outer product of two Hilbert spaces has been an
implicit requirement in quantum mechanics since the very be-
ginning of the theory. For example, from Eqs.(5), (6) one finds
immediately that the eigenvalues of the dynamic operator H
are directly the Bohr transition frequencies ~ωnm = En−Em
which was the first clue to the explanation of spectroscopic
structure.

The notion that a quantum particle has two coordinates
x±(t) moving at the same time is therefore central. It is the
difference between the two motions

y = x+− x− (7)

that induces quantum interference. In the following we will
show this by explicit calculation of diffraction patterns in the
case of the two-slit experiment.

The second step in the description of the Brownian motion
of a quantum particle requires to consider the modification of
damped evolution operator in Eqs.(5), (6) which becomes, for
a Brownian particle of mass M moving in a potential U(x)
with a damping resistance R, [20, 21]

HBrownian = H − ikBT R
~

(x+− x−)2, (8)

H =
1

2M

(
p+− R

2
x−

)2

− 1
2M

(
p−+

R
2

x+

)2

+U(x+)−U(x−) (9)

i~
∂(x+|ρ(t)|x−)

∂t
= HBrownian (x+|ρ(t)|x−) =

H (x+ |ρ(t)|x−) − (x+ |N[ρ]|x−) , (10)

where N[ρ] ≈ (ikBT R/~)[x, [x,ρ]] describes the effects of the
reservoir random thermal noise and the “Hamiltonian” H the
motion in the (x+,x−) plane [20, 21].

In Eq. (9) p± =−i~ ∂
∂x± . In general the density operator in

the above expression describes a mixed statistical state. It can
be also shown [21] that the thermal bath contribution to the
right hand side of Eq.(8), proportional to fluid temperature T,
is equivalent to a white noise fluctuation source coupling the
forward and backward motions in Eq.(7) according to

< y(t)y(t ′) >noise=
~2

2RkBT
δ(t− t ′), (11)

so that thermal fluctuations are always occurring in the dif-
ference (7) between forward in time and backward in time
coordinates.

The continual occurring of the forward and backward in
time motions can also be seen by constructing the forward
and backward in time velocities

v± =
∂HBrownian

∂p±
=± 1

M

(
p±∓ R

2
x∓

)
. (12)
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FIG. 1: Two slit experiment.

These velocities do not commute

[v+,v−] = i~
R

M2 , (13)

and it is thereby impossible to fix the velocities forward and
backward in time as being identical. Note that Eq.(13) is sim-
ilar to the usual commutation relations for the quantum veloc-
ities v = (p− (eA/c))/M of a charged particle moving in a
magnetic field B; i.e. [v1,v2] = (i~eB3/M2c). Just as the mag-
netic field B induces a Aharonov-Bohm phase interference for
the charged particle, the Brownian motion friction coefficient
R induces a closely analogous phase interference between for-
ward and backward motion which expresses itself as mechan-
ical damping. Eq. (13) has been also discussed in connection
with non-commutative geometry in ref.[25]: there it is shown
that quantum dissipation induces in the plane of the forward
and backward motion a non-commutative geometry.

Let me go now to consider the two-slit diffraction experi-
ment (Fig. 1).

In order to derive the diffraction pattern one needs to know
the wave function ψ0(x) of the particle at time zero when it
“passes through the slits”, or equivalently the density matrix

(x+|ρ0|x−) = ψ∗0(x−)ψ0(x+). (14)

One wishes to find the probability density for the electron
to be found at position x at the detector screen at a latter time
t,

P(x, t) = (x|ρ(t)|x) = ψ∗(x, t)ψ(x, t), (15)

in terms of the solution to the free particle Schrödinger equa-
tion which is

ψ(x, t) =
( M

2π~it

)1/2 Z ∞

−∞
e[

i
~A(x−x′,t)]ψ0(x′)dx′, (16)

where

A(x− x′, t) =
M(x− x′)2

2t
(17)

is the Hamilton-Jacobi action for a classical free particle to
move from x′ to x in a time t. Eqs.(14)-(17) imply that

P(x, t) = (18)

M
2π~t

Z ∞

−∞

Z ∞

−∞
e

[
iM (x−x+)2−(x−x−)2

2~t

]

(x+|ρ0|x−)dx+dx−.

Then Eq.(18) clearly shows that, were x+ and x− always the
same, then P(x, t) not oscillate in x, i.e. there would not be
the usual quantum diffraction. What is required for quan-
tum interference in Eq.(18) is that the forward in time ac-
tion A(x− x+, t) differs from the backward in time action
A(x− x−, t): The quantum nature of the phenomenon is cru-
cially determined by the non-trivial dependence of the density
matrix (x+|ρ0|x−) when the electron “passes through the slits”
on the difference (x+− x−).

In the usual quantum diffraction experiment one considers
w ¿ d ¿ D, where w is the opening of the slits which are
separated by a distance 2d, and D is the distance between the
slits and the screen where the diffraction pattern is observed
(see Fig.1). Then the diffraction pattern is well described by
|x| À |x±|. By defining K = Mvd

~D , β = w
d , with v = D/t the

velocity of the incident electron, Eq.(18) leads [21] to the con-
ventional result

P(x,D)≈ 4
πβKx2 cos2(Kx)sin2(βKx). (19)

In obtaining (19) the initial wave function

ψ0(x) =
1√
2

[
φ(x−d)+φ(x+d)

]
, (20)

with φ(x) = 1√
w if |x| ≤ w

2 and zero otherwise, has been used.
Eqs.(14) and (20) imply that

(x+|ρ0|x−) = (21)

1
2

{
φ(x+−d)φ(x−−d)+φ(x+ +d)φ(x−+d)

+φ(x+−d)φ(x−+d)+φ(x+ +d)φ(x−−d)
}

.

If one accepts the notion of both forward in time and backward
in time Hilbert spaces, then the following physical picture of
two slit diffraction emerges. The particle can go forward and
backward in time through slit 1 (this is described by the first
term in the rhs of Eq.(21)). This is a classical process. The
particle can go forward in time and backward in time through
slit 2, which is also classical since for classical cases x+(t) =
x−(t) (the second term in the rhs of Eq.(21)). On the other
hand, the particle can go forward in time through slit 1 and
backward in time through slit 2 (the third term), or forward in
time through slit 2 and backward in time through slit 1 (the
fourth term). These are the source for quantum interference
since |x+(t)− x−(t)|> 0.

In conclusion, by following Schwinger [23], it appears
natural to consider doubling the system coordinates, x(t) →
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(x+(t),x−(t)). A system acts in a classical fashion if the
two paths can be identified, i.e. xclassical(t) ≡ x+ classical(t) ≡
x− classical(t). When the system moves so that the forward
in time and backward in time motions are (at the same time)
unequal x+(t) 6= x−(t), then the system is behaving in a quan-
tum mechanical fashion and exhibits interference patterns in
measured position probability densities. Of course when x is
actually measured there is only one classical x = x+ = x−.

So far I have considered the low temperature limit, which
means T ¿ Tγ where kBTγ = ~γ = ~R

2M . In the high temperature
regime T À Tγ, the thermal bath motion suppresses the prob-
ability for x+ 6= x− due to the thermal term (kBT R/~)(x+−
x−)2 in Eq.(8) (cf. also Eq. (11)). By writing the diffusion
coefficient D = kBT

R as

D =
T
Tγ

( ~
2M

)
, (22)

the condition for classical Brownian motion for high mass par-
ticles is that DÀ (~/2M), and the condition for quantum in-
terference with low mass particles is that D ¿ (~/2M). For
large particles in, say, colloidal systems classical Brownian
motion would appear to dominate the motion. For a single
atom in a fluid at room temperature it is typically D∼ (~/2M),
equivalently T ∼ Tγ so that quantum mechanics plays an im-
portant but perhaps not dominant role in the Brownian motion.

Coordinate doubling has also entered into the canonical
quantization of dissipative systems [15, 26, 27] and it appears
to be intimately related to the algebraic properties of the the-
ory [10, 12, 13, 28], as I will discuss below.

It is also interesting to note that the “negative” kine-
matic term in the Hamiltonian (9) also appears in two-
dimensional gravity models leading to two different strate-
gies in the quantization method [29]: the Schrödinger repre-
sentation approach, where no negative norm appears, and the
string/conformal field theory approach where negative norm
states arise as in Gupta-Bleurer electrodynamics.

In the following I will consider the algebraic structure of
the space of the physical states emergent from the doubling of
the degrees of freedom discussed in the present section.

III. THE DEFORMED HOPF ALGEBRA IN QFT

The study of several problems of physical interest where
the doubling of the degrees of freedom has proved to play
a crucial role in the canonical formalism has suggested, in
recent years, that the structure of the state space in QFT is
intimately related [12, 13] to the one of the deformed Hopf
algebra [8, 9].

As already observed in the previous Section, the additivity
of angular momentum, and of other so-called primitive oper-
ators, such as energy and momentum, necessarily implies the
use of the coproduct operation, a key ingredient of Hopf alge-
bras, defined by ∆O = O⊗1+1⊗O ≡ O1 +O2, with O ∈ A ,
which is a homomorphism which indeed duplicates the alge-
bra, ∆ : A → A⊗A . Since additivity of observables is an es-
sential requirement, Lie-Hopf algebra thus appears to be the

essential algebraic structure of QM and of QFT. A remarkable
result is that the infinitely many uir of the ccr, whose existence
characterizes QFT, are classified by use of the deformed Hopf
algebra. Quantum deformations of Hopf algebra have thus a
deeply non-trivial physical meaning in QFT. One can indeed
show[12, 13] that the Bogolubov transformations

A(θ)≡ 1√
2

(α(θ)+β(θ)) = Acoshθ−B†sinhθ (23)

B(θ)≡ 1√
2

(α(θ)−β(θ)) = B coshθ−A†sinhθ (24)

are directly obtained by use of the q-deformed copodruct op-
eration:

∆aq = a1q1/2 +q−1/2a2 , ∆a†
q = a†

1q1/2 +q−1/2a†
2 . (25)

In Eqs. (23) and (24) α(θ) and β(θ) are convenient linear
combinations [12, 13] of the coproduct operators (25) with the
deformation parameter q = e2θ. Note that [ai,a j] = [ai,a

†
j ] =

0, i, j = 1,2, i 6= j and [A(θ),A†(θ)] = 1 , [B(θ),B†(θ)] = 1
and all other commutators equal to zero. A(θ) and B(θ) also
commute. The momentum suffix κ is omitted for simplicity.
Note that the A and B (or a1 and a2) operators play here the
role of the doubled degrees of freedom (x+ and x− in the pre-
vious Section).

The generator of (23) and (24) is G ≡−i(A†B†−AB):

−i
δ

δθ
A(θ) = [G ,A(θ)] , − i

δ
δθ

B(θ) = [G ,B(θ)] , (26)

and h.c.. Thus pθ ≡−i
δ

δθ
can be regarded [12, 13] as the

momentum operator “conjugate” to the “degree of freedom”
θ. For an assigned fixed value θ̄, it is

e(iθ̄pθ)A(θ) = e(iθ̄G)A(θ)e(−iθ̄G) = A(θ+ θ̄), (27)

and similarly for B(θ).
In the case of time–dependent deformation parameter, the

Heisenberg equation for A(t,θ(t)) is

−iȦ(t,θ(t)) =−i
δ
δt

A(t,θ(t))− i
δθ
δt

δ
δθ

A(t,θ(t)) =

[H,A(t,θ(t))]+
δθ
δt

[G ,A(t,θ(t))] = [H +Q,A(t,θ(t))] , (28)

and Q≡ δθ
δt

G plays the role of the heat–term in dissipative
systems. H is the Hamiltonian responsible for the time varia-
tion in the explicit time dependence of A(t,θ(t)). H + Q can
be therefore identified with the free energy [15]: variations
in time of the deformation parameter involve dissipation. In
thermal theories and in dissipative systems the doubled modes
B play the role of the thermal bath or environment.

Let |0〉 ≡ |0〉⊗ |0〉 denote the vacuum annihilated by A and
B, A|0〉= 0 = B|0〉. By introducing the suffix κ, at finite vol-
ume V one obtains

|0(θ)〉 = e(i∑κ θκGκ)|0〉 = ∏
k

1
coshθk

e
(

tanhθkA†
kB†

k

)
|0〉. (29)
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θ denotes the set {θκ = 1
2 lnqκ,∀κ} and 〈0(θ)|0(θ)〉= 1.

The vacuum |0(θ)〉 is an SU(1,1) generalized coherent
state [30] (the group structure actually is

N
κ SU(1,1)κ): co-

herence and the vacuum structure in QFT are thus intrinsically
related to the deformed Hopf algebra. In the following Hθ will
denote the Hilbert space with vacuum |0(θ)〉: Hθ ≡ {|0(θ)〉}.
In view of the similarity of some features of the coherent states
with those of the fractals, it is an interesting question to ask
whether fractal properties enter the QFT structure. A study on
this point is in progress.

In the infinite volume limit, the number of degrees of
freedom becomes uncountable infinite, hence one obtains
[7, 11, 15] 〈0(θ)|0(θ′)〉 → 0 as V → ∞, ∀θ,θ′, θ 6= θ′,
which means that the Hilbert spaces Hθ and Hθ′ become uni-
tarily inequivalent. In this limit, the “points” of the space
H ≡ {Hθ, ∀θ} of the infinitely many uir of the ccr are la-
belled by the deformation parameter θ [12, 13, 15].

Since QFT is characterized by the existence of uir of the
ccr [5], and since these uir are related among themselves by
the Bogoliubov transformations, which, as seen above are
obtained as linear combinations of the deformed coproduct
maps, we see that the doubling of the degrees of freedom is a
general feature of QFT (independent of the specificity of the
system under study) and that the intrinsic algebraic structure
of QFT is thus the one of the deformed Hopf algebra. The uir
existing in QFT are related and labelled by means of such a
algebraic structure.

It should be stressed that the coproduct map is also essen-
tial in QM in order to deal with a many modes system (typ-
ically, with identical particles). However, in QM all the rep-
resentations of the ccr are unitarily equivalent and therefore
the Bogoliubov transformations induce unitary transforma-
tions among the representations, thus preserving their physical
content. The deformed Hopf algebra therefore does not have
that physical relevance in QM, which it has, on the contrary, in
QFT. Here, the representations of the ccr, related through Bo-
goliubov representations, are unitarily inequivalent and there-
fore physically inequivalent: they represent different physical
phases of the system corresponding to different boundary con-
ditions, such as, for example, the system temperature. Typical
examples are the superconducting and the normal phase, the
ferromagnetic and the non-magnetic (i.e. zero magnetization)
phase, the crystal and the gaseous phase, etc.. The physical
meaning of the deformation parameter q in terms of which uir
are labelled is thus recognized.

When the above discussion is applied to non-equilibrium
thermal field theories it appears that the couple of “ther-
mal” conjugate variables θ and pθ ≡ −i ∂

∂θ , with θ = θ(β(t))
(β(t) = 1

kBT (t) ), related to the q–deformation parameter, de-
scribe trajectories in the space H of the representations, i.e.
the space whose “points” are the uir of the ccr [12, 13]. In
[10] it has been shown that there is a symplectic structure as-
sociated to the “thermal degrees of freedom” θ and that the tra-
jectories in the H space may exhibit some properties typical
of chaotic trajectories in classical nonlinear dynamics. Such a
picture of a classical nonlinear dynamics in the space H of the
representations is not limited to thermal field theory, but it is a
general feature of QFT. We will discuss this in the following.

In the next Section we present further characterizations of the
vacuum structure of the uir in QFT.

IV. ENTANGLEMENT AND ENTROPY

The state |0(θ)〉 in Eq. (29) can be written as

|0(θ)〉 =

(
∏

k

1
coshθk

)
(30)

×
(
|0〉⊗ |0〉+∑

k
tanhθk (|Ak〉⊗ |Bk〉)+ . . .

)
,

which clearly cannot be factorized into the product of two
single-mode states. There is thus entanglement between the
modes A and B and |0(θ)〉 is an entangled state.

The state |0(θ)〉 may be also written as:

|0(θ)〉 = exp
(
−1

2
SA

)
|I 〉 = exp

(
−1

2
SB

)
|I 〉 , (31)

SA ≡−∑
κ

{
A†

κAκ lnsinh2 θκ−AκA†
κ lncosh2 θκ

}
. (32)

In these equations |I 〉 ≡ exp
(

∑κ A†
κB†

κ

)
|0〉 and SB is given by

an expression similar to SA, with Bκ and B†
κ replacing Aκ and

A†
κ, respectively. I simply write S for either SA or SB. I can

also write[7, 11, 15]:

|0(θ)〉=
+∞

∑
n=0

√
Wn (|n〉⊗ |n〉) , (33)

Wn = ∏
k

sinh2nk θk

cosh2(nk+1) θk
, (34)

with n denoting the set {nκ} and with 0 < Wn < 1 and
∑+∞

n=0 Wn = 1. Then

〈0(θ)|SA|0(θ)〉=
+∞

∑
n=0

WnlnWn , (35)

and thus S can be interpreted as the entropy operator [7, 11,
15] and it provides a measure of the degree of entanglement.
I remark that the entanglement is truly realized in the infinite
volume limit where

〈0(θ)|0〉= e
− V

(2π)3
R

d3κ lncoshθκ−→
V→∞

0 , (36)

provided
R

d3κ lncoshθκ is not identically zero. The probabil-
ity of having the component state |n〉⊗|n〉 in the state |0(θ)〉 is
Wn. Since Wn is a decreasing monotonic function of n, the con-
tribution of the states |n〉⊗ |n〉 would be suppressed for large
n at finite volume. In that case, the transformation induced by
the unitary operator G−1(θ) ≡ exp(−i∑κ θκGκ) could disen-
tangle the A and B sectors. However, this is not the case in
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the infinite volume limit, where the summation extends to an
infinite number of components and Eq. (36) holds (in such a
limit Eq. (29) is only a formal relation since G−1(θ) does not
exist as a unitary operator)[18].

It is interesting to note that, although the mode B is related
with quantum noise effects, nevertheless the A−B entangle-
ment is not affected by such noise effects. The robustness of
the entanglement is rooted in the fact that, once the infinite
volume limit is reached, there is no unitary generator able to
disentangle the A−B coupling.

V. TRAJECTORIES IN THE H SPACE

In this Section I want to discuss the chaotic behavior, under
certain conditions, of the trajectories in the H space.

Let me start by recalling some of the features of the
SU(1,1) group structure (see, e.g., [30]).

SU(1,1) realized on C×C consists of all unimodular 2×
2 matrices leaving invariant the Hermitian form |z1|2− |z2|2,
zi ∈ C, i = 1,2. The complex z plane is foliated under the
group action into three orbits: X+ = {z : |z| < 1}, X− = {z :
|z|> 1} and X0 = {z : |z|= 1}.

The unit circle X+ = {ζ : |ζ|< 1}, ζ≡ eiφ tanhθ, is isomor-
phic to the upper sheet of the hyperboloid which is the set H
of pseudo-Euclidean bounded (unit norm) vectors n : n ·n = 1.
H is a Kählerian manifold with metrics

ds2 = 4
∂2F
∂ζ∂ζ̄

dζ ·dζ̄ , (37)

and

F ≡− ln(1−|ζ|2) (38)

is the Kählerian potential. The metrics is invariant under the
group action [30].

The Kählerian manifold H is known to have a symplectic
structure. It may be thus considered as the phase space for the
classical dynamics generated by the group action [30].

The SU(1,1) generalized coherent states are recognized to
be “points” in H and transitions among these points induced
by the group action are therefore classical trajectories [30]
in H (a similar situation occurs [30] in the SU(2) (fermion)
case).

Summarizing, the space of the unitarily inequivalent repre-
sentations of the ccr, which, as seen in Section III, is the space
of the SU(1,1) generalized coherent states, is a Kählerian
manifold, H ≡ {Hθ, ∀θ} ≈ H; it has a symplectic structure
and a classical dynamics is established on it by the SU(1,1)
action (generated by G or, equivalently, by pθ: Hθ → Hθ′ ).
Trajectories in H describe transitions through the representa-
tions Hθ = {|0(θ)〉} as the θ–parameter changes, i.e. through
the physical phases of the system, the system order parameter
being dependent on θ. One may then assume time-dependent
θ: θ = θ(t). For example, this is the case of dissipative
systems and of non-equilibrium thermal field theories where
θκ = θκ(β(t)), with β(t) = 1

kBT (t) .

It is interesting to observe that, considering the transitions
Hθ →Hθ′ , i.e. |0(θ)〉 → |0(θ′)〉, we have

〈0(θ)|0(θ′)〉= e
− V

2(2π)3
R

d3κFκ(θ,θ′)
(39)

where Fκ(θ,θ′) is given by Eq. (38) with |ζκ|2 = tanh2(θκ−
θ′κ), which shows the role played by the Kählerian potential
in the motion over H .

The result that the group action induces classical trajecto-
ries in H has been also obtained elsewhere [31, 32] on the
ground of more phenomenological considerations.

With reference to the discussion presented in Section II,
we may say that on the (classical) trajectories in H it is
x+ = x− = xclassical , i.e. on these trajectories the quantum
noise accounted for by y is fully shielded by the thermal bath
(cf. Eq. (11)). In [20] it has been indeed shown that the y free-
dom contributes to the imaginary part of the action which be-
comes negligible in the classical regime, but is relevant for the
quantum dynamics, namely in each of the “points” in H (the
spaces Hθ) through which the trajectory goes as θ changes.
Upon “freezing” the action of G(θ) (i.e. upon “freezing” the
“motion” through the uir) the quantum features of Hθ, at given
θ, become manifest. We thus recover ’t Hooft picture and the
results of ref. [2].

Let me use the notation |0(t)〉θ ≡ |0(θ(t))〉. For any θ(t) =
{θκ(t),∀κ} it is

θ〈0(t)|0(t)〉θ = 1 , ∀t . (40)

I will now restrict the discussion to the case in which, for any
κ, θκ(t) is a growing function of time and

θ(t) 6= θ(t ′) , ∀t 6= t ′, and θ(t) 6= θ′(t ′) , ∀t, t ′ . (41)

Under such conditions the trajectories in H satisfy the re-
quirements for chaotic behavior in classical nonlinear dynam-
ics. These requirements are the following [33]:

i) the trajectories are bounded and each trajectory does not
intersect itself.

ii) trajectories specified by different initial conditions do
not intersect.

iii) trajectories of different initial conditions are diverging
trajectories.

Let t0 = 0 be the initial time. The ”initial condition”
of the trajectory is then specified by the θ(0)-set, θ(0) =
{θκ(0),∀κ}. One obtains

θ〈0(t)|0(t ′)〉θ−→
V→∞

0 , ∀ t , t ′ , with t 6= t ′ , (42)

provided
R

d3κ lncosh(θκ(t)−θκ(t ′)) is finite and positive for
any t 6= t ′ .

Eq. (42) expresses the unitary inequivalence of the states
|0(t)〉θ (and of the associated Hilbert spaces {|0(t)〉θ}) at dif-
ferent time values t 6= t ′ in the infinite volume limit. The
non-unitarity of time evolution implied for example by the
damping is consistently recovered in the unitary inequivalence
among representations {|0(t)〉θ}’s at different t’s in the infi-
nite volume limit.

The trajectories are bounded in the sense of Eq. (40), which
shows that the “length” (the norm) of the “position vectors”
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(the state vectors at time t) in H is finite (and equal to one)
for each t. Eq. (40) rests on the invariance of the Hermitian
form |z1|2 − |z2|2, zi ∈ C, i = 1,2 and I also recall that the
manifold of points representing the coherent states |0(t)〉θ
for any t is isomorphic to the product of circles of radius
rκ

2 = tanh2(θκ(t)) for any κ.
Eq. (42) expresses the fact that the trajectory does not

crosses itself as time evolves (it is not a periodic trajectory):
the “points” {|0(t)〉θ} and {|0(t ′)〉θ} through which the tra-
jectory goes, for any t and t ′, with t 6= t ′, after the initial time
t0 = 0, never coincide. The requirement i) is thus satisfied.

In the infinite volume limit, we also have

θ〈0(t)|0(t ′)〉θ′−→
V→∞

0 ∀ t , t ′ , ∀θ 6= θ′ . (43)

Under the assumption (41), Eq. (43) is true also for t = t ′. The
meaning of Eqs. (43) is that trajectories specified by different
initial conditions θ(0) 6= θ′(0) never cross each other. The
requirement ii) is thus satisfied.

In order to study how the “distance” between trajectories in
the space H behaves as time evolves, consider two trajectories
of slightly different initial conditions, say θ′(0) = θ(0)+ δθ,
with small δθ. A difference between the states |0(t)〉θ and
|0(t)〉θ′ is the one between the respective expectation values
of the number operator A†

κAκ. For any κ at any given t, it is

∆NAκ(t)≡N ′
Aκ

(
θ′(t)

)−NAκ

(
θ(t)

)

= θ′〈0(t)|A†
κAκ|0(t)〉θ′ − θ〈0(t)|A†

κAκ|0(t)〉θ (44)

= sinh2(θ′κ(t)
)− sinh2(θκ(t)

)
= sinh

(
2θκ(t)

)
δθκ(t) ,

where δθκ(t) ≡ θ′κ(t)− θκ(t) is assumed to be greater than
zero, and the last equality holds for “small” δθκ(t) for any κ
at any given t. By assuming that ∂δθκ

∂t has negligible variations
in time, the time-derivative gives

∂
∂t

∆NAκ(t) = 2
∂θκ(t)

∂t
cosh

(
2θκ(t)

)
δθκ . (45)

This shows that, provided θκ(t) is a growing function of
t, small variations in the initial conditions lead to growing
in time ∆NAκ(t), namely to diverging trajectories as time
evolves.

In the assumed hypothesis, at enough large t the divergence
is dominated by exp(2θκ(t)). For each κ, the quantity 2θκ(t)
could be thus thought to play the role similar to the one of the
Lyapunov exponent.

Since [15] ∑κ EκṄAκ dt = 1
β dSA, where Eκ is the energy of

the mode Aκ, dSA is the entropy variation associated to the
modes A and ṄAκ denotes the time derivative of NAκ , the di-
vergence of trajectories of different initial conditions may be
expressed in terms of differences in the variations of the en-
tropy (cf. Eqs. (44) and (45)):

∆∑
κ

EκṄAκ(t)dt =
1
β

(
dS′A−dSA

)
. (46)

The discussion above thus shows that also the requirement
iii) is satisfied. The conclusion is that trajectories in the H
space exhibit, under the condition (41) and with θ(t) a grow-
ing function of time, properties typical of the chaotic behavior
in classical nonlinear dynamics.

VI. CONCLUSIONS

Doubling the system degrees of freedom plays a crucial
role in QM and QFT. The doubled degrees of freedom de-
scribe the thermal bath or environment degrees and are en-
tangled with the system degrees of freedom. They also ac-
count for quantum noise in the fluctuating random forces in
the system–environment coupling. The algebraic structure of
QM and QFT is characterized and generated by the doubling
of the degrees of freedom and is the one of the Hopf alge-
bra. The q-deformed Hopf algebra allows the labelling of the
infinitely many unitarily inequivalent representations of the
canonical (anti-)commutation relations existing in Quantum
Field Theory and, by means of the Bogoliubov transforma-
tions constructed by use of the deformed coproduct operation,
transitions among the unitarily inequivalent representations
are implemented. These transitions describe the processes
of (both quantum and thermal) phase transitions in Quantum
Field Theory. The transitions are described by trajectories in
the space of the unitarily inequivalent representations, which
turns out to be a Kählerian manifold. These trajectory are
classical trajectories which under convenient conditions may
be chaotic trajectories. In this way we recognize that the clas-
sical evolution along these trajectories is naturally embedded
in the quantum frame of QFT.
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