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The canonical description is based on the prior choice of a spacelike foliation, hence making a reference to a
spacetime metric. However, the metric is expected to be a dynamical, fluctuating quantity in quantum gravity.
After presenting the developments in the History Projection Operator histories theory in the last seven years –
giving special emphasis on the novel temporal structure of the formalism – we show how this problem can be
solved in the histories formulation of general relativity. We implement the 3 + 1 decomposition using metric-
dependent foliations which remain spacelike with respect to all possible Lorentzian metrics. This allows us to
find an explicit relation of covariant and canonical quantities which preserves the spacetime character of the
canonical description. In this new construction we have a coexistence of the spacetime diffeomorphisms group
Diff(M) and the Dirac algebra of constraints.

I. INTRODUCTION

In this work we present the application of ideas of consis-
tent histories to general relativity, and its potential implica-
tions for the quantisation of the theory – regarding in partic-
ular the emphasis on spacetime concepts of the histories. We
show how the temporal structure of the Histories Projection
Operator formalism led to some very important consequences
regarding the physical results of canonical general relativity.

One of the major approaches to the quantisation of grav-
ity is the canonical one, either in its original form – involving
geometrodynamic variables – or in terms of the loop variables,
introduced via the connection formulation of canonical gen-
eral relativity.

The canonical quantisation involves:

i) the identification of a Hilbert space on which the canoni-
cal commutation relations – or some other appropriate alge-
braic structure – can be implemented, thereby defining the
kinematical variables of quantum gravity. The Hilbert space
is chosen to allow the representation of the constraints of
the Hamiltonian description in terms of self-adjoint operators,
preserving the classical Dirac algebra of constraints.

ii) then, one has to find the zero eigenspace of the constraint
operators, in order to define the physical Hilbert space. This
is the scope of the original Dirac quantisation of constrained
systems: variations are usually employed in the case of gravity
(or special models), because the constraint operators are not
expected to have a discrete spectrum.

However the canonical quantisation scheme suffers also
from serious problems, both on technical level and conceptual
level. For example, we encounter problems in constructing
the Hilbert space, writing the constraint operators, and find-
ing their spectrum. Also, the fact that general relativity is a
generally covariant theory raises grave doubts about the con-
ceptual adequacy of the canonical method of quantisation.

Furthermore, the equations of general relativity are covari-
ant with respect to the action of the diffeomorphisms group
Diff(M), of the spacetime manifold M. This does not pose
great difficulties in the classical theory, since once the equa-

tions of motion are solved the Lorentzian metric on M can be
used to implement concepts like causality and spacelike sep-
aration. In quantum theory however, such notions as causal-
ity and spacelike separation are lost, because the geometry of
spacetime is expected to be subject to quantum fluctuations.

This creates problems even at the first step of the quanti-
sation procedure, namely the definition of the canonical com-
mutation relations. The canonical commutation relations are
defined on a ‘spacelike’ surface, however, a surface is space-
like with respect to some particular spacetime metric g, which
is itself a quantum observable that is expected to fluctuate.

The prior definability of the canonical commutation rela-
tions is not merely a mathematical requirement: in a generic
quantum field theory the canonical commutation relations im-
plement the principle of microcausality: namely that field ob-
servables that are defined in spacelike separated regions com-
mute. However, if the notion of spacelikeness is also dynami-
cal, it is not clear in what way this relation will persist.

A spacelike foliation is necessary for the implementation of
the 3+1 decomposition and the definition of the Hamiltonian.
Again we are faced with the question of how to: reconcile the
requirement of spacelikeness with the expectation that differ-
ent metrics will take part in the quantum description.

Even more, one may question whether the predictions of
the resulting quantum theories are independent of the choice
of foliation. The Hilbert space of the quantum theory, which it
is constructed canonically, is not straightforwardly compatible
with the Diff(M) symmetry. In the canonical theory, the sym-
metry group is the one generated by the Dirac algebra of con-
straints, which is mathematically distinct from the Diff(M)
group.

In effect, different choices of foliation lead a priori to dif-
ferent quantum theories and there is no guarantee that these
quantum theories are unitarily equivalent (or physically equiv-
alent in some other generalised sense).

The canonical description cannot provide an answer to
these questions, because once the foliation is employed for the
3 + 1 decomposition, its effect is lost, and there is no way of
relating the predictions corresponding to different foliations.

The above are serious problems, which challenge the va-
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lidity of the canonical approach towards the description of a
generally covariant theory of quantum gravity.

Finally, the problem which is perhaps most well known, is
the problem of time. The Hamiltonian of general relativity
is a combination of the first class constraints, hence it van-
ishes on the reduced state space. It is expected also to van-
ish on the physical Hilbert space constructed in the quanti-
sation scheme. This means that there is no notion of time
evolution in the space of true degrees of freedom. More than
that, the notion of time as causal ordering seems to be lost.
In contrast, the tensorial expressions of the equations of mo-
tion are Diff(M)-invariant in the Lagrangian formalism. It
seems very natural, therefore, to wish for a theory that com-
bines the virtues of both formalisms: the Lagrangian, and the
Hamiltonian. Such a theory is the history projection operator-
histories (HPO) scheme, which offers the possibility of han-
dling the ideas of space and time in significantly new ways.

The consistent histories scheme was developed by Grif-
fiths and Omnés [1] as an interpretation of quantum theory
for closed systems. Gell-Mann and Hartle [2] elaborated this
scheme in the case of quantum cosmology.

Further development came from Isham and Linden and col-
laborators in the HPO histories scheme [3–6], in which they
were able to represent histories by projection operators on a
suitable Hilbert space, thus emphasising the temporal quan-
tum logic of the frame work.

An important feature of the HPO histories is the augmented
temporal structure [7], which allows us to mathematically im-
plement the distinction between time as a parameter of kine-
matics and as a parameter of dynamics. It is of great sig-
nificance that, in the context of classical canonical general
relativity this distinction provides a framework in which the
spacetime diffeomorphism group coexists with the Dirac alge-
bra of constraints. This is a very significant result: it implies
that there is a central role for spacetime concepts, as opposed
to the domination by spatial ideas in the normal canonical ap-
proaches to quantum gravity. More important, it allows a kine-
matical description in which different choices of the direction
of time coexist, in a way that always preserves the spacetime
character of the theory.

The (general relativity) constraints, depend on the foliation
functional. This leads to the natural question, whether physi-
cal results depend upon this choice. The solution of the con-
straints determines a reduced phase space for histories, which
has an explicit dependence on the foliation. In [8, 9] it was
showed that the action of the spacetime diffeomorphism group
intertwines between different reduction procedures. More-
over, if one requires that a specific physical ‘equivariance con-
dition’ is satisfied by the foliation functional, then the reduced
state space is invariant under the action of the diffeomorphism
group. This is a completely novel result, which has been made
possible only by the incorporation of general relativity into the
histories formalism.

The histories approach to general relativity suggests a new,
spacetime focussed, approach to quantum gravity that is char-
acterised by two features that are not implemented in any of
the existing, direct, quantum gravity schemes.

First, the Lorentzian metric is quantised, as a direct ana-
logue of the way the ‘external’ quantum field arises in the
history approach to scalar quantum field theory [10, 11]. On
the other hand, in the conventional canonical quantum gravity
schemes only the spatial metric on a three-surface is quan-
tised.

Second, the history scheme incorporates intrinsically the
basic symmetry of general relativity, namely general covari-
ance, as manifested by the existence of a realisation of the
group of spacetime diffeomorphisms, and under whose action
the history analogue of the canonical Hamiltonian constraints
are invariant.

II. CONSISTENT HISTORIES PRELIMINARY

The consistent histories formalism was originally devel-
oped by Griffiths and Omnés [1], as an interpretation of quan-
tum theory for closed systems.

Gell-Mann and Hartle [2] elaborated this scheme in the case
of quantum cosmology – the Universe being regarded as a
closed system. They emphasised in particular that a theory
of quantum gravity that is expected to preserve the spacetime
character of general relativity would need a quantum formal-
ism in which the irreducible elements are temporally extended
objects, namely histories.

The basic object in the consistent histories approach is a
history

α := (α̂t1 , α̂t2 , ..., α̂tn), (1)

which is a time-ordered sequence of properties of the physi-
cal system, each one represented by a single-time projection
operator on the standard Hilbert space. We notice that the em-
phasis is given on histories rather than states at a single time.

The probabilities and the dynamics are contained in the de-
coherence functional, a complex-valued function on the space
of histories

dH,ρ(α ,β) = tr(C̃†
αρt0Cβ), (2)

where ρt0 is the initial quantum state and where

C̃α := U(t0, t1)α̂t1U(t1, t2)...U(tn−1, tn)α̂tnU(tn, t0) (3)

is the class operator that represents the history α.
When a set of histories satisfies a decoherence condition,

dH ,ρ(α ,β) = 0 then α ,β in the consistent set, (4)

which means that we have zero interference between different
histories, then it is possible to consistently assign probabilities
to each history in that set; it is called a consistent set.

Then we can assign probabilities to each history in the con-
sistent set

dH ,ρ(α ,α) = Prob(α;ρt0) = tr(C̃†
αρt0Cα). (5)
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III. HISTORY PROJECTION OPERATOR-BASIC
ELEMENTS

In the History Projection Operator(HPO) approach to con-
sistent histories theory the emphasis is given on the temporal
quantum logic.

A history is represented by a tensor product of projection
operators

α̂ := α̂t1 ⊗ α̂t2 ⊗ ...⊗ α̂tn , (6)

each operator α̂ti being defined on a copy of the single-time
Hilbert space Hti at that time ti and corresponding to some
property of the system at the same time indicated by the t-
label. Therefore a history is itself a genuine projection opera-
tor defined on the history Hilbert space Vn, which is a tensor
product of the single-time Hilbert spaces

Vn := Ht1 ⊗Ht2 ⊗ ...⊗Htn . (7)

In order to define continuous time histories, we do not take
the continuous limit of the tensor product of Hilbert spaces,
as it cannot be properly defined. The history group, which
is a generalised analogue of the canonical group of standard
quantum theory for elementary systems, was employed [5] in
order to construct the continuous-time history Hilbert space.

For example, for a particle moving on a line the single-time
canonical commutation relations

[ x̂, x̂′ ] = 0 = [ p̂, p̂′ ] (8)
[ x̂, p̂ ] = i~ (9)

become the history group that it is described by the following
history commutation relations, defined at unequal moments of
time

[ x̂t , x̂t ′ ] = 0 = [ p̂t , p̂t ′ ] (10)
[ x̂t , p̂t ′ ] = i~δ(t− t ′). (11)

The key idea in the definition of the history group is, that, the
spectral projectors of the generators of its Lie algebra repre-
sent propositions about phase space observables of the system.

The notion of a ‘continuous tensor product’ – and hence
‘continuous temporal logic’ – arises via a representation of
the history algebra. In order to describe discrete-time histories
we have to replace the delta function, on the right-hand side
of Eq. (11), with the Kronecker delta.

Propositions about histories of the system are associated
with projectors on history Hilbert space. We must clarify here
that the operator xt refers to the position of the particle at a
specific fixed moment of time t. As we shall see in the fol-
lowing section, the novel temporal structure that was later in-
troduced [7], allowed the interpretation of the index t as the
index that does not refer to dynamics – it is not the parame-
ter of time evolution – it is the label of the temporal quantum
logic, in the sense that it refers to the time a proposition about
momentum or position is asserted.

It is important to remark that physical quantities are natu-
rally time-averaged in this scheme. The smeared form of the

history algebra

[ x̂ f , x̂g ] = 0 = [ p̂ f , p̂g ] (12)
[ x̂ f , p̂g ] = i~( f ,g), (13)

where: ( f ,g) =
R ∞
−∞ dt f (t)g(t), resembles that of an one-

dimensional quantum field theory and therefore techniques
from quantum field theory may be used in the study of these
representations. Analogous versions of the history group have
been studied for other field theories [10, 13].

The existence of a properly defined Hamiltonian operator H
is proved to uniquely select the physically appropriate repre-
sentation of the history algebra, therefore the definition of the
time-averaged energy operator H is crucial for the formalism.

IV. HPO-TEMPORAL STRUCTURE

In order to study the temporal structure of the HPO theory
we use the model of a one-dimensional simple harmonic os-
cillator, however the results are generalised appropriately for
other systems.

One of the crucial problems for the development of the
HPO theory was the lack of a clear notion of time evolution,
in the sense that, there was no natural way to express the time
translations from one time slot – that refers to one copy of the
Hilbert space Ht – to another one, that refers to another copy
Ht ′ . The introduction of the history group allowed the defin-
ition of continuous-time histories and led to ‘time-averaged’
physical observables, however any notion of dynamics was
lost and the theory was brought to a hold.

The situation changed after the introduction of a new idea
concerning the notion of time: the distinction between dynam-
ics and kinematics corresponds to the mathematical distinc-
tion between the notion of ‘time evolution’ from that of ‘time
ordering’ or ‘temporal logic time’. The distinction proved
very fruitful for the development of the history theory, leading
in particular to the results of general relativity.

The crucial step in the identification of the temporal struc-
ture of the theory was the definition in [10] of the action op-
erator S – a quantum analogue of the Hamilton-Jacobi func-
tional [12], written as

Sκ :=
Z +∞

−∞
dt (pt ẋt −κ(t)Ht), (14)

where κ(t) is an appropriate test function.
The first term of the action operator Sκ Eq. (14) is identi-

cal to the kinematical part of the classical phase space action
functional. This ‘Liouville’ operator is formally written as

V :=
Z ∞

−∞
dt (pt ẋt) (15)

so that

Sκ = V −Hκ. (16)

The ‘average-energy’ operator

Ĥκ =
Z ∞

−∞
dt κ(t)Ĥt ; Ht :=

pt2

2m
+

mω2

2
x2

t
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is also smeared in time by smearing functions κ(t). The
Hamiltonian operator may be employed (here for the special
case κ(t) = 1) to define Heisenberg picture operators for the
smeared operators like x f

x̂ f (s) := e
i
~ sĤ x̂ f e−

i
~ sĤ

where f = f (t) is a smearing function.
Hence Ĥκ generates transformations with respect to the

Heisenberg picture parameter s, therefore, s is the time label
as it appears in the implementation of dynamical laws

e
i
~ τĤ x̂ f (s) e−

i
~ τĤ = x̂ f (s+τ).

The novel feature in this construction is the definition of
the ‘Liouville’ operator V̂ , which is the quantum analogue of
the kinematical term in the classical phase space action func-
tional. The Liouville operator generates transformations with
respect to the time label t – as it appears in the history algebra,
hence, t the label of temporal logic or the label of kinematics

e
i
~ τV̂ x̂ f (s)e−

i
~ τV̂ = x̂ f ′(s) , f ′(t) = f (t+τ).

We must emphasise here the distinction between the notion
of time evolution from that of logical time-ordering. The lat-
ter refers to the temporal ordering of logical propositions in
the consistent histories formalism. The corresponding para-
meter t does not coincide with the notion of physical time –
as it is measured for instance by a clock. It is an abstrac-
tion, which keeps from physical time only its ordering prop-
erties, namely that it designates the sequence at which differ-
ent events happen–the same property that is kept by the notion
of time-ordered product in quantum field theory. Making this
distinction about time, it is natural to assume that in the HPO
histories one may not use the same label for the time evolution
of physical systems and the time-ordering of events. The for-
mer concept incorporates also the notion of a clock, namely
it includes a measure of time duration, as something distinct
from temporal ordering.

The realisation of this idea on the notion of time was pos-
sible in this particular framework because of the logical struc-
ture of the theory, as it was originally introduced in the consis-
tent histories formalism and as it was later recovered as tem-
poral logic in the HPO scheme.

One may say then that the definition of these two operators,
V and H, implementing time translations, signifies the distinc-
tion between the kinematics and the dynamics of the theory.

However a crucial result of the theory is that Ŝκ is the physi-
cal generator of the time translations in histories theory, as we
can see from the way it appears in the decoherence functional
and hence the physical predictions of the theory.

V. CLASSICAL HISTORIES

The HPO scheme and especially the history group suggests
a reformulation of classical mechanics in the language of his-
tories, which will prove very fruitful in the case of general
relativity.

We consider the space of classical histories Π = {γ | γ :R→
Γ} as paths on the single-time classical phase space Γ. We
equip the history space with a symplectic structure t → (xt , pt)
corresponding to the following Poisson brackets

{xt ,xt ′} = 0
{pt , pt ′} = 0
{xt , pt ′} = δ(t, t ′)

where

xt : Π → R
γ 7→ xt(γ) := x(γ(t)).

The classical Hamilton equations may be written in terms
of the Liouville function V and the smeared Hamiltonian func-
tion H, which are the classical analogues of the corresponding
operators we defined for the quantum theory

{Ft ,V}Π(γcl) = {Ft ,H}Π(γcl),

where

V (γ) :=
Z

dt pt ẋt , {Ft ,V}= Ḟt .

It follows the important conclusion that the solutions to the
classical equations of motion are the specific paths that remain
invariant under the symplectic transformations generated by
the action S for all functions Ft

{F ,S}Π(γcl) = 0,

where S = V −H. The Eq. (17) is essentially the histories
analogue of the least action principle.

VI. GENERAL RELATIVITY HISTORIES FORMALISM

Next we study the HPO formalism in the case of general
relativity [8, 9]. We show that the novel temporal structure
of HPO – that distinguishes between the kinematics and the
dynamics of a theory – suggests a spacetime description that
is immediately related to the canonical one.

Let us consider a 4-manifold M with topology Σ×R, for a
three-manifold Σ. We define the covariant history space

Πcov = T ∗LRiem(M) (17)

as the cotangent bundle of the space of all Lorentzian, glob-
ally hyperbolic four metrics on M and where LRiem(M) is the
space of all Lorentzian four-metrics.

Πcov is equipped with a symplectic structure with symplec-
tic form Ω

Ω =
Z

d4X δπµν(X)∧δgµν(X)

where X ∈ M, gµν ∈ LRiem(M) and πµν its ‘conjugate’ vari-
able and where δgµν is a one-form on Πcov and δ represents
the exterior derivative.
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Or else with the covariant Poisson brackets algebra, on Πcov

{gµν(X) , gαβ(X
′)} = 0 = {πµν(X) , παβ(X ′)}

{gµν(X) , παβ(X ′)} = δαβ
(µν) δ4(X ,X ′),

where δ(µν)
αβ := 1

2 (δµ
αδν

β +δµ
βδν

α).
The physical meaning of π can be understood after the 3+1

decomposition of M in which it will be related to the canonical
conjugate momenta.

A. The representation of the group Diff(M).

The relation between the group of spacetime diffeomor-
phisms Di f f (M) and the Dirac algebra of constraints has been
an important matter of discussion in quantum gravity. We
have showed that in this formalism of general relativity there
exists a representation of the group of spacetime diffeomor-
phisms together with the Dirac algebra of constraints.

Πcov carries a symplectic action of the Diff(M) group, with
generator defined for any vector field W on M

VW :=
Z

d4X πµν(X)LW gµν(X) (18)

where LW denotes the Lie derivative with respect to W .
The functions VW satisfy the Lie algebra of Diff(M)

{VW1 ,VW2 }= V[W1,W2]

where [W1,W2] is the Lie bracket between vector fields W1 and
W2 on the manifold M.

B. Relation between spacetime and canonical description

Next we study the relation between the covariant descrip-
tion and the standard canonical one.

We must emphasise here that the spacetime description we
presented is kinematical – in the sense that we do not start
from a Lagrangian formalism and from this deduce the canon-
ical constraints. We rather start from the histories canonical
general relativity and we show that this formalism is aug-
mented by a spacetime description that carries a representa-
tion of the spacetime Diff(M) group.

In the standard canonical formalism we introduce a space-
like foliation E : R× Σ → M on M, with respect to a fixed
Lorentzian four-metric g. Then the spacelike character of the
foliation function implies that the pull-back of the four metric
on a surface Σ is a Riemannian metric with signature +++.
In the histories theory we obtain a path of such Riemannian
metrics t 7→ hi j(t,x) each one defined on a copy of Σt with the
same t label.

However a foliation cannot be spacelike with respect to all
metrics g and in general, for an arbitrary metric g the pullback
of a metric E∗g is not a Riemannian metric on Σ.

This point reflects a major conceptual problem of quantum
gravity: the notion of ‘spacelike’ has no a priori meaning in

a theory in which the metric is a non-deterministic dynami-
cal variable; in absence of deterministic dynamics, the rela-
tion between canonical and covariant variables appears rather
puzzling. In classical general relativity this is not a prob-
lem because ‘spacelikeness’ refers to the metric that solves
the equations of motion. In quantum gravity however where
one expects metric fluctuations the notion of spacelikeness is
problematic.

In histories theory this problem is addressed by introduc-
ing the notion of a metric dependent foliation E [g], defined
as a map E [g] : LRiem(M) 7→ FolM, that assigns to each
Lorentzian metric a foliation that is always spacelike with re-
spect to that metric. Then we use the metric dependent folia-
tion E [g] to define the canonical decomposition of the metric
g with respect to the canonical three-metric hi j, the lapse func-
tion N and the shift vector Ni as

hi j(t,x) := Eµ
,i(t,x;g]Eν

, j(t,x;g]gµν(E(t,x;g])

Ni(t,x) := Eµ
,i(t,x;g] Ėν(t,x;g]gµν(E(t,x;g])

−N2(t,x) := Ėµ(t,x;g] Ėν(t,x;g]gµν(E(t,x;g])−NiNi

Defined in this way hi j is always a Riemannian metric, with
the correct signature.

In the histories theory therefore, the 3 + 1 decomposition
preserves the spacetime character of the canonical variables,
a feature that we may expect to hold in a theory of quantum
gravity.

C. Relation between Πcov and Πcan

With the introduction of the metric-dependent foliation we
can then write the symplectic form Ω, on the space of canon-
ical general relativity histories description Πcan, (using an
equivalent canonical form of Ω),

Ω =
Z

d4X δπµν∧δgµν

=
Z

d3xdt(δπi j ∧δhi j +δp∧δN +δpi∧δNi),

by introducing conjugate momenta for the three-metric πi j,
the lapse function p and the shift vector pi.

Thus we prove the equivalence of the covariant history
space Πcov = (T ∗LRiem(M) with the space of paths on the
canonical phase space of general relativity

Πcan=×t(T ∗Riem(Σt)×T ∗Vec(Σt)×T ∗C∞(Σt)), (19)

where Riem(Σt) is the space of all Riemannian three-metrics
on the surface Σt , Vec(Σt) is the space of all vector fields on
Σt , and C∞(Σt) is the space of all smooth scalar functions on
Σt .

D. Canonical description

The canonical history space of general relativity Πcan is
the Cartesian product of the cotangent bundles of the space of
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Riemannian three-metrics RiemΣt , the space of vector fields
on Σ and the space of all scalar functions on Σ. Hence, Πcan

is a suitable subset of the Cartesian product of copies of the
phase space Γ of standard canonical general relativity

Πcan ⊂×tΓt , Γt = Γ(Σt). (20)

A history therefore is any smooth map

t 7→(hi j(t,x),πkl(t,x),Ni(t,x), pi(t,x),N(t,x), p(t,x)). (21)

We obtain the history version of the canonical Poisson
brackets from the covariant Poisson brackets

{hi j(t,x) ,πkl(t ′,x′)} = δ(i j)
kl δ(t, t ′)δ3(x,x′)

{N(t,x), p(t ′,x′)} = δ(t, t ′)δ3(x′,x′)
{Ni(t,x), p j(t ′,x′)} = δi

jδ(t, t ′)δ3(x′,x′)

{hi j(t,x) ,hkl(t ′,x′)} = 0 = {πi j(t,x) ,πkl(t ′,x′)}
{N(t,x),N(t ′,x′)} = 0 = {p(t,x), p(t ′,x′)}
{Ni(t,x),N j(t ′,x′)} = 0 = {pi(t,x), p j(t ′,x′)}

where we have defined δ(i j)
kl := 1

2 (δi
kδ j

l + δi
lδ j

k). All
quantitiesN,Ni, p and pi have vanishing Poisson brackets with
πi j and hi j.

E. Invariance transformations of covariant and canonical
descriptions

The generators of the diffeomorphism group Diff(M), de-
fined as Eq. (18), act on the spacetime or covariant variables
in a natural way, generating spacetime diffeomorphisms

{gµν(X) ,VW } = LW gµν(X)

{πµν(X) ,VW } = LW πµν(X).

The coexistence of the spacetime and the canonical vari-
ables allows one to write the history analogue of the canoni-
cal constraints. The canonical description leads naturally to a
one-parameter family of super-hamiltonians t 7→H⊥(t,x) and
super-momenta t 7→Hi(t,x),

H⊥(t,x) := κ2h−1/2(t,x)(πi j(t,x)πi j(t,x)

− 1
2
(πi

i)2(t,x))−κ−2h1/2(t,x)R(t,x)

H i(t,x) := −2∇jπi j(t,x),

where κ2 = 8πG
c2 and the nabla ∇ denotes the covariant deriva-

tive. We prove that they satisfy a history version of the Dirac
algebra.

We may also write the constraints in a covariant form:

H [~L]=
Z

d4X(Ēπ)µνLLgµν+2
Z

d4X(Ēπ)µνnµnρLLgρν

H⊥[L]=
Z

d4X
[

κ2 N√−g
1
2

Gµνρσ(Ēπ)µν(Ēπ)ρσ−κ−2
√−g

N
3R(h)

]

Φ(k) =
Z

d4X(Ēπ)µνnµ(X ;g]kν(X)

where ~Lµ(X ;g)nµ(X ;g] = 0 and Gµνρσ is a covariant expres-
sion of the Dewitt metric. The supermomentum H [~L] is
smeared with a horizontal vector field L , normal to the fo-
liation vector normal to the leaves nµ; the superhamiltonian
H⊥[L] is smeared with a scalar function L; while the primary
constraints p = pi = 0 are smeared together in a compact
form, of the constraint Φ(k), by a one-form kν. E is a ker-
nel function that appears first when we relate the spacetime
variables with the canonical ones; when the foliation does not
depend on the metric E it equals the unit operator.

F. Equivariance condition

In order to study the explicit relation between the Diff(M)
group and the canonical constraints, we introduce an impor-
tant mathematical restriction on the foliation, the equivariance
condition.

The equivariance condition follows from the requirement
of general covariance, namely that the description of the the-
ory ought to be invariant under changes of coordinate systems
implemented by spacetime diffeomorphisms.

A metric-dependent foliation functional

E : LRiem(M)→ Fol(M) (22)

is defined as an equivariant foliation if it satisfies the simple
mathematical condition

E [ f ∗g] = f−1 ◦E [g],

for all Lorentzian metrics g and f ∈ Diff(M).
The interpretation of the condition Eq. (23) is as follows:

if we perform a change of the coordinate system of the the-
ory under a spacetime diffeomorphism, then the expressions
of the objects defined in it will change, and so the foliation
functional E [g] and the four-metric g will also change. Then,
the change of the foliation due to the change of the coordi-
nate system must be compensated by the change due to its
functional dependence on the metric g. This is essentially
the passive interpretation of the spacetime diffeomorphisms.
Loosely speaking what we have achieved with the introduc-
tion of the equivariance condition is that the foliation func-
tional ‘looks the same’ in all coordinate systems.

The physical requirement is that the change of any tensor
field A(·,g], associated to the foliation, under a diffeomor-
phism f is compensated by the change due to its functional
dependence on g. Hence, if we consider a diffeomorphism
transformation f , and we denote its pull-back operation by
f ∗, the equivariance condition is given by the expression

( f ∗A)(· ,g] = A(· , f ∗g].

G. Relation between the invariance groups

One of the deepest issues to be addressed in canonical grav-
ity is the relation of the algebra of constraints to the spacetime
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diffeomorphisms group. The canonical constraints depend on
the 3+1 decomposition and hence on the foliation functional.

The equivariance condition manifests a striking result both
in its simplicity and its implications: the action of the diffeo-
morphisms group Diff(M) preserves the set of the constraints,
in the sense that it transforms a constraint into another of
the same type but of different argument. Hence, the choice
of an equivariance foliation implements that histories canon-
ical field variables related by diffeomorphisms are physically
equivalent

{VW ,Φ(k)} = Φ(LW k)

{VW ,H (~L)} = H (δW~L)
{VW ,H⊥(L)} = H⊥(LW L).

Here δW is the total change due to a diffeomorphism that takes
into account that Lµ is normal to nµ, which is itself metric
dependent.

Furthermore, this result means also that, the group Diff(M)
is represented in the space of the true degrees of freedom, the
reduced phase space. We can say equivalently that the space
of true degrees of freedom is invariant under Diff(M).

Hence, in the histories theory the requirement of the physi-
cal equivalence of different choices of time direction is satis-
fied by means of the equivariance condition.

H. Reduced state space

Finally we study the reduction procedure as implemented
in the histories framework. General relativity is a parameter-
ized system in the sense that it has vanishing Hamiltonian on
the reduced phase space due to the presence of first class con-
straints.

One may define the history constraint surface Ch = {t 7→
C, t ∈R} as the space of maps from the real line to the single-
time constraint surface C of canonical general relativity.

The history reduced state space is obtained as the quotient
of the history constraint surface, with respect to the action of
the constraints, i.e. the space of orbits on Ch arising from the
action of the constraints.

The histories Hamiltonian constraint is defined as

Hκ =
Z

dt κ(t)ht , (23)

where ht := h(xt , pt) is first-class constraint. For all values
of the smearing function κ(t), the history Hamiltonian con-
straint Hκ generates canonical transformations on the history
constraint surface.

It has been proved [8] that the history reduced state space
Πred is a symplectic manifold that can be identified with the
space of paths on the canonical reduced state space Γred :

Πred = {t 7→Γred , t∈R} (24)

We have proved therefore that the histories reduced state space
is identical with the space of paths on the canonical reduced
state space.

Consequently the time parameter t also exists on Πred , and
the notion of time ordering remains on the space of the true
degrees of freedom Πred . This last result is in contrast to the
standard canonical theory where there exists ambiguity with
respect to the notion of time after reduction.

Moreover, the phase space action functional S

S :=
Z

dt
Z

d3x
{

π̃i j(t,x)ḣi j(t,x)+ p̃iṄi+ p̃Ṅ−H(N)−H(~N)
}

commutes weakly with the constraints, so it can be projected
on the histories reduced state space

{S ,Φ(k)+H [~L]+H⊥[L]} ' 0.

It then serves its role in determining the equations of motion,
as we have shown in the theory of classical histories [15].

In order for a function on the full state space Π, to be a
physical observable (i.e., to be projectable into a function on
Πred), it is necessary and sufficient that it commutes with the
constraints on the constraint surface. Contrary to the canon-
ical treatments of parameterised systems, the classical equa-
tions of motion are explicitly realised on the reduced state
space Πred .

Indeed, the equations of motion are the paths on the phase
space that remain invariant under the symplectic transforma-
tions generated by the projected action

{S̃,Ft}(γcl) = 0 ,Ft constant in t

where S̃ and Ṽ are respectively the action and Liouville func-
tions projected on Πred .

The usual dynamical equations for the canonical fields hi j
and πi j are equivalent to the history Poisson bracket equations

{S ,hi j(t,x)}(γcl) = 0 (25)

{S ,πi j(t,x)}(γcl) = 0 (26)

The path γcl is a solution of the classical equations of motion,
and therefore corresponds to a spacetime metric that is a solu-
tion of the Einstein equations.

The canonical action functional S is also diffeomorphic-
invariant

{VW ,S}= 0. (27)

This is a significant result: it leads to the conclusion that the
action functional and the equations of motion (25–26) are the
‘observables’ of general relativity theory, as has been indi-
cated from the Lagrangian treatment of the theory. Hence, the
dynamics of the histories theory is invariant under the group
of spacetime diffeomorphisms.

It is important to remember that the parameter with respect
to which the orbits of the constraints are defined, is not in any
sense identified with the physical time t. In particular, one can
distinguish the paths corresponding to the classical equations
of motion by the condition

{F,Ṽ}γcl = 0, (28)
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where F is a functional of the field variables, and γcl is a solu-
tion to the equations of motion.

In standard canonical theory, the elements of the reduced
state space are all solutions to the classical equations of mo-
tion. In histories canonical theory, however, an element of the
reduced state space is a solution to the classical equations of
motion only if it also satisfies the condition Eq. (28). The rea-
son for this is that the histories reduced state space Πred con-
tains a much larger number of paths (essentially all paths on
Γred ). For this reason, histories theory may naturally describe
observables that commute with the constraints but which are
not solutions to the classical equations of motion.

This last point should be particularly emphasised, because
of its possible corresponding quantum analogue. We know
that in quantum theory, paths may be realised that are not solu-
tions to the equations of motion. My belief is that the histories
formalism will distinguish between instantaneous laws [16]
(namely constraints), and dynamical laws (equations of mo-
tion). Hence, it is possible to have a quantum theory for
which the instantaneous laws are satisfied, while the classi-
cal dynamical laws are not. This distinction is present, for
example, in the history theory of the quantised electromag-
netic field, where all physical states satisfy the Gauss law ex-
actly, however electromagnetism field histories are possible
which do not satisfy the dynamical equations, i.e., Maxwell’s
equations. For parameterised systems, this distinction is not
possible within the canonical formalism, nevertheless as we
explained, it does arise in the histories formalism.

The equations of motion (28) imply that physical observ-
ables have constant values on the solutions to the classical
equations of motion. This need not be the case quantum me-
chanically, hence quantum realised paths need not be charac-
terised by ‘frozen’ values of their physical parameters.

VII. NOTES ON QUANTIZATION

These are significant results for developing a theory of
quantum gravity. It indicates that the histories scheme can
incorporate intrinsically the basic symmetry of general rela-

tivity, namely general covariance – as manifested by the ex-
istence of a realisation of the Diff(M) group – and the invari-
ance of the Hamiltonian constraints under its action.

Furthermore it provides a possible quantum gravity theory
where the full Lorentzian metric may be quantised, unlike
some spatial part of the metric of the canonical schemes. For
this purpose we may follow the quantum algorithm we de-
scribed in the beginning of this presentation. That is to seek a
representation of the history algebra or the histories commu-
tation relations that are defined with reference to the whole of
spacetime and not just a 3-surface; in particular, these history
variables include a quantised Lorentzian spacetime metric. Of
course problems of defining properly quantum Hamiltonian
operators still remains in a first estimation of the formalism.

Another possible direction to follow is to develop a histo-
ries analogue of loop quantum gravity, as this is a successful
canonical theory in many respects. In the canonical treatment,
the basic algebra is defined with reference to objects that have
support on loops in the three-dimensional surface Σ. The nat-
ural object in the histories description is the SL(2,C)) connec-
tion. An obvious first step would be to write the kinematical
Hilbert space based on a representation of an SL(2,C) con-
nection on M instead of the SU(2) connection on Σ.

This is a more complicated matter, and there is no guar-
antee that there exists a correspondence between the histories
SL(2,C) theory and the canonical SU(2) one. The major dif-
ference is that the SL(2,C) group is non-compact, hence the
definition of the proper Hilbert space cannot follow the steps
of the canonical construction.

The mathematical structures of a quantisation based on his-
tories will conceivably be very different from those in the
canonical theory. For this reason, the history construction may
uncover substantially different properties from those that arise
in the existing approaches to loop quantum gravity.
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