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A quantum field theory is described which is a supersymmetric classical model. Supersymmetry generators
of the system are used to split its Liouville operator into two contributions, with positive and negative spectrum,
respectively. The unstable negative part is eliminated by a positivity constraint on physical states, which is
invariant under the classical Hamiltonian flow. In this way, the classical Liouville equation becomes a functional
Schrödinger equation of a genuine quantum field theory. Thus, ’t Hooft’s proposal to reconstruct quantum
theory as emergent from an underlying deterministic system, is realized here for a field theory. Quantization
is intimately related to the constraint, which selects the part of Hilbert space where the Hamilton operator is
positive. This is seen as dynamical symmetry breaking in a suitably extended model, depending on a mass scale
which discriminates classical dynamics beneath from emergent quantum mechanical behaviour.

I. INTRODUCTION

In a recent letter, I discussed anew the (dis)similarity be-
tween the classical Liouville equation and the Schrödinger
equation [1]. In suitable coordinates both appear quite similar,
apart from the characteristic doubling of the classical phase
space degrees of freedom as compared to the quantum me-
chanical case. The Liouville operator is Hermitian in the op-
erator approach to classical statistical mechanics developed by
Koopman and von Neumann [2]. However, unlike the case of
the quantum mechanical Hamiltonian, its spectrum is gener-
ally not bounded from below. Therefore, attempts to find a
deterministic foundation of quantum theory – based on a re-
lation between the Koopman-von Neumann and quantum me-
chanical Hilbert spaces and equipped with the corresponding
dynamics – must particularly answer the question of how to
construct a stable ground state.

Investigations of these problems are to a large extent moti-
vated by work of ’t Hooft, who has argued in favour of such
model building, in order to gain a fresh look at the persistent
clash between general relativity and quantum theory [3]. Be-
sides, since its very beginnings, there have been speculations
about the possibility of deriving quantum theory from more
fundamental and deterministic dynamical structures. The dis-
course running from Einstein, Podolsky and Rosen [4] to Bell
[5], and involving numerous successors, is well known, debat-
ing the (im)possibility of (local) hidden variables theories.

Much of this debate has come under experimental scrutiny
in recent years. No disagreement with quantum theory has
been observed in the laboratory experiments on scales very
large compared to the Planck scale. However, the feasible
experiments cannot rule out the possibility that quantum me-
chanics emerges as an effective theory only on sufficiently
large scales and can indeed be based on more fundamental
models.

In various examples, the emergence of a Hilbert space
structure and unitary evolution in deterministic classical mod-
els has been demonstrated in an appropriate large-scale limit.
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However, in all cases, it is not trivial to assure that a resulting
model qualifies as “quantum” by being built on a well-defined
groundstate, i.e., with an energy spectrum that is bounded
from below.

A class of particularly simple emergent quantum models
comprises systems which classically evolve in discrete time
steps [3, 6]. Employing the path integral formulation of clas-
sical mechanics introduced by Gozzi and collaborators [8], it
has been shown that actually a large class of classical mod-
els turns into unitary quantum mechanical ones, if the Liou-
ville operator governing the statistical evolution is discretized
[7]. However, there remains a large arbitrariness in such dis-
cretizations, which one would hope to reduce with the help
of consistency or symmetry requirements of a more physical
theory.

Furthermore, it has been observed that classical systems
with Hamiltonians which are linear in the momenta are also
suitable for a reformulation in quantum mechanical terms. In
order to provide a groundstate for such systems, a new kind of
gauge fixing or constraints implementing “information loss”
at a fundamental level have been invoked [3, 9, 10]. Again, a
unifying dynamical principle leading to the necessary trunca-
tion of the Hilbert space is still missing.

Various other arguments for deterministically induced
quantum features have been proposed recently – see works
collected in Part III of Ref. [11], for example, or Refs. [12, 13],
concerning statistical and/or dissipative systems, quantum
gravity, and matrix models.

Many of these attempts to base quantum theory on a clas-
sical footing can be seen as variants of the earlier stochastic
quantization procedures of Nelson [14] and of Parisi and Wu
[15], often accompanied by a problematic analytic continua-
tion from imaginary (Euclidean) to real time, in order to de-
scribe evolving systems.

In distinction, one may aim at a truly dynamical under-
standing of the origin of quantum phenomena. In this work, I
present a deterministic field theory from which a correspond-
ing quantum theory emerges by constraining the classical dy-
namics. In particular, I will extend the globally supersymmet-
ric (“pseudoclassical”) onedimensional model introduced in
Ref. [1] to field theory. Thus, a functional Schrödinger equa-
tion is obtained with a positive Hamilton operator, involving
the standard scalar boson part in the noninteracting case.
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Key ingredient is a splitting of the phase space evolution
operator, i.e., of the classical Liouville operator, into positive
and negative energy contributions. The latter, which would
render the to-be-quantum field theory unstable, are eliminated
by imposing a “positivity constraint” on the physical states,
employing the Koopman-von Neumann approach [2, 16]. The
splitting of the evolution operator and subsequent imposition
of the constraint makes use of the supersymmetry of the clas-
sical system, which furnishes Noether charge densities which
are essential here. While, technically, this is analogous to the
imposition of the “loss of information” condition in ’t Hooft’s
and subsequent work [3, 9, 10], it is hoped that the present
extension towards interacting fields opens a way to better un-
derstand the dynamical origin of such a constraint. While a
dissipative information loss mechanism is plausible, alterna-
tively a dynamical symmetry breaking may be considered as
the cause.

This paper is organized as follows. In Section II, the
(pseudo)classical field theory is introduced and its equations
of motion and global supersymmetry derived. Section III is
devoted to the statistical mechanics of an ensemble of such
systems, its Hilbert space description and Liouville equation,
in particular. The Liouville equation is then cast into the form
of a functional Schrödinger equation in Section IV. Also the
necessary positivity constraint on physical states is discussed,
constructed, and incorporated there which turns the emergent
Hamiltonian into a positive local operator with a proper quan-
tum mechanical groundstate. In the concluding Section V, I
mention some interesting topics for further exploration, es-
pecially the relation of the positivity constraint to symmetry
breaking.

II. THE SUPERSYMMETRIC CLASSICAL MODEL

The following derivation will newly make use of “pseudo-
classical mechanics” or, rather, pseudoclassical field theory.
These notions have been introduced through the work of
Casalbuoni and of Berezin and Marinov, who considered a
Grassmann variant of classical mechanics, studying the dy-
namics of spin degrees of freedom classically and after quan-
tization in the usual way [17].

Classical mechanics based on Grassmann algebras has
more recently found much attention in attempts to better un-
derstand the zerodimensional limit of classical and quantized
supersymmetric field theories, see Refs. [18, 19] and further
references therein.

Let us introduce a “fermionic” field ψ, together with a real
scalar field φ. The former is represented by the nilpotent gen-
erators of an infinite dimensional Grassmann algebra [20].
They obey:

{ψ(x),ψ(x′)}+ ≡ ψ(x)ψ(x′)+ψ(x′)ψ(x) = 0 , (1)

where x,x′ are coordinate labels in Minkowski space. All ele-
ments are real.

Then, the classical model to be studied is defined by the

action:

S≡
Z

d4x
(

φ̇ψ̇−φ
(−∆+m2 + v(φ)

)
ψ

)
≡
Z

dt L , (2)

where dots denote time derivatives, and v(φ) may be a poly-
nomial in φ, for example.

This system apparently has not been studied before, which
might be related to the fact that the action is Grassmann odd.
However, in line with the present attempt to find a classical
foundation of a quantum field theory, no path integral quan-
tization (or other) of the model is intended, which could be
obstructed by such a fermionic action.

Introducing canonical momenta,

Pφ ≡ δL
δφ̇

= ψ̇ , Pψ ≡ δL
δψ̇

= φ̇ , (3)

as usual, one calculates the Hamiltonian,

H =
Z

d3x
(

Pφφ̇+Pψψ̇
)
−L

=
Z

d3x
(

PφPψ +φKψ
)

, (4)

which turns out to be Grassmann odd as well. Here the first
of two useful abbreviations has been introduced: K ≡ −∆ +
m2 + v(φ), K′ ≡ K +φdv(φ)/dφ.

Hamilton’s equations of motion for our model follow:

φ̇ =
δH
δPφ

= Pψ , (5)

ψ̇ =
δH
δPψ

= Pφ , (6)

Ṗφ = −δH
δφ

=−K′ψ , (7)

Ṗψ = −δH
δψ

=−Kφ . (8)

Combining the equations, one obtains:

φ̈ =−Kφ , ψ̈ =−K′ψ , (9)

i.e., the generally nonlinear field equations, where there is
only a parametric coupling between the fields φ and ψ, namely
of the former to the latter.

These equations are invariant under the global symmetry
transformation,

φ−→ φ+ εψ , (10)

where ε is an infinitesimal real parameter. Associated is the
Noether charge:

C1 ≡
Z

d3x Pφψ , (11)

which is a constant of motion. Similarly, a second global sym-
metry transformation leaves the system invariant:

ψ−→ ψ+ εφ̇ , (12)
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with associated conserved Noether charge:

C2 ≡
Z

d3x
(1

2
P2

ψ +V (φ)
)

, (13)

which is the total energy of the classical scalar field, with
dV (φ)/dφ ≡ Kφ, appropriately taking care of gradient terms
by partial integration.

In the following, it will be useful to introduce the Poisson
bracket operation acting on two observables A and B, which
generally can be function(al)s of the phase space variables
φ,Pφ,ψ,Pψ:

{A,B} ≡ A
Z

d3x
( ↼

δ
δPφ

⇀

δ
δφ

+
↼

δ
δPψ

⇀

δ
δψ

−
↼

δ
δφ

⇀

δ
δPφ

−
↼

δ
δψ

⇀

δ
δPψ

)
B , (14)

where all functional derivatives refer to the same space-time
argument and act in the indicated direction; for the fermi-
onic variables this direction is meant to coincide with their
left/right-derivative character [18].

Note that {A,B} = −{B,A}, if the derivatives of A and B
commute, i.e., if in each contributing term at least one of the
two is Grassmann even. Furthermore, for any observable A,
the usual relation among time derivatives holds:

d
dt

A = {H,A}+∂tA , (15)

which embodies Hamilton’s equations of motion.
Naturally, the time independent Hamiltonian of Eq. (4) is

conserved by the evolution according to the classical equa-
tions of motion.

For the Hamiltonian and Noether charge densities, iden-
tified by H ≡ R d3xH(x) and C j ≡

R
d3xC j(x)| j=1,2, respec-

tively, one finds a local (equal-time) supersymmetry algebra:

{C1(x),C2(x′)}=−H(x)δ3(x− x′) , (16)

and,

{H(x),C1(x′)}+{C1(x′),H(x)}
= {H(x),C1(x′)}+{C1(x),H(x′)} = 0 , (17)

{H(x),C2(x′)} = 0 , (18)

{C j(x),C j(x′)} = {H(x),H(x′)} = 0 . (19)

In all calculations, eventually arising coincidence limits are
assumed to be smooth, since classical fields are involved.
Of course, for any one of the constants of motion, A ∈
{H,C1,C2}, one obtains: {H,A}= Ȧ = 0.

In the following section, the present analysis is applied to
the corresponding phase space representation of an ensem-
ble of systems and, furthermore, developed into an equivalent
Hilbert space picture.

III. THE LIOUVILLE EQUATION: FROM THE FIELD
THEORY IN PHASE SPACE TO THE HILBERT SPACE

PICTURE

A particular example of Eq. (15) is the Liouville equation
for a conservative system, such as the model considered in
Section II. Considering an ensemble of systems, especially
with some distribution over different initial conditions, this
equation governs the evolution of its phase space density ρ:

0 = i
d
dt

ρ = i∂tρ− L̂ρ , (20)

where a convenient factor i has been introduced, and the Li-
ouville operator L̂ is defined by:

−L̂ρ≡ i{H,ρ} . (21)

These equations summarize the classical statistical mechanics
of a conservative system, given the Hamiltonian H in terms of
the phase space variables.

Next, let us briefly recall the equivalent Hilbert space for-
mulation developed by Koopman and von Neumann [2]. It
will be modified here in a way appropriate for the supersym-
metric classical field theory in question.

Two postulates are put forth:

• (A) the phase space density functional can be factorized
in the form ρ≡Ψ∗Ψ;

• (B) the Grassmann valued and, in general, complex
state functional Ψ itself obeys the Liouville Eq. (20).

Furthermore, the complex valued inner product of such state
functionals is defined by:

〈Ψ|Φ〉 ≡
Z

DφDPψDψDPφ Ψ∗Φ = 〈Φ|Ψ〉∗ , (22)

i.e., by functional integration over all phase space variables
(fields). However, due to the presence of Grassmann val-
ued variables, the ∗-operation which defines the dual of a
state functional needs special attention and will be discussed
shortly.

The above definitions make sense for functionals which
suitably generalize the notion of square-integrable functions.
In particular, the functional integrals can be treated rigorously
by discretizing the system, properly pairing degrees of free-
dom.

Given the Hilbert space structure, the Liouville operator of
a conservative system has to be Hermitian and the overlap
〈Ψ|Ψ〉 is a conserved quantity. Then, the Liouville equation
also applies to ρ = |Ψ|2, due to its linearity, and ρ may be
interpreted as replacing the probability density of before [2].
Naturally, this is needed for meaningful phase space expecta-
tion values of observables.

Certainly, one is reminded here of the usual quantum me-
chanical formalism. In order to expose the striking similarity
as well as the remaining crucial difference, further transfor-
mations of the functional Liouville equation are useful [1].
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A Fourier transformation replaces the momentum Pψ by a
second scalar field φ̄. Furthermore, define ψ̄ ≡ Pφ. Thus, the
Eqs. (20)–(21) yield:

i∂tΨ = Ĥ Ψ , (23)

where Ψ is considered as a functional of φ, φ̄,ψ, ψ̄, and with
the emergent “Hamilton operator”:

Ĥ Ψ≡−i
Z

DPψ exp(iPψ · φ̄){H,Ψ} (24)

=
Z

d3x
(
−δφ̄δφ + φ̄Kφ− i(ψ̄δψ−ψK′δψ̄)

)
Ψ

≡
Z

d3x Ĥ (x) Ψ , (25)

using the abbreviation f · g ≡ R d3x f (x)g(x). Note that the
density Ĥ (x) is Grassmann even.

While the Eq. (23) strongly resembles a functional
Schrödinger equation, several comments must be made here
which point out its different character.

First of all, following a linear transformation of the scalar
field variables, φ≡ (σ+κ)/

√
2 and φ̄≡ (σ−κ)/

√
2, one finds

a “bosonic” kinetic energy term:

−1
2

Z
d3x

(
δ 2

σ −δ 2
κ
)

,

which is not bounded from below. Therefore, neglecting the
Grassmann variables momentarily, the remaining Hermitian
part of the Hamiltonian lacks a lowest energy state, which
otherwise could qualify as the emergent quantum mechanical
groundstate of the bosonic sector.

Secondly, as could be expected, the fermionic sector reveals
a similar problem.

The ∗-operation mentioned before amounts to complex
conjugation for a bosonic state functional, (Ψ[φ̄,φ])∗ ≡
Ψ∗[φ̄,φ], analogously to an ordinary wave function in quantum
mechanics. However, based on complex conjugation alone,
the fermionic part of the Hamiltonian (24) would not be Her-
mitian.

Instead, a detailed construction of the inner product for
functionals of Grassmann valued fields has been presented in
Ref. [21]; see also further examples in Refs. [22]. Considering
only the noninteracting case with K′ = K, i.e., with v(φ) = 0
in Eq. (2), the construction of Floreanini and Jackiw can be
directly applied here. Then, the Hermitian conjugate of ψ
is ψ† = δψ and of ψ̄ it is ψ̄† = δψ̄. Furthermore, rescaling
ψ̄ −→ ψ̄

√
K, the fields ψ̄ and ψ obtain the same dimension-

ality. Together, this suffices to render Hermitian the fermionic
part of the Hamiltonian (24), which becomes:

Ĥψ̄ψ ≡ i(ψ
√

Kδψ̄− ψ̄
√

Kδψ) . (27)

In the presence of interactions, with K′ 6= K, additional mod-
ifications are necessary and will be considered elsewhere. In
any case, although Ĥψ̄ψ must be (made) Hermitian, its eigen-
values generally will not have a lower bound either.

To summarize, the emergent Hamiltonian Ĥ tends to be
unbounded from below, thus lacking a groundstate. This
generic difficulty has been encountered in various attempts
to build deterministic quantum models, i.e., classical mod-
els which can simultaneously be seen as quantum mechani-
cal ones [3, 6, 7, 9, 10]. For the present case, this will be
discussed and resolved in Section IV.

To conclude this section, equal-time operator relations for
the interacting case are derived here, which are related to the
supersymmetry algebra of Eqs. (16)–(19). This is achieved by
Fourier transformation of appropriate Poisson brackets, simi-
larly as with the emergent Hamiltonian in Eq. (24) above.

To begin with, the operators corresponding to the Noether
densities will be useful. Using Eq. (11) and ψ̄≡ Pφ, as before,
one obtains:

Ĉ1(x)Ψ ≡
Z

DPψ exp(iPψ · φ̄){C1(x),Ψ}

=
(−ψδφ + iψ̄φ̄

)
(x)Ψ . (28)

Similarly, one obtains:

Ĉ2(x)Ψ ≡ (− iδφ̄δψ−φKδψ̄
)
(x)Ψ , (29)

which is related to Eq. (13).
Both operators are Grassmann odd and obey:

{Ĉ j(x), Ĉ j(x′)}+ = 0 , (30)

for j = 1,2. Therefore, they are nilpotent, Ĉ 2
j (x) = 0. This

should be compared to Eq. (19), as well as the vanishing com-
mutator:

[Ĥ (x),Ĥ (x′)] = 0 , (31)

where [Â, B̂] ≡ ÂB̂− B̂Â. Thus, the emergent theory is local,
as expected.

It should be remarked that in all calculations of
(anti)commutation relations eventually necessary partial inte-
grations, i.e. shifting of gradients, are justified by smearing
with suitable test functions and integrating.

Further relations that correspond to Jacobi identities on the
level of the Poisson brackets are interesting. Generally, one
has to be careful about extra signs that arise due to the Grass-
mann valued quantities, as compared to more familiar ones
related to real or complex variables [18]. Straightforward cal-
culation gives:

[Ĥ (x), Ĉ j(x′)] = 0 , for j = 1,2 , (32)

{iĈ1(x), Ĉ2(x′)}+ = Ĥ (x)δ3(x− x′) , (33)

cf. Eqs. (16)–(18); the extra factor i must be attributed to the
Fourier transformation that enters between the phase space
functions before and the operators here.

Finally, it is noteworthy that a copy of the above operator
algebra arises, if one performs the replacements ψ ↔ −δψ̄
and ψ̄ ↔ δψ on the operators Ĉ j. This yields the nilpotent
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operators D̂ j, instead of the Ĉ j:

iD̂1(x) ≡ (
iδψ̄δφ−δψφ̄

)
(x) , (34)

D̂2(x) ≡ (
iδφ̄ψ̄−φKψ

)
(x) , (35)

with a convenient overall sign introduced in the latter defini-
tion. They fullfill the same (anti)commutation relations as in
Eqs. (30)–(33).

Finally, also the following local operators commute with
the Hamiltonian density:

(iD̂1Ĉ2± iĈ1D̂2) =−i(δψ̄δψ∓ ψ̄ψ)(−δφ̄δφ + φ̄Kφ) , (36)

with [Ĉ1,D̂2] = [D̂1, Ĉ2] = 0. These operators are not nilpo-
tent. Their square, though, is highly singular.

One may complete these considerations with the full set
of operators generating the ordinary space-time symmetries
of our model. However, they are not believed to play a
special role for the considerations of the following section.
There, the no-groundstate problem of the emergent Hamil-
tonian, Eq. (24), will be addressed.

IV. PROVIDING THE GROUNDSTATE OF THE
EMERGENT QUANTUM MODEL

Following Eq. (24), it has been pointed out that the emer-
gent Hamiltonian lacks a proper groundstate, i.e., its spec-
trum is not bounded from below. This prohibits to interpret
the model, as it stands, as a quantum mechanical one already,
despite close formal similarities.

In order to overcome this difficulty, the general strategy is
to find a positive definite local operator P̂ that commutes with
the Hamiltonian density, [Ĥ (x), P̂(x′)] = 0. Then, the Hamil-
tonian can be split into contributions with positive and nega-
tive spectrum:

Ĥ = Ĥ+− Ĥ− , (37)

where:

Ĥ± ≡
Z

d3x F
(
Ĥ (x)± P̂(x)

)
. (38)

Here F can be any even function with the property:

F(a+b)−F(a−b) = abG(a2,b2) , G > 0 , (39)

for a,b ∈ R.
The simplest example is F(a) ≡ a2, G ≡ 4. With this, the

splitting of Ĥ is explicitly given by:

Ĥ =
Z

d3x
( (Ĥ + P̂)2− (Ĥ − P̂)2

4P̂

)
, (40)

i.e., Ĥ±(x) = (Ĥ (x)± P̂(x))2/4P̂(x). A quartic polynomial
could be used instead, etc. In the absence of further symmetry
requirements, or other, from the model under consideration,

the simplest splitting will do. It will allow us to obtain a free
quantum field theory, in particular, as leading part of the rele-
vant Hamilton operator.

Here, as in the following, a regularization is necessary, in
order to give a meaning particularly to some of the squared
operators that will keep appearing.

Finally, the spectrum of the Hamiltonian Ĥ is made
bounded from below by imposing the “positivity constraint”:

Ĥ−Ψ = 0 . (41)

This constraint can be enforced as an initial condition,
for example, and is preserved by the evolution, since
[Ĥ+(x),Ĥ−(x)] = 0, by construction. In this way, the phys-
ical states of the system are selected which are based on the
existence of a quantum mechanical groundstate.

Such a constraint selecting the physical part of the emer-
gent Hilbert space has been earlier discussed in the models
of Refs. [3, 9, 10]. It has been interpreted by ’t Hooft as “in-
formation loss” at the fundamental level where quantum me-
chanics may arise from a deterministic theory. However, it
seems also quite possible to relate this to a dynamical symme-
try breaking phenomenon instead, cf. Section V.

For our field theory, the noninteracting and interacting cases
shall now be studied separately in more detail.

A. The noninteracting case

As mentioned before, with v(φ) = 0 in Eq. (2), and therefore
K′ = K =−∆+m2, the rescaling ψ̄ −→ ψ̄

√
K is useful, and

one may consider the set of operators:

Ĥ (x) =
(−δφ̄δφ + φ̄Kφ

)
(x) + Ĥψ̄ψ(x) , (42)

iĈ1(x) =
(− iψδφ− ψ̄

√
Kφ̄

)
(x) , (43)

Ĉ2(x) =
(− iδφ̄δψ−φ

√
Kδψ̄

)
(x) , (44)

with Ĥψ̄ψ from Eq. (27). These operators fullfill the same op-
erator algebra as discussed in the previous section.

Furthermore, let us consider the Hermitian conjugate oper-
ators, in this case based on ψ† = δψ and ψ̄† = δψ̄ [21]:

(
iĈ1(x)

)† =
(− iδψδφ−δψ̄

√
Kφ̄

)
(x) , (45)

(
Ĉ2(x)

)† =
(− iδφ̄ψ−φ

√
Kψ̄

)
(x) . (46)

They commute with the Hermitian density Ĥ (x), and one
finds that {iĈ1(x),(Ĉ2(x))†}+ = 0, together with the corre-
sponding adjoint relation.

Then, also the following Hermitian operators commute
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with the Hamiltonian density:

Ĉ1+(x) ≡ (
iĈ1(x)+

(
iĈ1(x)

)†)√2

=
1√
2

(− i(δψ +ψ)δφ− (δψ̄ + ψ̄)
√

Kφ̄
)
(x) , (47)

Ĉ2+(x) ≡ (
Ĉ2(x)+

(
Ĉ2(x)

)†)
/
√

2

=
1√
2

(− i(δψ +ψ)δφ̄− (δψ̄ + ψ̄)
√

Kφ
)
(x) . (48)

These operators are particularly interesting, since they
present, in some sense, the “square-root of the harmonic os-
cillator”:

Ĉ 2
1+(x) =

δ3(0)
2

(−δ 2
φ + φ̄Kφ̄

)
(x) , (49)

Ĉ 2
2+(x) =

δ3(0)
2

(−δ 2
φ̄ +φKφ

)
(x) , (50)

or, rather, since their sum amounts to the Hamiltonian density
of two free bosonic quantum fields.

It seems natural now to choose the positive definite local
operator P̂ of Eq. (40) as:

P̂(x)≡ ξ
δ3(0)

(
Ĉ 2

1+(x)+ Ĉ 2
2+(x)

)
, (51)

where ξ is a dimensionless parameter. This results in the op-
erators of definite sign:

Ĥ±(x) =
(
Ĥ (x)± P̂(x)

)2
/4P̂(x)

=
ξ
8
(−δ 2

φ +φKφ−δ 2
φ̄ + φ̄Kφ̄

)

±1
2

Ĥ (x)+
1
4

Ĥ 2(x)/P̂(x) , (52)

cf. Eqs. (37)–(40).
Setting ξ = 2 and performing again the linear transforma-

tion φ ≡ (σ + κ)/
√

2 and φ̄ ≡ (σ− κ)/
√

2, previously men-
tioned after Eqs. (24)–(25), here instead yields the Hamil-
tonian density:

Ĥ+(x) =
1
2

(
−δ 2

σ +σKσ+ Ĥψ̄ψ +
1
2

Ĥ 2/P̂
)

(x)
, (53)

with Ĥψ̄ψ from Eq. (27), and where, of course, the linear trans-
formation has also been performed in Ĥ 2/P̂. One observes
that the only trace of the previous instability is now relegated
to this last term, which still involves the scalar field κ. The lo-
cal interactions present in this term certainly have a nonstan-
dard form. Additional parameters playing the role of coupling
constants could be introduced by a more complicated splitting
of the emergent Hamiltonian, see Eqs. (37)–(40), or a different
choice for the operator P̂.

However, the Hamilton operator Ĥ+ has a positive spec-
trum, by construction, and the leading terms are those of a

free bosonic quantum field together with a fermion doublet in
the Schrödinger representation. They dominate at low energy.

Similarly, the constraint operator density becomes:

Ĥ−(x) =
1
2

(
−δ 2

κ +κKκ− Ĥψ̄ψ +
1
2

Ĥ 2/P̂
)

(x)
. (54)

A certain symmetry with Eq. (53) is obvious; note that
−Ĥψ̄ψ = Ĥψψ̄. It suggests to think of the elimination of part of
the Hilbert space, Eq. (41), as a dynamical symmetry breaking
effect. This point will be briefly addressed in the concluding
section.

B. The interacting case

In the interacting case, one has v(φ) 6= 0 in Eq. (2), K ≡
−∆+m2 +v(φ), and K′ ≡K +φdv(φ)/dφ. While the operator
algebra of Section III is available, it is difficult to find the cor-
responding generalization of the “square-root of the harmonic
oscillator” operators of Eqs. (47)–(48).

The latter were most useful, however, in order to obtain a
positive definite operator P̂ that commutes with the emergent
Hamiltonian Ĥ and, with this, to achieve its splitting into parts
with positive and negative spectrum, as in Eqs. (37)–(40). The
vanishing commutator here is important, since it assures that
this splitting is invariant under evolution of the system.

Furthermore, said operators are particularly interesting, if
the resulting bounded Hamilton operator Ĥ+ is to contain
leading standard field theory terms, even though modified by
additions as in Eq. (53), for example.

Following these remarks, one could try and construct such
operators perturbatively, i.e., by deforming the operators, and
include step by step increasing orders in the interaction v.

A quite different approach might be to choose:

P̂(x)≡ 1
M

Ĥ 2(x) , (55)

where M is a parameter with dimensions of energy per unit
volume. (Note that replacing the Hamiltonian density squared
with the total angular momentum density squared would intro-
duce a constant with dimensions of action per unit area.) This
operator commutes with the Hamiltonian density and will lead
to a positive Ĥ+. In fact, the resulting contributions to the
Hamiltonian are in this case simply given by:

Ĥ± =
1

4M

Z
d3x

(
M ± Ĥ (x)

)2
. (56)

Now, imposing the constraint, Ĥ−Ψ = 0, one finds that on
physical states the bounded Hamilton operator gives:

Ĥ+Ψ =
1

M

Z
d3x Ĥ 2(x) Ψ = M ·V Ψ , (57)

with V ≡ R d3x. A surprisingly restrictive result.
To be sure, if one wants to connect the Hamilton operator

Ĥ+ of Eq. (57) to familiar quantum field theories, the difficult
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task of finding “square-root of the harmonic oscillator” oper-
ators reappears. Here one has to find an underlying classical
model for which the emergent Hamiltonian Ĥ , cf. Eqs. (24)–
(25), contains terms which are linear in such operators.

V. CONCLUSIONS

The work presented here touches a number of conceptual
issues surrounding quantum theory. The interpretation of the
measurement process and of the “collapse of the wave func-
tion”, in particular, must figure prominently in this context,
together with the “quantum indeterminism” and the wider
philosophical implications of the algorithmic rules compris-
ing quantum theory as a whole [23]. It is left for future stud-
ies to find out, how a deterministic framework, such as further
elaborated here, allows to see them in a new light.

Deterministic models which simultaneously and consis-
tently can be described as quantum mechanical ones present a
challenge to common wisdom concerning the meaning, foun-
dations, and limitations of quantum theory. Main aspects of
the present work on such a model taken from field theory can
be summarized as follows.

A fairly standard description of the dynamics in phase space
and its conversion to an operators-in-Hilbert-space formal-
ism à la Koopman and von Neumann [2] yield a wave func-
tional equation which is surprisingly similar to the functional
Schrödinger equation of quantum field theory. However, the
emergent “Hamilton operator” of this picture, generically,
lacks a groundstate, which corresponds to the spectrum not
being bounded from below. In order to arrive at a proper
quantum theory with a stable groundstate, parts of the Hilbert
space have to be removed by a positivity constraint which is
preserved by the Hamiltonian flow.

In the present example, this has been discussed based on
simple supersymmetry properties of the underlying classical
model. The important role of “square-root of the harmonic
oscillator” operators in constructing the constraint operator
has been pointed out, and they have been constructed in the
limit of classically noninteracting scalar and fermionic fields,
the latter being represented by nilpotent Grassmann valued
variables. Several comments on the interacting case have been
made, where they may be constructed in perturbation theory.
In particular, these operators promise to be important in emer-
gent quantum models that smoothly connect to standard field
theories with leading quadratic kinetic energy terms.

Here I should like to conclude with a more speculative re-
mark concerning the dynamical origin of the positivity con-
straint, which has been introduced and interpreted as a “loss
of information” at the fundamental dynamical level earlier
[3, 9, 10]. The latter anticipates a still unknown, possibly
dissipative information loss mechanism in the classical the-
ory beneath, such as due to an unavoidable coarse-graining in
the description of some deterministic chaotic dynamics. This
would turn the system under study into an open system.

However, the discussion in Section IV indicates a comple-
mentary point of view. There is a great deal of symmetry
between the operators Ĥ+ and Ĥ− which are responsible for

the evolution of the system as well as for the selection of the
physical states. In fact, since the emergent functional wave
equation is linear in the time derivative, positive and nega-
tive parts of the spectrum of the emergent Hamiltonian Ĥ ,
see Eqs. (24)–(25), can be turned into each other by reversing
the direction of time. Correspondingly, the roles of Ĥ+ and
Ĥ− can be exchanged.

This suggests that giving preference to one over the other
in determining the physical states may be a contingent prop-
erty of the system. It typically occurs in situations where a
symmetry is dynamically broken.

Let us consider an extension of the present model which
schematically incorporates such an effect. Introducing a local
“order parameter” Ô, take the new Hamilton operator density:

Ĥ∗(x)≡ Ĥ+(x)− Ĥ−(x)tanhÔ(x) , (58)

with [Ĥ±(x), Ô(x′)] = 0 and, for example, Ô ≡ (P̂−M )/M
or Ô ≡ (Ĥ 2 −M 2)/M 2. The positive operators Ĥ± are as
defined in Eqs. (37)–(40), P̂ is positive definite, cf. Section IV,
and M denotes an energy density parameter. All operators
here commute.

Therefore, the eigenstates can be ordered according to the
eigenvalues of Ĥ = Ĥ+− Ĥ− or P̂.

For large values of the order parameter, at high energy,
loosely speaking, the symmetry is restored and asymptotically
Ĥ∗ ≈ Ĥ+− Ĥ−. In this regime, the system behaves classi-
cally, corresponding to an emergent Hamilton operator with
unbounded spectrum. Here, the role of Ĥ+ and Ĥ− could
approximately be interchanged by changing the direction of
time.

Conversely, for small values of the order parameter, one
qualitatively finds Ĥ∗ ≈ Ĥ+ + Ĥ−tanh(1) = (P̂+ Ĥ 2/P̂)/2≥
0. This result should be compared with Eqs. (51)–(54), for ex-
ample, and particularly with Eq. (53). Here the spectrum of
Ĥ∗ is bounded from below and the system behaves quantum
mechanically. Interestingly, the backbending of the negative
branch of the spectrum to positive values has replaced the im-
position of the positivity constraint, Eq. (41).

The precise nature of the transition between classical and
quantum regimes, which is regulated by the parameter M ,
depends on how and which order parameter comes into play.
Due to its nonlinearity, which introduces higher order func-
tional derivatives, it modifies the underlying phase space dy-
namics, see Eqs. (20)–(24). It will be interesting to further
study such corrections, which must contribute as additional
force terms, depending on higher powers of field momentum,
for example, to the classical Liouville operator.

Differently from a possible “loss of information” mech-
anism, presently all operators involved are Hermitian and
closely related to the symmetry properties of the system.

Such a symmetry breaking mechanism might be respon-
sible for the emergent quantization also in other cases than
the (pseudo)classical field theory presented here. Besides
this, models that incorporate interacting fermions and gauge
fields are an important topic for future study. Furthermore,
time reparametrization or general diffeomorphism invariance
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should naturally be most interesting to consider in the frame-
work of deterministic quantum models.
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